diff --git a/.travis.yml b/.travis.yml index e9dbd6fc..8c32b17b 100644 --- a/.travis.yml +++ b/.travis.yml @@ -54,7 +54,7 @@ before_install: - conda config --add channels conda-forge - conda config --set channel_priority strict # Create conda environment -- conda create -n test python=$PYTHON_VERSION rasterio scipy xarray netcdf4 dask pandoc +- conda create -n test python=$PYTHON_VERSION rasterio xarray scipy pyproj netcdf4 dask pandoc - source $HOME/miniconda/bin/activate test install: diff --git a/docs/examples/reproject.ipynb b/docs/examples/reproject.ipynb index ebe8f31f..cc5c269c 100644 --- a/docs/examples/reproject.ipynb +++ b/docs/examples/reproject.ipynb @@ -32,7 +32,7 @@ "metadata": {}, "outputs": [], "source": [ - "xds = xarray.open_dataset(\"PLANET_SCOPE_3D.nc\")" + "xds = xarray.open_dataset(\"../../test/test_data/input/PLANET_SCOPE_3D.nc\")" ] }, { @@ -42,13 +42,458 @@ "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 2, x: 10, y: 10)\n",
+       "Coordinates:\n",
+       "    spatial_ref  int64 0\n",
+       "  * x            (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n",
+       "  * time         (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n",
+       "  * y            (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n",
+       "Data variables:\n",
+       "    blue         (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n",
+       "    green        (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41
" + ], "text/plain": [ "\n", "Dimensions: (time: 2, x: 10, y: 10)\n", "Coordinates:\n", " spatial_ref int64 ...\n", " * x (x) float64 4.663e+05 4.663e+05 ... 4.663e+05 4.663e+05\n", - " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T12:52:42.347451\n", + " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n", " * y (y) float64 8.085e+06 8.085e+06 ... 8.085e+06 8.085e+06\n", "Data variables:\n", " blue (time, y, x) float64 ...