-
Notifications
You must be signed in to change notification settings - Fork 9.8k
/
rpc.proto
1095 lines (933 loc) · 33.2 KB
/
rpc.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
syntax = "proto3";
package etcdserverpb;
import "gogoproto/gogo.proto";
import "etcd/mvcc/mvccpb/kv.proto";
import "etcd/auth/authpb/auth.proto";
// for grpc-gateway
import "google/api/annotations.proto";
option (gogoproto.marshaler_all) = true;
option (gogoproto.unmarshaler_all) = true;
service KV {
// Range gets the keys in the range from the key-value store.
rpc Range(RangeRequest) returns (RangeResponse) {
option (google.api.http) = {
post: "/v3/kv/range"
body: "*"
};
}
// Put puts the given key into the key-value store.
// A put request increments the revision of the key-value store
// and generates one event in the event history.
rpc Put(PutRequest) returns (PutResponse) {
option (google.api.http) = {
post: "/v3/kv/put"
body: "*"
};
}
// DeleteRange deletes the given range from the key-value store.
// A delete request increments the revision of the key-value store
// and generates a delete event in the event history for every deleted key.
rpc DeleteRange(DeleteRangeRequest) returns (DeleteRangeResponse) {
option (google.api.http) = {
post: "/v3/kv/deleterange"
body: "*"
};
}
// Txn processes multiple requests in a single transaction.
// A txn request increments the revision of the key-value store
// and generates events with the same revision for every completed request.
// It is not allowed to modify the same key several times within one txn.
rpc Txn(TxnRequest) returns (TxnResponse) {
option (google.api.http) = {
post: "/v3/kv/txn"
body: "*"
};
}
// Compact compacts the event history in the etcd key-value store. The key-value
// store should be periodically compacted or the event history will continue to grow
// indefinitely.
rpc Compact(CompactionRequest) returns (CompactionResponse) {
option (google.api.http) = {
post: "/v3/kv/compaction"
body: "*"
};
}
}
service Watch {
// Watch watches for events happening or that have happened. Both input and output
// are streams; the input stream is for creating and canceling watchers and the output
// stream sends events. One watch RPC can watch on multiple key ranges, streaming events
// for several watches at once. The entire event history can be watched starting from the
// last compaction revision.
rpc Watch(stream WatchRequest) returns (stream WatchResponse) {
option (google.api.http) = {
post: "/v3/watch"
body: "*"
};
}
}
service Lease {
// LeaseGrant creates a lease which expires if the server does not receive a keepAlive
// within a given time to live period. All keys attached to the lease will be expired and
// deleted if the lease expires. Each expired key generates a delete event in the event history.
rpc LeaseGrant(LeaseGrantRequest) returns (LeaseGrantResponse) {
option (google.api.http) = {
post: "/v3/lease/grant"
body: "*"
};
}
// LeaseRevoke revokes a lease. All keys attached to the lease will expire and be deleted.
rpc LeaseRevoke(LeaseRevokeRequest) returns (LeaseRevokeResponse) {
option (google.api.http) = {
post: "/v3/lease/revoke"
body: "*"
additional_bindings {
post: "/v3/kv/lease/revoke"
body: "*"
}
};
}
// LeaseKeepAlive keeps the lease alive by streaming keep alive requests from the client
// to the server and streaming keep alive responses from the server to the client.
rpc LeaseKeepAlive(stream LeaseKeepAliveRequest) returns (stream LeaseKeepAliveResponse) {
option (google.api.http) = {
post: "/v3/lease/keepalive"
body: "*"
};
}
// LeaseTimeToLive retrieves lease information.
rpc LeaseTimeToLive(LeaseTimeToLiveRequest) returns (LeaseTimeToLiveResponse) {
option (google.api.http) = {
post: "/v3/lease/timetolive"
body: "*"
additional_bindings {
post: "/v3/kv/lease/timetolive"
body: "*"
}
};
}
// LeaseLeases lists all existing leases.
rpc LeaseLeases(LeaseLeasesRequest) returns (LeaseLeasesResponse) {
option (google.api.http) = {
post: "/v3/lease/leases"
body: "*"
additional_bindings {
post: "/v3/kv/lease/leases"
body: "*"
}
};
}
}
service Cluster {
// MemberAdd adds a member into the cluster.
