-
Notifications
You must be signed in to change notification settings - Fork 11
/
moff_mbr.py
executable file
·560 lines (487 loc) · 23.9 KB
/
moff_mbr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#!/usr/bin/env python
import ast
import configparser
import copy
import itertools
import logging
import os
import re
import sys
from functools import reduce
import numpy as np
import pandas as pd
from sklearn import linear_model
from sklearn.metrics import mean_absolute_error
import moff
"""moFF: matching between runs module """
# debug
log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)
# filtering _outlier
def MahalanobisDist(x, y):
"""
Computee the Mahalanobis distance to filter outlier in the RT allignment
:param x:
:param y:
:return:
"""
covariance_xy = np.cov(x, y, rowvar=0)
inv_covariance_xy = np.linalg.inv(covariance_xy)
xy_mean = np.mean(x), np.mean(y)
x_diff = np.array([x_i - xy_mean[0] for x_i in x])
y_diff = np.array([y_i - xy_mean[1] for y_i in y])
diff_xy = np.transpose([x_diff, y_diff])
md = []
for i in range(len(diff_xy)):
md.append(np.sqrt(
np.dot(np.dot(np.transpose(diff_xy[i]), inv_covariance_xy), diff_xy[i])))
return md
# remove outlier
def MD_removeOutliers(x, y, width):
"""
Remove outliers point using MahalanobisDist function
:param x:
:param y:
:param width:
:return:
"""
MD = MahalanobisDist(x, y)
threshold = np.mean(MD) * float(width) # adjust 1.5 accordingly
nx, ny, outliers = [], [], []
for i in range(len(MD)):
if MD[i] <= threshold:
nx.append(x[i])
ny.append(y[i])
else:
outliers.append(i) # position of removed pair
return np.array(nx), np.array(ny), np.array(outliers)
# combination of rt predicted by each single model
def combine_model(x, model, err, weight_flag):
x = x.values
tot_err = np.sum(np.array(err)[np.where(~np.isnan(x))])
app_sum = 0
app_sum_2 = 0
for ii in range(0, len(x)):
if ~ np.isnan(x[ii]):
if not weight_flag :
app_sum = app_sum + (model[ii].predict(x[ii].reshape(-1,1))[0][0])
else:
app_sum_2 = app_sum_2 + \
(model[ii].predict(x[ii].reshape(-1,1))[0][0] *
(float(err[ii]) / float(tot_err)))
# " output weighted mean
if not weight_flag :
# not weight outpuy
return float(app_sum) / float(np.where(~ np.isnan(x))[0].shape[0])
else:
# output weight
return float(app_sum_2)
'''
def train_gp(data_A,data_B,c=None):
"""
Using GP for retention time alligment
"""
bins = np.linspace(data_B.min()-2, data_B.max()+1,20)
digitized = np.digitize(data_B, bins)
size_bin = [ digitized[digitized == i].shape[0] for i in range(1, len(bins))]
tt_x = np.concatenate([random.sample(np.where(digitized == i)[0], 20) for i in range(1, len(bins))])
test = np.setdiff1d(range(data_A.shape[0]),tt_x)
#ff = ym_test_predicted[:, 0] - np.sqrt(np.diag(y_cov))
#dd = ym_test_predicted[:, 0] + np.sqrt(np.diag(y_cov))
# plt.fill_between(data_B[test,0], ff , dd , alpha=0.5,color='k')
#size_train= int (data_A.shape[0] * 0.10)
#rows = random.sample(range(data_A.shape[0]),size_train)
#data_A= data_A[rows,:]
#data_B= data_B[rows,:]
# data_B is x
# data_A if Y
#kern = GPy.kern.Linear(1)
#kernel = 3 * DotProduct() + WhiteKernel(noise_level=0.1,noise_level_bounds=(1e-3, 1e-0))
kernel = 0.5 * RBF(length_scale=1, length_scale_bounds=(1e-2, 1e3)) + WhiteKernel(noise_level=0.3,noise_level_bounds=(1e-3, 2e-0))
m = GaussianProcessRegressor(kernel=kernel, alpha=0.1, normalize_y=False, n_restarts_optimizer=1).fit(data_B[tt_x], data_A[tt_x])
ym_train_predicted, y_cov_train = m.predict(data_B[tt_x], return_std=False, return_cov=True)
