-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
98 additions
and
61 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,64 +1,101 @@ | ||
# fold_change | ||
test_that('fold_change',{ | ||
set.seed('57475') | ||
|
||
# data | ||
D = iris_DatasetExperiment() | ||
|
||
# two groups | ||
F = filter_smeta(mode='exclude',levels='setosa',factor_name='Species') | ||
F = model_apply(F,D) | ||
|
||
D = predicted(F) | ||
|
||
# add column for paired data | ||
D$sample_meta$sample_id=c(1:50,1:50) | ||
D$data[1:50,2] = NA | ||
D$data[1:25,3] = NA | ||
|
||
# unpaired | ||
FF = fold_change(factor_name='Species',method="geometric",control_group='versicolor') | ||
FF = model_apply(FF,D) | ||
m=exp(mean(log(D$data[D$sample_meta$Species=='virginica',1]))) / exp(mean(log((D$data[D$sample_meta$Species=='versicolor',1])))) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
m=exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='virginica',3])))) / exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='versicolor',3])))) | ||
expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) | ||
|
||
FF$method = 'median' | ||
FF = model_apply(FF,D) | ||
m = median(D$data[D$sample_meta$Species=='virginica',1]) / median(D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
m = median(D$data[D$sample_meta$Species=='virginica',3],na.rm = TRUE) / median(D$data[D$sample_meta$Species=='versicolor',3],na.rm = TRUE) | ||
expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) | ||
|
||
FF$method = 'mean' | ||
FF = model_apply(FF,D) | ||
m = mean(D$data[D$sample_meta$Species=='virginica',1]) / mean(D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
m = mean(D$data[D$sample_meta$Species=='virginica',3],na.rm=TRUE) / mean(D$data[D$sample_meta$Species=='versicolor',3],na.rm=TRUE) | ||
expect_equal(FF$fold_change[3,1],m,tolerance=0.00001) | ||
|
||
# paired | ||
FF = fold_change(factor_name='Species',method="geometric",paired=TRUE,sample_name = 'sample_id') | ||
FF = model_apply(FF,D) | ||
m=exp(mean(log(D$data[D$sample_meta$Species=='virginica',1])-log(D$data[D$sample_meta$Species=='versicolor',1]))) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
FF$method = 'median' | ||
FF = model_apply(FF,D) | ||
m = median(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
FF$method = 'mean' | ||
FF = model_apply(FF,D) | ||
m = mean(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
|
||
test_that('fold_change unpaired',{ | ||
set.seed('57475') | ||
|
||
# data | ||
D = iris_DatasetExperiment() | ||
|
||
# add some missing values | ||
D$data[1:50,2] = NA | ||
D$data[1:25,3] = NA | ||
|
||
# unpaired | ||
FF = fold_change(factor_name='Species',method="geometric",control_group='versicolor') | ||
FF = model_apply(FF,D) | ||
# check some fold changes | ||
m=exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='virginica',1])))) / exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='versicolor',1])))) | ||
expect_equal(FF$fold_change$`virginica/versicolor`[1],m,tolerance=0.00001) | ||
|
||
m=exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='setosa',4])))) / exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='versicolor',4])))) | ||
expect_equal(FF$fold_change$`setosa/versicolor`[4],m,tolerance=0.00001) | ||
|
||
m=exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='virginica',3])))) / exp(mean(log(na.exclude(D$data[D$sample_meta$Species=='setosa',3])))) | ||
expect_equal(FF$fold_change$`virginica/setosa`[3],m,tolerance=0.00001) | ||
|
||
# check some NA | ||
expect_true(is.na(FF$fold_change$`virginica/setosa`[2])) | ||
expect_true(is.na(FF$fold_change$`setosa/versicolor`[2])) | ||
|
||
FF$method = 'median' | ||
FF = model_apply(FF,D) | ||
# check some fold changes | ||
m = median(D$data[D$sample_meta$Species=='virginica',1],na.rm = TRUE) / median(D$data[D$sample_meta$Species=='versicolor',1],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`virginica/versicolor`[1],m,tolerance=0.00001) | ||
|
||
m = median(D$data[D$sample_meta$Species=='setosa',4],na.rm = TRUE) / median(D$data[D$sample_meta$Species=='versicolor',4],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`setosa/versicolor`[4],m,tolerance=0.00001) | ||
|
||
m = median(D$data[D$sample_meta$Species=='virginica',3],na.rm = TRUE) / median(D$data[D$sample_meta$Species=='setosa',3],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`virginica/setosa`[3],m,tolerance=0.00001) | ||
|
||
# check some NA | ||
expect_true(is.na(FF$fold_change$`virginica/setosa`[2])) | ||
expect_true(is.na(FF$fold_change$`setosa/versicolor`[2])) | ||
|
||
FF$method = 'mean' | ||
FF = model_apply(FF,D) | ||
m = mean(D$data[D$sample_meta$Species=='virginica',1],na.rm = TRUE) / mean(D$data[D$sample_meta$Species=='versicolor',1],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`virginica/versicolor`[1],m,tolerance=0.00001) | ||
|
||
m = mean(D$data[D$sample_meta$Species=='setosa',4],na.rm = TRUE) / mean(D$data[D$sample_meta$Species=='versicolor',4],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`setosa/versicolor`[4],m,tolerance=0.00001) | ||
|
||
m = mean(D$data[D$sample_meta$Species=='virginica',3],na.rm = TRUE) / mean(D$data[D$sample_meta$Species=='setosa',3],na.rm = TRUE) | ||
expect_equal(FF$fold_change$`virginica/setosa`[3],m,tolerance=0.00001) | ||
|
||
# check some NA | ||
expect_true(is.na(FF$fold_change$`virginica/setosa`[2])) | ||
expect_true(is.na(FF$fold_change$`setosa/versicolor`[2])) | ||
|
||
|
||
}) | ||
|
||
test_that('fold_change paired',{ | ||
set.seed('57475') | ||
|
||
# data | ||
D = iris_DatasetExperiment() | ||
|
||
# two groups | ||
F = filter_smeta(mode='exclude',levels='setosa',factor_name='Species') | ||
F = model_apply(F,D) | ||
|
||
D = predicted(F) | ||
|
||
# add column for paired data | ||
D$sample_meta$sample_id=c(1:50,1:50) | ||
D$data[1:50,2] = NA | ||
D$data[1:25,3] = NA | ||
|
||
# paired | ||
FF = fold_change(factor_name='Species',method="geometric",paired=TRUE,sample_name = 'sample_id',control_group = 'versicolor') | ||
FF = model_apply(FF,D) | ||
m=exp(mean(log(D$data[D$sample_meta$Species=='virginica',1])-log(D$data[D$sample_meta$Species=='versicolor',1]))) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
FF$method = 'median' | ||
FF = model_apply(FF,D) | ||
m = median(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
FF$method = 'mean' | ||
FF = model_apply(FF,D) | ||
m = mean(D$data[D$sample_meta$Species=='virginica',1] / D$data[D$sample_meta$Species=='versicolor',1]) | ||
expect_equal(FF$fold_change[1,1],m,tolerance=0.00001) | ||
expect_true(is.na(FF$fold_change[2,1])) | ||
|
||
|
||
}) |