rpc MemberAdd(MemberAddRequest) returns (MemberAddResponse) {
option (google.api.http) = {
post: "/v3/cluster/member/add"
body: "*"
};
}
// MemberRemove removes an existing member from the cluster.
rpc MemberRemove(MemberRemoveRequest) returns (MemberRemoveResponse) {
option (google.api.http) = {
post: "/v3/cluster/member/remove"
body: "*"
};
}
// MemberUpdate updates the member configuration.
rpc MemberUpdate(MemberUpdateRequest) returns (MemberUpdateResponse) {
option (google.api.http) = {
post: "/v3/cluster/member/update"
body: "*"
};
}
// MemberList lists all the members in the cluster.
rpc MemberList(MemberListRequest) returns (MemberListResponse) {
option (google.api.http) = {
post: "/v3/cluster/member/list"
body: "*"
};
}
}
service Maintenance {
// Alarm activates, deactivates, and queries alarms regarding cluster health.
rpc Alarm(AlarmRequest) returns (AlarmResponse) {
option (google.api.http) = {
post: "/v3/maintenance/alarm"
body: "*"
};
}
// Status gets the status of the member.
rpc Status(StatusRequest) returns (StatusResponse) {
option (google.api.http) = {
post: "/v3/maintenance/status"
body: "*"
};
}
// Defragment defragments a member's backend database to recover storage space.
rpc Defragment(DefragmentRequest) returns (DefragmentResponse) {
option (google.api.http) = {
post: "/v3/maintenance/defragment"
body: "*"
};
}
// Hash computes the hash of whole backend keyspace,
// including key, lease, and other buckets in storage.
// This is designed for testing ONLY!
// Do not rely on this in production with ongoing transactions,
// since Hash operation does not hold MVCC locks.
// Use "HashKV" API instead for "key" bucket consistency checks.
rpc Hash(HashRequest) returns (HashResponse) {
option (google.api.http) = {
post: "/v3/maintenance/hash"
body: "*"
};
}
// HashKV computes the hash of all MVCC keys up to a given revision.
// It only iterates "key" bucket in backend storage.
rpc HashKV(HashKVRequest) returns (HashKVResponse) {
option (google.api.http) = {
post: "/v3/maintenance/hash"
body: "*"
};
}
// Snapshot sends a snapshot of the entire backend from a member over a stream to a client.
rpc Snapshot(SnapshotRequest) returns (stream SnapshotResponse) {
option (google.api.http) = {
post: "/v3/maintenance/snapshot"
body: "*"
};
}
// MoveLeader requests current leader node to transfer its leadership to transferee.
rpc MoveLeader(MoveLeaderRequest) returns (MoveLeaderResponse) {
option (google.api.http) = {
post: "/v3/maintenance/transfer-leadership"
body: "*"
};
}
}
service Auth {
// AuthEnable enables authentication.
rpc AuthEnable(AuthEnableRequest) returns (AuthEnableResponse) {
option (google.api.http) = {
post: "/v3/auth/enable"
body: "*"
};
}
// AuthDisable disables authentication.
rpc AuthDisable(AuthDisableRequest) returns (AuthDisableResponse) {
option (google.api.http) = {
post: "/v3/auth/disable"
body: "*"
};
}
// Authenticate processes an authenticate request.
rpc Authenticate(AuthenticateRequest) returns (AuthenticateResponse) {
option (google.api.http) = {
post: "/v3/auth/authenticate"
body: "*"
};
}
// UserAdd adds a new user.
rpc UserAdd(AuthUserAddRequest) returns (AuthUserAddResponse) {
option (google.api.http) = {
post: "/v3/auth/user/add"
body: "*"
};
}
// UserGet gets detailed user information.
rpc UserGet(AuthUserGetRequest) returns (AuthUserGetResponse) {
option (google.api.http) = {
post: "/v3/auth/user/get"
body: "*"
};
}
// UserList gets a list of all users.
rpc UserList(AuthUserListRequest) returns (AuthUserListResponse) {
option (google.api.http) = {
post: "/v3/auth/user/list"
body: "*"
};
}
// UserDelete deletes a specified user.
rpc UserDelete(AuthUserDeleteRequest) returns (AuthUserDeleteResponse) {
option (google.api.http) = {
post: "/v3/auth/user/delete"
body: "*"
};
}
// UserChangePassword changes the password of a specified user.