ym_test_predicted, y_cov_test = m.predict(data_B[test], return_std=False, return_cov=True)
#ff = np.sqrt(np.diag(y_cov_test))
#dd = np.sqrt(np.diag(y_cov_test))
ff = ym_test_predicted[:, 0] - (1.96 * np.sqrt(np.diag(y_cov_test)))
dd = ym_test_predicted[:, 0] + ( 1.96 * np.sqrt(np.diag(y_cov_test)) )
##printing modell
plt.figure(figsize=(15, 14), dpi=100)
#plt.scatter(data_B[test],ym_test_predicted,marker='*',c='red',s=15 )
plt.fill_between(data_B[test, 0], ff, dd, alpha=0.9, color='r')
plt.scatter(data_B[test],data_A[test],marker='<',c='black',s=25,label='True RT' )
plt.scatter(data_B[test], ym_test_predicted, marker='*', c='blue', s=25,label='predicted RT')
plt.legend(loc="best", scatterpoints=1, prop={'size': 18})
plt.title('GP with Rbf_+ whiteNoise on test set: ' + c )
plt.savefig( 'D:\\workspace\\ionstar_dataset\\mbr_output\\' + c + '__model.png' )
log.critical(' Size error training : %i sec ', tt_x.shape[0])
log.critical(' Mean absolute error training : %4.4f sec',mean_absolute_error(data_A[tt_x], ym_train_predicted))
log.critical(' Mean absolute error test_set (not sampled point) : %4.4f sec',mean_absolute_error(data_A[test], ym_test_predicted))
return m, ym_train_predicted,mean_absolute_error(data_A[tt_x], ym_train_predicted)
def combine_model_GP(x, model, err, weight_flag):
"""
Combination of GP model
"""
ra_flag= 0
#tot_err = 1- ( (np.array(err)[np.where(~np.isnan(x))]) / np.max(np.array(err)[np.where(~np.isnan(x))]))
tot_err = np.sum(np.array(err)[np.where(~pd.isnull(x))])
#print tot_err
#print x
app_sum = 0
app_sum_2 = 0
app_var =0
for ii in range(0, len(x)):
if ~ np.isnan(x[ii]):
#sklearn
pred, y_cov = model[ii].predict(x[ii].reshape(1, 1), return_std=False, return_cov=True)
var = np.sqrt(np.diag(y_cov))
#pred, var = model[ii].predict(x[ii].reshape(1, 1), include_likelihood=True)
#ress = model[ii].predict_quantiles(x[ii].reshape(1, 1))
#print ' %i Input Rt %4.4f Predicted: %4.4f Var %4.4f Interval at 95 %4.4f <--> %4.4f ' % (
#ii, x[ii], float(pred), float(var), pred - (1.965 * var) , pred + (1.965 * var) )
#print 'intervall width length %4.4f' % abs((pred - (1.965 * var)) - (pred + (1.965 * var)))
if not weight_flag :
app_sum = app_sum + (pred)
app_var += var
else:
# print ii,model[ii].predict(x[ii])[0][0]
w = (float(err[ii]) / float(tot_err))
# w= tot_err[ii]
# print ii ,'weighted', (model[ii].predict(x[ii])[0][0] * w ),w
app_sum_2 = app_sum_2 + (pred * w)
app_var += var
# " output weighted mean
if float(np.where(~ np.isnan(x))[0].shape[0]) == 0.0 :
return pd.Series({'time_pred': -1 , 'uncertainty_win': -1})
if weight_flag :
f_p = app_sum_2
mean_var = float(app_var) / float(np.where(~ np.isnan(x))[0].shape[0])
else:
mean_var = float(app_var) / float(np.where(~ np.isnan(x))[0].shape[0])
f_p = float(app_sum) / float(np.where(~ pd.isnull(x))[0].shape[0])
log.critical( ' --> Final Aggr Predicted: %4.4f Var %4.4f Interval at 95 %4.4f <--> %4.4f ' % ( f_p , float(mean_var), f_p - (1.965 * mean_var), f_p + (1.965 * mean_var)))
log.critical (' --> Final intervall width length %4.4f | #_inputs %i' % (abs( (f_p - (1.965 * mean_var)) - (f_p + (1.965 * mean_var)) ),int(np.where(~ np.isnan(x))[0].shape[0])) )
return pd.Series({'time_pred': f_p, 'uncertainty_win': 1.965 * mean_var})
'''
# run the mbr in moFF : input ms2 identified peptide output csv file with the matched peptides added
def run_mbr(args):
"""
Macthing Between Run module.