\n", @@ -72,7 +517,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -81,7 +526,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFWd//H3h4QQwpawGtaALMoiIUZEGBgkLMKMBBUUNxJAEQUEGZegoMjioOOG8hsgw5YRCIToADoCMjigMoAkEHYQApGEbIQIJCxZv78/zmlTqVR33+quqq7u+rye5z5Vdz2nblV977nnnnuuIgIzM2sta/V0BszMrPEc/M3MWpCDv5lZC3LwNzNrQQ7+ZmYtyMHfzKwF9ergL+kySecUXPZuSZ+rQx72k/SspMWSjqr19msl52+Hns6HmTWHXhP8JY2V9KfSaRFxckSc31N5ys4DLomI9SPi5lptVNIwSf8r6U1JT0s6uIp11zjQ5fw9X6v81ZqkH+aD6KL8eY8rmz9c0tS8P6ZKGl4yb3dJd0haIKnijSuSjpX0lKQ3JE2XtH8HeTlV0hRJSyRdUzZvH0l3Sloo6WVJN0ka2sG2Olxe0mBJEyTNz8O5efq2+YDdNkTOe9v4/pI+mH8jr0maUZbu5pImSpqd598r6f0d5PNASSvL0hxTMr/D76eD7Y7Jef9c2bSpkl6XNEvSDyT1b2f9TXPeX5H0qqT7JO3XzrK/z2n1L5m2uGxYIennFdb9Tl734JJp50paVrb+DiXzz5f0mKTlbd9bb9Jrgn9PaO8HWWY74Ik6JD8ReBjYBPgWMFnSZnVIp1m8AXwY2AgYA1wsaV8ASQOAW4BrgSHABOCWPB1gGTAJOLHShiUdAnwfOB7YADgA6OhAOBu4ALiqwrwhwHhgGOm7XwRc3cG2Olv+J8CgPH9v4LOSjo+IF/MBe/2IWD8vu2fJtD+S9tlVwNcqpLs+8CDwXmBj0j77b0nrV1j275+7NM2ImFAyr93vpz2ShgBnseb/YxBwBrAp8H5gFPDVdjazGDgB2Iy0L78P/Lr8vynp08Aa/9eyfbgF8BZwU9m67wSOBuZUSP/Gsn1S+rt5Dvg68N/t5L25RUTNB+AbwEukH/ozwKg8/VxgMnBjnvcQ6Qfdtt44YHqe9yTwkTz93cDbwArSj+HVPP0a4IL8fgjwG+Bl4G/5/dYl274b+Fwn+R4L3Ev6Qy4s2fYJwFN5u3cA2+Xp04GVpB/UYmCdGu2/nYElwAYl0/4InFxg3Qvzfno75+mSPD2AHUv2278Dt+Vl7gXeAfw0f8angb1Ktrkl8Mu8b18AvlyP303Z57gV+Jf8/tD8e1LJ/BeBD5Wts2P6Sa+xrf8DTuxCHi4ArulkmRHAoiq2udrywALgfSXj3wT+WGG9v39/FeYdDMwokPbrwHvbmXcgMKsr308Hy1wGfKmz/x5wJvDrAmmuRToABbB5yfSNgL8A++R5/dtZfwzpoK+y6bcBRwAzgINLpp8LXFsgX9cC51b7++rpoeYlf0m7AKeSftAbAIflndpmNOnIuzFwPXCzpLXzvOnA/vnL/C5wraShEfEUcDJwX6Sj7+AKSa9FKlFtB2xLCsiXdOEjvJ/0A9kcuFCpHv+bwEdJpY8/kkrlRMQ7SUHowzlfSyrsj9/k09VKw2/aycNuwPMRsahk2iN5eoci4ls5j6fmPJ3azqIfB84mlb6WAPeRDsabkg7QP875Xwv4dU5/K1Ip7QxJh1XaqKRxHXzeVzvLf97GusD7WFVi3A14NPI/LXuUAvtDUj9gJLCZpOdyNcMlOY1aOIDqzvwqLa+y97t3N1PllKrJBpBKq23VSq9K2rZksc0lzZP0gqSfSFqvnW2Vfz9IelTSp0rG9ybt98sKZK/TfSjpUVKB5lbgioiYXzL7e8ClwNxO0hkD/Gfp70