rpc UserChangePassword(AuthUserChangePasswordRequest) returns (AuthUserChangePasswordResponse) {
option (google.api.http) = {
post: "/v3/auth/user/changepw"
body: "*"
};
}
// UserGrant grants a role to a specified user.
rpc UserGrantRole(AuthUserGrantRoleRequest) returns (AuthUserGrantRoleResponse) {
option (google.api.http) = {
post: "/v3/auth/user/grant"
body: "*"
};
}
// UserRevokeRole revokes a role of specified user.
rpc UserRevokeRole(AuthUserRevokeRoleRequest) returns (AuthUserRevokeRoleResponse) {
option (google.api.http) = {
post: "/v3/auth/user/revoke"
body: "*"
};
}
// RoleAdd adds a new role.
rpc RoleAdd(AuthRoleAddRequest) returns (AuthRoleAddResponse) {
option (google.api.http) = {
post: "/v3/auth/role/add"
body: "*"
};
}
// RoleGet gets detailed role information.
rpc RoleGet(AuthRoleGetRequest) returns (AuthRoleGetResponse) {
option (google.api.http) = {
post: "/v3/auth/role/get"
body: "*"
};
}
// RoleList gets lists of all roles.
rpc RoleList(AuthRoleListRequest) returns (AuthRoleListResponse) {
option (google.api.http) = {
post: "/v3/auth/role/list"
body: "*"
};
}
// RoleDelete deletes a specified role.
rpc RoleDelete(AuthRoleDeleteRequest) returns (AuthRoleDeleteResponse) {
option (google.api.http) = {
post: "/v3/auth/role/delete"
body: "*"
};
}
// RoleGrantPermission grants a permission of a specified key or range to a specified role.
rpc RoleGrantPermission(AuthRoleGrantPermissionRequest) returns (AuthRoleGrantPermissionResponse) {
option (google.api.http) = {
post: "/v3/auth/role/grant"
body: "*"
};
}
// RoleRevokePermission revokes a key or range permission of a specified role.
rpc RoleRevokePermission(AuthRoleRevokePermissionRequest) returns (AuthRoleRevokePermissionResponse) {
option (google.api.http) = {
post: "/v3/auth/role/revoke"
body: "*"
};
}
}
message ResponseHeader {
// cluster_id is the ID of the cluster which sent the response.
uint64 cluster_id = 1;
// member_id is the ID of the member which sent the response.
uint64 member_id = 2;
// revision is the key-value store revision when the request was applied.
int64 revision = 3;
// raft_term is the raft term when the request was applied.
uint64 raft_term = 4;
}
message RangeRequest {
enum SortOrder {
NONE = 0; // default, no sorting
ASCEND = 1; // lowest target value first
DESCEND = 2; // highest target value first
}
enum SortTarget {
KEY = 0;
VERSION = 1;
CREATE = 2;
MOD = 3;
VALUE = 4;
}
// key is the first key for the range. If range_end is not given, the request only looks up key.
bytes key = 1;
// range_end is the upper bound on the requested range [key, range_end).
// If range_end is '\0', the range is all keys >= key.
// If range_end is key plus one (e.g., "aa"+1 == "ab", "a\xff"+1 == "b"),
// then the range request gets all keys prefixed with key.
// If both key and range_end are '\0', then the range request returns all keys.
bytes range_end = 2;
// limit is a limit on the number of keys returned for the request. When limit is set to 0,
// it is treated as no limit.
int64 limit = 3;
// revision is the point-in-time of the key-value store to use for the range.
// If revision is less or equal to zero, the range is over the newest key-value store.
// If the revision has been compacted, ErrCompacted is returned as a response.
int64 revision = 4;
// sort_order is the order for returned sorted results.
SortOrder sort_order = 5;
// sort_target is the key-value field to use for sorting.
SortTarget sort_target = 6;
// serializable sets the range request to use serializable member-local reads.