:param args:
:return:
"""
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
log.addHandler(ch)
if args.loc_in is None:
# the user uses --inputtsv option
if not (args.loc_out is None):
# if the user use --output_folder the mbr folder will be created there
output_dir = os.path.join(args.loc_out, 'mbr_output')
else:
# if the user does not use --output_folder the mbr folder will be created on moFF path location
output_dir = os.path.join('mbr_output')
print(os.path.abspath(output_dir))
else:
# the user use the --inputF option
if os.path.exists(os.path.join(args.loc_in)):
# if '/' in str(args.loc_in):
output_dir = os.path.join(args.loc_in, 'mbr_output')
else:
exit(os.path.join(args.loc_in) +
' EXIT input folder path is not well specified --> / missing or wrong path')
# if not (os.path.isdir(args.loc_in)):
# exit(str(args.loc_in) + '--> input folder does not exist ! ')
# if str(args.loc_in) == '':
# output_dir = 'mbr_output'
# else:
# if os.path.exists(os.path.join(args.loc_in)):
# if '/' in str(args.loc_in):
# output_dir = os.path.join(args.loc_in, 'mbr_output')
# else:
# exit(os.path.join(args.loc_in) + ' EXIT input folder path not well specified --> / missing ')
if not (os.path.isdir(output_dir)):
log.critical("Created MBR output folder in : %s ",
os.path.abspath(output_dir))
os.makedirs(output_dir)
else:
log.critical("MBR Output folder in : %s ", os.path.abspath(output_dir))
# set log to file
w_mbr = logging.FileHandler(os.path.join(
output_dir, args.log_label + '_mbr_.log'), mode='w')
w_mbr.setLevel(logging.INFO)
log.addHandler(w_mbr)
moff_path = os.path.dirname(os.path.realpath(sys.argv[0]))
config = configparser.RawConfigParser()
config.read(os.path.join(moff_path, 'moff_setting.properties'))
# it s always placed in same folder of moff_mbr.py
# read input
# comment better
# name of the input file
exp_set = []
# list of the input dataframe
exp_t = []
# list of the output dataframe
exp_out = []
# lsit of input datafra used as help
exp_subset = []
# list of the name of the mbr output
exp_out_name = []
if args.loc_in is None:
for id_name in args.tsv_list:
exp_set.append(id_name)
else:
for item in os.listdir(args.loc_in):
if os.path.isfile(os.path.join(args.loc_in, item)):
if os.path.join(args.loc_in, item).endswith('.' + args.ext):
log.critical(item)
exp_set.append(os.path.join(args.loc_in, item))
# sample optiion is valid only if folder iin option is valid
if (args.sample is not None) and (args.loc_in is not None):
exp_set_app = copy.deepcopy(exp_set)
for a in exp_set:
if re.search(args.sample, a) is None:
exp_set_app.remove(a)
exp_set = exp_set_app
if (exp_set == []) or (len(exp_set) == 1):
exit(
'ERROR input files not found or just one input file selected . check the folder or the extension given in input')
for a in exp_set:
log.critical('Reading file: %s ', a)
exp_subset.append(a)
data_moff = pd.read_csv(a, sep="\t", header=0)
list_name = data_moff.columns.values.tolist()
# get the lists of PS defaultcolumns from properties file
list_ps_def = ast.literal_eval(
config.get('moFF', 'ps_default_export_v1'))