// Range requests are linearizable by default; linearizable requests have higher
// latency and lower throughput than serializable requests but reflect the current
// consensus of the cluster. For better performance, in exchange for possible stale reads,
// a serializable range request is served locally without needing to reach consensus
// with other nodes in the cluster.
bool serializable = 7;
// keys_only when set returns only the keys and not the values.
bool keys_only = 8;
// count_only when set returns only the count of the keys in the range.
bool count_only = 9;
// min_mod_revision is the lower bound for returned key mod revisions; all keys with
// lesser mod revisions will be filtered away.
int64 min_mod_revision = 10;
// max_mod_revision is the upper bound for returned key mod revisions; all keys with
// greater mod revisions will be filtered away.
int64 max_mod_revision = 11;
// min_create_revision is the lower bound for returned key create revisions; all keys with
// lesser create revisions will be filtered away.
int64 min_create_revision = 12;
// max_create_revision is the upper bound for returned key create revisions; all keys with
// greater create revisions will be filtered away.
int64 max_create_revision = 13;
}
message RangeResponse {
ResponseHeader header = 1;
// kvs is the list of key-value pairs matched by the range request.
// kvs is empty when count is requested.
repeated mvccpb.KeyValue kvs = 2;
// more indicates if there are more keys to return in the requested range.
bool more = 3;
// count is set to the number of keys within the range when requested.
int64 count = 4;
}
message PutRequest {
// key is the key, in bytes, to put into the key-value store.
bytes key = 1;
// value is the value, in bytes, to associate with the key in the key-value store.
bytes value = 2;
// lease is the lease ID to associate with the key in the key-value store. A lease
// value of 0 indicates no lease.
int64 lease = 3;
// If prev_kv is set, etcd gets the previous key-value pair before changing it.
// The previous key-value pair will be returned in the put response.
bool prev_kv = 4;
// If ignore_value is set, etcd updates the key using its current value.
// Returns an error if the key does not exist.
bool ignore_value = 5;
// If ignore_lease is set, etcd updates the key using its current lease.
// Returns an error if the key does not exist.
bool ignore_lease = 6;
}
message PutResponse {
ResponseHeader header = 1;
// if prev_kv is set in the request, the previous key-value pair will be returned.
mvccpb.KeyValue prev_kv = 2;
}
message DeleteRangeRequest {
// key is the first key to delete in the range.
bytes key = 1;
// range_end is the key following the last key to delete for the range [key, range_end).
// If range_end is not given, the range is defined to contain only the key argument.
// If range_end is one bit larger than the given key, then the range is all the keys
// with the prefix (the given key).
// If range_end is '\0', the range is all keys greater than or equal to the key argument.
bytes range_end = 2;
// If prev_kv is set, etcd gets the previous key-value pairs before deleting it.
// The previous key-value pairs will be returned in the delete response.
bool prev_kv = 3;
}
message DeleteRangeResponse {
ResponseHeader header = 1;
// deleted is the number of keys deleted by the delete range request.
int64 deleted = 2;
// if prev_kv is set in the request, the previous key-value pairs will be returned.
repeated mvccpb.KeyValue prev_kvs = 3;
}
message RequestOp {
// request is a union of request types accepted by a transaction.
oneof request {
RangeRequest request_range = 1;
PutRequest request_put = 2;
DeleteRangeRequest request_delete_range = 3;
TxnRequest request_txn = 4;
}
}
message ResponseOp {
// response is a union of response types returned by a transaction.
oneof response {
RangeResponse response_range = 1;
PutResponse response_put = 2;
DeleteRangeResponse response_delete_range = 3;
TxnResponse response_txn = 4;
}
}
message Compare {
enum CompareResult {
EQUAL = 0;
GREATER = 1;
LESS = 2;
NOT_EQUAL = 3;
}
enum CompareTarget {
VERSION = 0;
CREATE = 1;
MOD = 2;
VALUE = 3;
LEASE = 4;
}
// result is logical comparison operation for this comparison.
CompareResult result = 1;
// target is the key-value field to inspect for the comparison.
CompareTarget target = 2;
// key is the subject key for the comparison operation.
bytes key = 3;
oneof target_union {
// version is the version of the given key
int64 version = 4;
// create_revision is the creation revision of the given key
int64 create_revision = 5;
// mod_revision is the last modified revision of the given key.
int64 mod_revision = 6;
// value is the value of the given key, in bytes.
bytes value = 7;
// lease is the lease id of the given key.
int64 lease = 8;
// leave room for more target_union field tags, jump to 64
}
// range_end compares the given target to all keys in the range [key, range_end).
// See RangeRequest for more details on key ranges.
bytes range_end = 64;
// TODO: fill out with most of the rest of RangeRequest fields when needed.
}
// From google paxosdb paper:
// Our implementation hinges around a powerful primitive which we call MultiOp. All other database
// operations except for iteration are implemented as a single call to MultiOp. A MultiOp is applied atomically
// and consists of three components:
// 1. A list of tests called guard. Each test in guard checks a single entry in the database. It may check
// for the absence or presence of a value, or compare with a given value. Two different tests in the guard
// may apply to the same or different entries in the database. All tests in the guard are applied and
// MultiOp returns the results. If all tests are true, MultiOp executes t op (see item 2 below), otherwise
// it executes f op (see item 3 below).
// 2. A list of database operations called t op. Each operation in the list is either an insert, delete, or
// lookup operation, and applies to a single database entry. Two different operations in the list may apply
// to the same or different entries in the database. These operations are executed
// if guard evaluates to
// true.
// 3. A list of database operations called f op. Like t op, but executed if guard evaluates to false.
message TxnRequest {
// compare is a list of predicates representing a conjunction of terms.
// If the comparisons succeed, then the success requests will be processed in order,
// and the response will contain their respective responses in order.
// If the comparisons fail, then the failure requests will be processed in order,
// and the response will contain their respective responses in order.
repeated Compare compare = 1;
// success is a list of requests which will be applied when compare evaluates to true.
repeated RequestOp success = 2;
// failure is a list of requests which will be applied when compare evaluates to false.
repeated RequestOp failure = 3;
}
message TxnResponse {
ResponseHeader header = 1;
// succeeded is set to true if the compare evaluated to true or false otherwise.
bool succeeded = 2;
// responses is a list of responses corresponding to the results from applying
// success if succeeded is true or failure if succeeded is false.
repeated ResponseOp responses = 3;
}
// CompactionRequest compacts the key-value store up to a given revision. All superseded keys
// with a revision less than the compaction revision will be removed.
message CompactionRequest {
// revision is the key-value store revision for the compaction operation.
int64 revision = 1;
// physical is set so the RPC will wait until the compaction is physically
// applied to the local database such that compacted entries are totally
// removed from the backend database.
bool physical = 2;
}
message CompactionResponse {
ResponseHeader header = 1;
}
message HashRequest {
}
message HashKVRequest {
// revision is the key-value store revision for the hash operation.
int64 revision = 1;
}
message HashKVResponse {
ResponseHeader header = 1;
// hash is the hash value computed from the responding member's MVCC keys up to a given revision.
uint32 hash = 2;
// compact_revision is the compacted revision of key-value store when hash begins.
int64 compact_revision = 3;
}
message HashResponse {
ResponseHeader header = 1;
// hash is the hash value computed from the responding member's KV's backend.
uint32 hash = 2;
}
message SnapshotRequest {
}
message SnapshotResponse {
// header has the current key-value store information. The first header in the snapshot
// stream indicates the point in time of the snapshot.
ResponseHeader header = 1;
// remaining_bytes is the number of blob bytes to be sent after this message
uint64 remaining_bytes = 2;
// blob contains the next chunk of the snapshot in the snapshot stream.
bytes blob = 3;
}
message WatchRequest {
// request_union is a request to either create a new watcher or cancel an existing watcher.
oneof request_union {
WatchCreateRequest create_request = 1;
WatchCancelRequest cancel_request = 2;
}
}
message WatchCreateRequest {
// key is the key to register for watching.
bytes key = 1;
// range_end is the end of the range [key, range_end) to watch. If range_end is not given,
// only the key argument is watched. If range_end is equal to '\0', all keys greater than
// or equal to the key argument are watched.
// If the range_end is one bit larger than the given key,
// then all keys with the prefix (the given key) will be watched.
bytes range_end = 2;
// start_revision is an optional revision to watch from (inclusive). No start_revision is "now".
int64 start_revision = 3;
// progress_notify is set so that the etcd server will periodically send a WatchResponse with
// no events to the new watcher if there are no recent events. It is useful when clients
// wish to recover a disconnected watcher starting from a recent known revision.