# here it controls if the input file is a PS export; if yes it maps the input in right moFF name
if moff.check_ps_input_data(list_name, list_ps_def) == 1:
log.critical(
'Detected input file from PeptideShaker export..: %s ', a)
# map the columns name according to moFF input requirements
data_moff, list_name = moff.map_ps2moff(
data_moff, 'col_must_have_mbr')
log.critical(
'Mapping columns names into the the moFF requested column name..: %s ', a)
# print data_moff.columns
if moff.check_columns_name(list_name, ast.literal_eval(config.get('moFF', 'col_must_have_mbr')), log) == 1:
exit('ERROR minimal field requested are missing or wrong')
data_moff['matched'] = 0
data_moff['mass'] = data_moff['mass'].map('{:.4f}'.format)
data_moff['code_unique'] = data_moff['mod_peptide'].astype(
str) # + '_' + data_moff['mass'].astype(str)
data_moff = data_moff.sort_values(by='rt')
exp_t.append(data_moff)
exp_out.append(data_moff)
log.critical('Read input --> done ')
# parameter of the number of query
# set a list of filed mandatory
# ['matched','peptide','mass','mz','charge','prot','rt']
n_replicates = len(exp_t)
exp_set = exp_subset
aa = range(0, n_replicates)
out = list(itertools.product(aa, repeat=2))
# just to save all the model
# add matched columns
list_name.append('matched')
# final status -1 if one of the output is empty
out_flag = 1
# input of the methods
diff_field = np.setdiff1d(exp_t[0].columns, [
'matched', 'mod_peptide', 'peptide', 'mass', 'mz', 'charge', 'prot', 'rt'])
log.info('Outlier Filtering is %s ', 'active' if
args.out_flag else 'not active')
log.info('Number of replicates %i,', n_replicates)
log.info('Pairwise model computation ----')
if args.rt_feat_file is not None:
log.critical(
'Custom list of peptide used provided by the user in %s', args.rt_feat_file)
# log.info('Custom list of peptide used provided by the user in %s', args.rt_feat_file)
shared_pep_list = pd.read_csv(args.rt_feat_file, sep='\t')
shared_pep_list['mass'] = shared_pep_list['mass'].map('{:.4f}'.format)
shared_pep_list['code'] = shared_pep_list['peptide'].astype(
str) + '_' + shared_pep_list['mass'].astype(str)
list_shared_pep = shared_pep_list['code']
log.info('Custom list of peptide contains %i ',
list_shared_pep.shape[0])
for jj in aa:
# list of the model saved
model_save = []
# list of the error in min/or sec
model_err = []
# list of the status of the model -1 means model not available for low points in the training set
model_status = []
c_rt = 0
pre_pep_save = []
log.info('matching in %s', exp_set[jj])
result = itertools.filterfalse(lambda x: x[0] != jj or x[1] == jj, out)
for i in result:
#if i[0] == jj and i[1] != jj:
if args.rt_feat_file is not None:
# use of custom peptide
comA = exp_t[i[0]][exp_t[i[0]]['code_unique'].isin(list_shared_pep)][
['code_unique', 'peptide', 'prot', 'rt']]
comB = exp_t[i[1]][exp_t[i[1]]['code_unique'].isin(list_shared_pep)][
['code_unique', 'peptide', 'prot', 'rt']]
comA = comA.groupby('code_unique', as_index=False).mean()
comB = comB.groupby('code_unique', as_index=False).mean()
common = pd.merge(
comA, comB, on=['code_unique'], how='inner')
else:
# use of shared peptdes.
log.info(' Matching %s peptide in searching in %s ',
exp_set[i[0]], exp_set[i[1]])
list_pep_repA = exp_t[i[0]]['code_unique'].unique()
list_pep_repB = exp_t[i[1]]['code_unique'].unique()
log.info('Peptide unique (mass + sequence) %i , %i ',
list_pep_repA.shape[0],
list_pep_repB.shape[0])
set_dif_s_in_1 = np.setdiff1d(list_pep_repB, list_pep_repA)
add_pep_frame = exp_t[i[1]][exp_t[i[1]]['code_unique'].isin(
set_dif_s_in_1)].copy()
#-- prepare the testing set
add_pep_frame = add_pep_frame[[
'peptide', 'mod_peptide', 'mass', 'mz', 'charge', 'prot', 'rt']]
# add_pep_frame['code_unique'] = '_'.join([add_pep_frame['peptide'], add_pep_frame['prot'], add_pep_frame['mass'].astype(str), add_pep_frame['charge'].astype(str)])
add_pep_frame['code_unique'] = add_pep_frame['mod_peptide'] + '_' + \
add_pep_frame['prot'] + '_' + '_' + \
add_pep_frame['charge'].astype(str)
add_pep_frame = add_pep_frame.groupby('code_unique', as_index=False)[[
'peptide', 'mod_peptide', 'mass', 'charge', 'mz', 'prot', 'rt']].aggregate(max)
add_pep_frame = add_pep_frame[[
'code_unique', 'peptide', 'mod_peptide', 'mass', 'mz', 'charge', 'prot', 'rt']]
list_name = add_pep_frame.columns.tolist()
list_name = [w.replace('rt', 'rt_' + str(c_rt))
for w in list_name]
add_pep_frame.columns = list_name
pre_pep_save.append(add_pep_frame)
c_rt += 1
#--------
pep_shared = np.intersect1d(list_pep_repA, list_pep_repB)
log.info(
' Peptide (mass + sequence) added size %i ', add_pep_frame.shape[0])
log.info(' Peptide (mass + sequence) )shared %i ',
pep_shared.shape[0])
comA = exp_t[i[0]][exp_t[i[0]]['code_unique'].isin(pep_shared)][
['code_unique', 'peptide', 'prot', 'rt']]
comB = exp_t[i[1]][exp_t[i[1]]['code_unique'].isin(pep_shared)][
['code_unique', 'peptide', 'prot', 'rt']]
# filtering using the variance added 17_08
flag_var_filt = False
if flag_var_filt:
dd = comA.groupby('code_unique', as_index=False)
top_res = dd.agg(['std', 'mean', 'count'])
# print np.nanpercentile(top_res['rt']['std'].values,[5,10,20,30,50,60,80,90,95,97,99,100])
th = np.nanpercentile(top_res['rt']['std'].values, 60)
comA = comA[~ comA['code_unique'].isin(
top_res[top_res['rt']['std'] > th].index)]
# data B '
dd = comB.groupby('code_unique', as_index=False)
top_res = dd.agg(['std', 'mean', 'count'])
# print comB.shape
# print np.nanpercentile(top_res['rt']['std'].values,[5,10,20,30,50,60,80,90,95,97,99,100])
th = np.nanpercentile(top_res['rt']['std'].values, 60)
comB = comB[~ comB['code_unique'].isin(
top_res[top_res['rt']['std'] > th].index)]
comA = comA.groupby('code_unique', as_index=False).mean()
comB = comB.groupby('code_unique', as_index=False).mean()
common = pd.merge(
comA, comB, on=['code_unique'], how='inner')
if common.shape[0] <= 10 and args.rt_feat_file is not None:
model_status.append(-1)
continue
# filtering outlier option
else:
if args.out_flag :
filt_x, filt_y, pos_out = MD_removeOutliers(common['rt_y'].values, common['rt_x'].values,
args.w_filt)
data_B = filt_x
data_A = filt_y
data_B = np.reshape(data_B, [filt_x.shape[0], 1])
data_A = np.reshape(data_A, [filt_y.shape[0], 1])
log.info('Outlier founded %i w.r.t %i',
pos_out.shape[0], common['rt_y'].shape[0])
else:
data_B = common['rt_y'].values
data_A = common['rt_x'].values
data_B = np.reshape(data_B, [common.shape[0], 1])
data_A = np.reshape(data_A, [common.shape[0], 1])
log.info(' Size trainig shared peptide , %i %i ',
data_A.shape[0], data_B.shape[0])
clf = linear_model.RidgeCV(alphas=np.power(
2, np.linspace(-30, 30)), scoring='neg_mean_absolute_error')
clf.fit(data_B, data_A)
clf_final = linear_model.Ridge(alpha=clf.alpha_)
clf_final.fit(data_B, data_A)
# save the model
model_save.append(clf_final)
model_err.append(mean_absolute_error(
data_A, clf_final.predict(data_B)))
log.info(' Mean absolute error training : %4.4f sec',
mean_absolute_error(data_A, clf_final.predict(data_B)))
model_status.append(1)
'''
# GP version
model_gp, predicted_train, error = train_gp(data_A, data_B,c= str(i[0])+'_'+str(i[1]))
#print i[1], comA.shape, error
model_err.append(error)
model_save.append(model_gp)
model_status.append(1)
'''
if np.where(np.array(model_status) == -1)[0].shape[0] >= (len(aa) / 2):
log.error(
'MBR aborted : mbr cannnot be run, not enough shared pepetide among the replicates ')
exit('ERROR : mbr cannnot be run, not enough shared pepetide among the replicates')
log.info('Combination of the model --------')
log.info('Weighted combination %s : ', 'Weighted' if
args.w_comb else 'Unweighted')
if n_replicates == 2:
test = pre_pep_save[0]
else:
test = reduce(
lambda left, right: pd.merge(left, right, on=[
'code_unique', 'peptide', 'mod_peptide', 'mass', 'mz', 'charge', 'prot'], how='outer'),
pre_pep_save)
test = test.groupby('code_unique', as_index=False).aggregate(max)
test.drop('code_unique', axis=1, inplace=True)
test['time_pred'] = test.iloc[:, 6: (6 + (n_replicates - 1))].apply(
lambda x: combine_model(x, model_save, model_err, args.w_comb),axis=1)
#test['time_pred'] = test.iloc[:, 6: (6 + (n_replicates - 1))].apply(
# lambda x: combine_model(x, model_save[(jj * (n_replicates - 1)):((jj + 1) * (n_replicates - 1))],
# model_err[(jj * (n_replicates - 1)):((jj + 1) * (n_replicates - 1))], args.w_comb),
# axis=1)
test['matched'] = 1
# still to check better
if test[test['time_pred'] <= 0].shape[0] >= 1:
log.info(' -- Predicted negative RT: those peptide will be deleted')
test = test[test['time_pred'] > 0]
list_name = test.columns.tolist()
list_name = [w.replace('time_pred', 'rt') for w in list_name]
test.columns = list_name
# test = test[['peptide','mod_peptide', 'mass', 'mz', 'charge',
# 'prot', 'rt', 'matched','uncertainty_win']]
test = test[['peptide', 'mod_peptide', 'mass',
'mz', 'charge', 'prot', 'rt', 'matched']]
# just put nan with the missing values
for field in diff_field.tolist():
test[field] = np.nan
log.info('Before adding %s contains %i ',
exp_set[jj], exp_t[jj].shape[0])
exp_out[jj] = pd.concat(
[exp_t[jj], test], join='outer', axis=0, sort=False)
log.info('After MBR %s contains: %i peptides',
exp_set[jj], exp_out[jj].shape[0])
log.critical('matched features %i MS2 features %i ', exp_out[jj][exp_out[jj]['matched'] == 1].shape[0],
exp_out[jj][exp_out[jj]['matched'] == 0].shape[0])
exp_out[jj].to_csv(
path_or_buf=os.path.join(output_dir, os.path.split(exp_set[jj])[1].split('.')[0] + '_match.txt'), sep='\t',
index=False)
exp_out_name.append(os.path.join(output_dir, os.path.split(
exp_set[jj])[1].split('.')[0] + '_match.txt'))
if exp_out[jj].shape[0] > 0:
out_flag = 1 * out_flag
else:
out_flag = -1 * out_flag
w_mbr.close()
log.removeHandler(w_mbr)
return out_flag, exp_out_name