// The etcd server may decide how often it will send notifications based on current load.
bool progress_notify = 4;
enum FilterType {
// filter out put event.
NOPUT = 0;
// filter out delete event.
NODELETE = 1;
}
// filters filter the events at server side before it sends back to the watcher.
repeated FilterType filters = 5;
// If prev_kv is set, created watcher gets the previous KV before the event happens.
// If the previous KV is already compacted, nothing will be returned.
bool prev_kv = 6;
// If watch_id is provided and non-zero, it will be assigned to this watcher.
// Since creating a watcher in etcd is not a synchronous operation,
// this can be used ensure that ordering is correct when creating multiple
// watchers on the same stream. Creating a watcher with an ID already in
// use on the stream will cause an error to be returned.
int64 watch_id = 7;
// fragment enables splitting large revisions into multiple watch responses.
bool fragment = 8;
}
message WatchCancelRequest {
// watch_id is the watcher id to cancel so that no more events are transmitted.
int64 watch_id = 1;
}
message WatchResponse {
ResponseHeader header = 1;
// watch_id is the ID of the watcher that corresponds to the response.
int64 watch_id = 2;
// created is set to true if the response is for a create watch request.
// The client should record the watch_id and expect to receive events for
// the created watcher from the same stream.
// All events sent to the created watcher will attach with the same watch_id.
bool created = 3;
// canceled is set to true if the response is for a cancel watch request.
// No further events will be sent to the canceled watcher.
bool canceled = 4;
// compact_revision is set to the minimum index if a watcher tries to watch
// at a compacted index.
//
// This happens when creating a watcher at a compacted revision or the watcher cannot
// catch up with the progress of the key-value store.
//
// The client should treat the watcher as canceled and should not try to create any
// watcher with the same start_revision again.
int64 compact_revision = 5;
// cancel_reason indicates the reason for canceling the watcher.
string cancel_reason = 6;
// framgment is true if large watch response was split over multiple responses.
bool fragment = 7;
repeated mvccpb.Event events = 11;
}
message LeaseGrantRequest {
// TTL is the advisory time-to-live in seconds. Expired lease will return -1.
int64 TTL = 1;
// ID is the requested ID for the lease. If ID is set to 0, the lessor chooses an ID.
int64 ID = 2;
}
message LeaseGrantResponse {
ResponseHeader header = 1;
// ID is the lease ID for the granted lease.
int64 ID = 2;
// TTL is the server chosen lease time-to-live in seconds.
int64 TTL = 3;
string error = 4;
}
message LeaseRevokeRequest {
// ID is the lease ID to revoke. When the ID is revoked, all associated keys will be deleted.
int64 ID = 1;
}
message LeaseRevokeResponse {
ResponseHeader header = 1;
}
message LeaseKeepAliveRequest {
// ID is the lease ID for the lease to keep alive.
int64 ID = 1;
}
message LeaseKeepAliveResponse {
ResponseHeader header = 1;
// ID is the lease ID from the keep alive request.
int64 ID = 2;
// TTL is the new time-to-live for the lease.
int64 TTL = 3;
}
message LeaseTimeToLiveRequest {
// ID is the lease ID for the lease.
int64 ID = 1;
// keys is true to query all the keys attached to this lease.
bool keys = 2;
}
message LeaseTimeToLiveResponse {
ResponseHeader header = 1;
// ID is the lease ID from the keep alive request.
int64 ID = 2;
// TTL is the remaining TTL in seconds for the lease; the lease will expire in under TTL+1 seconds.
int64 TTL = 3;
// GrantedTTL is the initial granted time in seconds upon lease creation/renewal.
int64 grantedTTL = 4;
// Keys is the list of keys attached to this lease.
repeated bytes keys = 5;
}
message LeaseLeasesRequest {
}
message LeaseStatus {
int64 ID = 1;
// TODO: int64 TTL = 2;
}
message LeaseLeasesResponse {
ResponseHeader header = 1;
repeated LeaseStatus leases = 2;
}
message Member {
// ID is the member ID for this member.
uint64 ID = 1;
// name is the human-readable name of the member. If the member is not started, the name will be an empty string.
string name = 2;
// peerURLs is the list of URLs the member exposes to the cluster for communication.
repeated string peerURLs = 3;
// clientURLs is the list of URLs the member exposes to clients for communication. If the member is not started, clientURLs will be empty.
repeated string clientURLs = 4;
}
message MemberAddRequest {
// peerURLs is the list of URLs the added member will use to communicate with the cluster.
repeated string peerURLs = 1;
}
message MemberAddResponse {
ResponseHeader header = 1;
// member is the member information for the added member.
Member member = 2;
// members is a list of all members after adding the new member.
repeated Member members = 3;
}
message MemberRemoveRequest {
// ID is the member ID of the member to remove.
uint64 ID = 1;
}
message MemberRemoveResponse {
ResponseHeader header = 1;
// members is a list of all members after removing the member.
repeated Member members = 2;
}
message MemberUpdateRequest {
// ID is the member ID of the member to update.
uint64 ID = 1;
// peerURLs is the new list of URLs the member will use to communicate with the cluster.
repeated string peerURLs = 2;
}
message MemberUpdateResponse{
ResponseHeader header = 1;
// members is a list of all members after updating the member.
repeated Member members = 2;
}
message MemberListRequest {
}
message MemberListResponse {
ResponseHeader header = 1;
// members is a list of all members associated with the cluster.
repeated Member members = 2;
}
message DefragmentRequest {
}
message DefragmentResponse {
ResponseHeader header = 1;
}
message MoveLeaderRequest {
// targetID is the node ID for the new leader.
uint64 targetID = 1;
}
message MoveLeaderResponse {
ResponseHeader header = 1;
}
enum AlarmType {
NONE = 0; // default, used to query if any alarm is active
NOSPACE = 1; // space quota is exhausted
CORRUPT = 2; // kv store corruption detected
}
message AlarmRequest {
enum AlarmAction {
GET = 0;
ACTIVATE = 1;
DEACTIVATE = 2;
}
// action is the kind of alarm request to issue. The action
// may GET alarm statuses, ACTIVATE an alarm, or DEACTIVATE a
// raised alarm.
AlarmAction action = 1;
// memberID is the ID of the member associated with the alarm. If memberID is 0, the
// alarm request covers all members.
uint64 memberID = 2;
// alarm is the type of alarm to consider for this request.
AlarmType alarm = 3;
}
message AlarmMember {
// memberID is the ID of the member associated with the raised alarm.
uint64 memberID = 1;
// alarm is the type of alarm which has been raised.
AlarmType alarm = 2;
}
message AlarmResponse {
ResponseHeader header = 1;
// alarms is a list of alarms associated with the alarm request.
repeated AlarmMember alarms = 2;
}
message StatusRequest {
}
message StatusResponse {
ResponseHeader header = 1;
// version is the cluster protocol version used by the responding member.
string version = 2;
// dbSize is the size of the backend database physically allocated, in bytes, of the responding member.
int64 dbSize = 3;
// leader is the member ID which the responding member believes is the current leader.
uint64 leader = 4;
// raftIndex is the current raft committed index of the responding member.
uint64 raftIndex = 5;
// raftTerm is the current raft term of the responding member.
uint64 raftTerm = 6;
// raftAppliedIndex is the current raft applied index of the responding member.
uint64 raftAppliedIndex = 7;
// errors contains alarm/health information and status.
repeated string errors = 8;
// dbSizeInUse is the size of the backend database logically in use, in bytes, of the responding member.
int64 dbSizeInUse = 9;
}
message AuthEnableRequest {
}
message AuthDisableRequest {
}
message AuthenticateRequest {
string name = 1;
string password = 2;
}
message AuthUserAddRequest {
string name = 1;
string password = 2;
}
message AuthUserGetRequest {
string name = 1;
}
message AuthUserDeleteRequest {
// name is the name of the user to delete.
string name = 1;
}
message AuthUserChangePasswordRequest {
// name is the name of the user whose password is being changed.
string name = 1;
// password is the new password for the user.
string password = 2;
}
message AuthUserGrantRoleRequest {
// user is the name of the user which should be granted a given role.
string user = 1;
// role is the name of the role to grant to the user.
string role = 2;
}
message AuthUserRevokeRoleRequest {
string name = 1;
string role = 2;
}
message AuthRoleAddRequest {
// name is the name of the role to add to the authentication system.
string name = 1;
}
message AuthRoleGetRequest {
string role = 1;
}
message AuthUserListRequest {