jSMcDSiPhtO+t8WKnK7glJX+xk+71LrY8mpNLXfFJpZO2yeecC95cdyecA+7ezrWnA6Px+LPCnsvnXkEvnFdYdTirp3J+3s6iDZT9EOkOZRz6rKNnGq6QAP4V0Wr4W8CarDjIrgcsL7BeRSuV/IZ1FtFt6Bj5bup/ytAvppBRasuzdlJW0WLPk/x8l804DnioZ34NVZ1fvB14s29ZZwNX1KpGQqihuJ5fQgHOAG8qWuY6y0hYVSv6ks5bI399Q0sHtXuDCAvnosOQPvId0hljx91tkeVKp8Vek6qgdSQWgJRXW7XLJH9gQeAw4q4Nl3gHsmn/f2wN/aO93Xf79VJjfL+/vD7T3eyxZ9nhgFrBpgf03EPgkMKZk2kjS/7s/qeqsYsk//1dXANuXTFsfeLZtGmuW/HfNv59+wL6kWPXJCtt2yR8gIp4j1eedC8yXdIOkLUsWmVmy7ErSF78lgKTjJE0rKSXuTvqzdkrSYZKekfRXSa+TfrwbAOdHxHBSdcUxFdbrB/w/4HBSCX9tSbvm2T8AXiOdpbyLVH2wkBTItyJVD71VJH+kg9c2wLsi4t3ADR0su5j0hy21IekAVivzSt6/VWG8rW54O2DLstL7N0n1pzUn6d9I3/vHI/+z6N7+aPt+fh4RcyJiAems5oic3m0lF/M+XUU+dyRVF5weqf59jYu0nS2ffTnn8VnSdY2JpP9ETeRS+q9JhYl/bW+5iJgbEU9GxMqIeIFUl310he1V+n7KfYl0pnZfJ3k7CrgIODx/Lx2KiLcjYiIwTtKe+az030n7dHknqx9HKjy+UDLtu8AvyqaVpvdkRMyOiBUR8X/AxVTYJ71VXS74RsT1EfEPpMARpIs0bbZpe5O/vK2B2ZK2A/6DVGW0SaSqncdZdUrcWfejHydVF70/IjYknUrCqqDRn1SKL7c38FykCzkrSPXao0vSfBX4AvB5YFJEDI6IdUnVQs+TLjb+naRDc4uEh5RadvwuB4IrgI8Br+fx5yXd1s5neQLYQdIGJdP2pHj1Qi27ap0JvJA/d9uwQUQcUWlhSd+s0MKiYkCssO53SQfhQyPi9ZJZTwDvkVRaPfIeCuyPiPgbKZhW3CcRcXisuph3XWfby/ncDvgfUsHiFyXbqnSRtt3l8zoLI+LTEfGOiNiN9J/8c5F8FMjnOsDNpOslX6hy9WD16qiOvp9yo4CPSJoraS6p1PwjSX+vhpX0IdL//cMR8ViVeVsb2IH03x4J3JjTeTDPn6U1W3MdRzpjKc/nl0vyuQ0wSdI32kl3jX3Sq9X6VALYBTgIWIdUx3gV+dSZdDawjFR/3p90oWcG6cvclVSntwvpNOt4YDn5dJFUNTMDGFCS1jWsuijbVmIaSCqp/xfpy3qRFMCWAF+vkN+jSXWIkErnz7DqIum7SQeDZaSS8XakA8xnSHXk65MODpfn5TclnXGsl8e/AXw7v3+F1GpnCqkEuFMn+/F+4If583wkp7NZnjcsf7Zh7ax7A/C9smnl1T4XlMz7HHB3yfiOwPL8vh8wNX+WdfP47pRcpKzR7+YsUul3aIV5A4C/Aqfn39WpeXxAnq+8n3bNn3MgJRffSc1xHyQdsIeQromc30Fe+udt/Cvwi/y+f563Falq5msFP1eHywPvJLXo6kcKrAuA3Sost0a1D+lAMTCv99f8vm2frE0q8d9MOxdAy7Z1IKlqRKQg+L+UVO119P1U2NZgUjVS2/B/pP/6Rnn+Qfn/cECBbe0D/EP+Daybf4eLSLUFKkvnfXk/bcXqcWJfUmulDcq2vUnZ+jNJtQPr5/mj8+9FpELiS6xe5bR23ufXk6oIBwL9avm/qOdQ+w2mEtmf8xe0kNTqZss871xWb+3zMDCiZN0L8zptp+b3sCr4DyA1qVoILMjTrslfyDRStc4yVrV0uTj/EI7Jyz4BPFkhv8ewZvD/eR7/Gam0/lnSQWR5/oE8RjrthdWD/z/nvE/Lw5PAlXneYla1XvkoFVp0lOVrGKmu9K2cp9K6yP3JB8121v0A6drC34Cf5WldCv55fEvSwXVu3ub9pfmp0e8mSAfoxSXDN0vm70U6CL1FujBd2hppWF6/dJhR9if99/xdzc3f68AO8nJuhe2dm+d9J4+X5nNxB9vqcHnSGets0nWkacBhHeyf8uB/YIV83p3n/WMef7Ms7f3z/G3z+LZ5/EzSf+lN0m/856ze2qyz7+cJ4NPt5P1uSur8SQeW5WXbuq1k/m1t286f4xFWxZN7aOegQTt1/sDlpOqdzn6DM1j9fzaRdJBaTGoB9+Wy5a+psP/H1vJ/Uc+h7YJaQ+QbIXaMiM/UYdsHknb82JJprwGDIyJylcFrkaqEStf7AOmPfVgePwsgIv61vfUl/ZFV1VeDSRd9v00qfX0qIj5ZIX9Pk5omzsjbejUiNuriZz0beDkiLu/K+mZmff0mr9mkkgOkU81nKyzzILCTpO2Vbho6ltScrN31I2L/iBgWEcNIbeO/FxGXkErE++WLe0gaJGnnvP7NeRvkbf6lqx8qIi5w4Dez7ihyB2uXKLX3v7Fk0g6kur/XJd1JOkWbQao++Vte5yzSXZorSKdYd3QzG58n3YnYn1QVdJKky0jVOOvkaZDqWx8mneJdFRFPtLd+R4lFxMuSxgIT88U2SG3p/0Jq1XCdpK+QTiNr3s+QmVlRDan2yc0pXyK1GT8FWBgRF0kaBwyJiG/k5pUTSRdWtiS1jtg5IlbUPYNmZi2mUdU+o4DpEfFX0hX0tiZXE4C2njBHk27kWRKp3e1zpAOBmZnVWN2qfcocS+4SAdgiIuYARMQcSZvn6VuR6szbzMrTViPpJHL1i9Ye8N6BQzYvX6Qu+r3dmAvja72xRg8RdbPkHQMbllb/orfC1cA2W83vfKEamT19k4ak8/Zmjbs8t+UGhXrhqImFz5ffu1c/r785Z0FEdKtzxMM+uF68srBYZcTUR5fcEREf6k569VT34J8voh5Jaifc4aIVpq0RcSNiPKmXRAZtsU3s+Kkzu53HIob8ZVnnC9XAuvdVuiZdH899edfOF6qRTR9Z2bC0Lv5eV7p06ppvHz22Iek8fXKtuiLq3HkH/KphaV37qcMbltbvppz71+5u45WFK/jzHdt2viDQb+izhXon6CmNKPkfDjwUEW3dB8xT6qxtjlK/5m3FtFmU3P1LvvO3AfkzMyskgJU0riBTT404l/wkq6p8IDWjHJPfjyH1Z9I2/VhJ60jaHtiJGt3mbmZWC0GwLFYUGppdXUv+kgYBh7B6vyIXkfrPOJF01+wxABHxhKRJpLtilwOnuKWPmTWbvlLyr2vwj4g3Sf1nlE57hdT6p9LyF5K6eDAzazpBsKKBvSLUU6Na+5iZ9Qkra9ppbs9x8DczKyiAFQ7+ZmatxyV/M7MWE8Ay1/mbmbWWIFztY2bWcgJW9I3Y7+BvZlZUusO3b3DwNzMrTKzoI89wd/A3MysoXfB18Dczaympnb+Dv5lZy1npkr+ZWWtxyd/MrAUFYkXDnn5bXw7+ZmZVcLWPmVmLCcTS6NfT2agJB38zs4LSTV6u9ulxa/9tKVtNntGQtP563LCGpLPtzC0akg7ARs81LCmu//4PG5bWl444sWFp7X3dtIaks/EbmzUkHYA5y4Y0LK21ZsxpWFq14gu+ZmYtJkKsCJf8zcxazkqX/M3MWku64Ns3wmbf+BRmZg3Qly749o1PYWbWICtChYYiJA2WNFnS05KekvQBSRtLulPSs/m1LlfgHfzNzApqu8O3yFDQxcDtEfEuYE/gKWAccFdE7ATclcdrzsHfzKwKK2OtQkNnJG0IHABcCRARSyPiVWA0MCEvNgE4qh6fw3X+ZmYFpY7dCpeZN5U0pWR8fESMLxnfAXgZuFrSnsBU4HRgi4iYAxARcyRt3v2cr8nB38ysoEAsK969w4KIGNnB/P7ACOC0iHhA0sXUqYqnElf7mJkVFAErYq1CQwGzgFkR8UAen0w6GMyTNBQgv86vx2epa/Bv50r2npLuk/SYpF/nei8kDZP0lqRpebisnnkzM6ueWFlw6ExEzAVmStolTxoFPAncCozJ08YAt9Tjk9S72qftSvbRkgYAg4A7ga9GxD2STgC+BpyTl58eEcPrnCczsy4JqHX3DqcB1+X4+DxwPKlQPknSicCLwDG1TLBN3YJ/yZXssZCuZANL81HuD3mxO4E7WBX8zcyaWi0f5hIR04BK1wVG1SyRdtSz2qf0SvbDkq6QtB7wOHBkXuYYYJuSdbbPy94jaf865s3MrGqBWBnFhmZXz+DfdiX70ojYC3iDdCX7BOAUSVOBDYClefk5wLZ52TOB69uuB5SSdJKkKZKmLF35Vh2zb2a2ugCWRf9CQ7OrZ/CveCU7Ip6OiEMj4r3ARGA6QEQsiYhX8vupefrO5RuNiPERMTIiRg5Ya906Zt/MrJxYUXBodnUL/u1dyW67YUHSWsDZwGV5fDNJ/fL7HYCdSBdAzMyaQlC7O3x7Wr3PTSpdyT5O0il5/q+Aq/P7A4DzJC0HVgAnR8TCOufPzKwqvaFUX0Rdg387V7IvzkP5sr8EflnP/JiZdUeEekWpvojmvyphZtYk0gXfwt07NLVeHfyXbD6A5740rCFpvePPKxqSztZXzWpIOgC/3XpSw9La4fYzGpbWCdff27C07jtkm84XqoGFh7yzIekAvPrgJg1La97H6tJnWWWX12IjfoavmVnLSRd8XedvZtZyanmHb09y8DczK6jtDt++wMHfzKwKfeUB7g7+ZmYFRcCylQ7+ZmYtJVX7OPibmbUc3+FrZtZi3NTTzKwludrHzKwlFXk+b2/g4G9mVlBq7eO+fczMWopv8jIza1Gu9jEzazFu7WNm1qLc2sfMrMVEiOU1DP6SZgCLSI+uXR4RIyVtDNwIDANmAB+PiL/VLNGsbxzCzMwaZGWo0FCFD0bE8Ihoe+TtOOCuiNgJuCuP15yDv5lZQW11/jUO/uVGAxPy+wnAUd3NdyUO/mZmVagi+G8qaUrJcFKFzQXwO0lTS+ZvERFzAPJrXZ516Tp/M7OCqmznv6CkKqc9+0XEbEmbA3dKerp7OSzOJX8zsyqsRIWGIiJidn6dD/wXsDcwT9JQgPw6vx6fo1eX/NeZ8xbvvOixhqQ148w9GpLOq7O3a0g6AIcs2rhhaW38wICGpXX9jA82LK23z13RkHTOOvCWhqQDcPO84Q1L6/ShNzUsrbGXd38bEbC8Rg9zkbQesFZELMrvDwXOA24FxgAX5de6fPm9OvibmTVaDW/y2gL4L0mQYvH1EXG7pAeBSZJOBF4EjqlVgqUc/M3MCqpl3z4R8TywZ4XprwCjapJIBxz8zcyqEO7ewcys9fSVjt3q2tpH0mBJkyU9LekpSR+QtKek+yQ9JunXkjYsWf4sSc9JekbSYfXMm5lZtSIacpNXQ9S75H8xcHtEHC1pADAIuBP4akTcI+kE4GvAOZJ2BY4FdgO2BP5H0s4R0ZjmFGZmnRIratTap6fV7VPkEv0BwJUAEbE0Il4FdgH+kBe7E/hYfj8auCEilkTEC8BzpDavZmZNI0KFhmZXz0PYDsDLwNWSHpZ0RW7L+jhwZF7mGGCb/H4rYGbJ+rPytNVIOqntduml8Xb9cm9mVqZBffs0RD2Df39gBHBpROwFvEHqne4E4BRJU4ENgKV5+Up7K9aYEDE+IkZGxMgBGlifnJuZVRKp3r/I0OzqGfxnAbMi4oE8PhkYERFPR8ShEfFeYCIwvWT5bUrW3xqYXcf8mZlVrZbdO/SkugX/iJgLzJS0S540Cngyd2CEpLWAs4HL8vxbgWMlrSNpe2An4M/1yp+ZWbUiX/AtMjS7erf2OQ24Lrf0eR44HjhO0il5/q+AqwEi4glJk4AngeXAKW7pY2bNpjdU6RRR1+AfEdOA8i5NL85DpeUvBC6sZ57MzLqjN7TkKcJ3+JqZFZQu5jr4m5m1nN7QjLMIB38zsyq4zt/MrMUEYmUvaMlThIO/mVkV+kjB38HfzKywJrngK+lnBRZ7PSLObm+mg7+ZWTWao+g/Gvh2J8uMI91IW5GDv5lZFZqh5A/8JCImdLSApCEdze/Vwf/tbQby9Lfe3ZC09njX8w1J59vb/boh6QCc8NPTG5bWt796bcPS+vptn2pYWrtctqgh6fzroMMbkg7A1kMXNiytCx9p3OeC+7q9hQBWruz54B8RP+3uMu0Gf0mvd7JtAXMiYufOMmFm1icE0AQlf0kdVflERJzf2TY6KvlPz10xd5SBhztLwMysL2mSdv5vVJg2CPgcsAnQreD/sQ7mVbOMmVnf0QTBPyJ+1PZe0gbA6aRnpdwA/Ki99Uq1e7dCRPy9klvSdpIOzu/XzYmttoyZWd9X7BGORS8KS+qXn3T4mzy+saQ7JT2bX9u9aJuXvQB4lPzwrIj4RkTML5J2p7eqSfo86UEsl+dJWwM3F9m4mVmfEwWHYk4HnioZHwfcFRE7AXfl8TVI+jfgQWARsEdEnBsRf6vmYxS5T/kUYD/gdYCIeBbYvJpEzMz6hIBYqUJDZyRtDfwTcEXJ5NFAWxPOCcBR7az+L8CWpHb8syW9nodFBRrrAMWaei6JiKWS2jLcn6ao9TIz6wmFW/tsKmlKyfj4iBhfMv5T4OukZ5m32SIi5gBExJy2Jx+Wi4hudzBUJPjfI+mbwLqSDgG+BDSuMbqZWTMpXvRdEBHlD7MCQNI/A/MjYqqkA7uaFUl7AO/Ko09GxBNF1y0S/McBJwKPAV8AfsvqpylmZq2jNvUe+wFHSjoCGAhsKOlaYJ6kobnUPxSoePFW0kbALcC2wCOk05E9JL0IjI6ITqt+Ojx1kNQP+M+I+I+IOCYijs7vXe1jZq2n7SavIkNHm4k4KyK2johhwLHA7yPiM8CtwJi82BhSgK/kfGAKsGNEfCQijgJ2Il0ELvQo3A5L/hGxQtJmkgZExNIiGzQz68vqXPS9CJgk6UTgReCYdpY7GHhPRKxcla9YmavoHyuSUJFqnxnAvZJupeSusoj4cZEEzMz6lBr37RMRdwN35/evAKMKrLY0IpZX2NZySUuKpFsk+M/Ow1qsuirtah8za0lqjug3UNJerNn0SMA6RTZQJPg/GRE3rbZ1qb1TETOzvqu6G7jqaS7QXu3L3CIbKBL8zwJuKjDNzKyP6/xibiNExIHd3UZHXTofDhwBbFX2yLANgTXqmszMWkITlPwljYiIh7qzTEcl/9mkpkRHAlNLpi8CvlJNRs3M+oyVnS/SAFfnm8M6Og25Emi3W/52g39EPAI8Iun6vNy2EfFMFzNqZtb7NcnDXICNSIXyjjLzckcbKFLn/yHgh8AAYHtJw4HzIuLIzlaUNJh0N/DupN12AvAWcBnprrblwJci4s+ShpF6t2s7wNwfEScXyJ+ZWcM0Q2uffHNYtxQJ/ucCe7OqHeq0HKiLuBi4PSKOljSA9KSZScB3I+K2fGvzD4AD8/LTI2J40cybmTVcEwT/WigS/JdHxGttvXoWJWlD4ABgLEC+Q3ippCBdNIZ06jK7qg2bmVm3FQn+j0v6FNBP0k7Al4H/K7DeDqQ6p6sl7UmqnzodOAO4Q9IPSTeO7Vuyzvb5ucCvA2dHxB/LNyrpJOAkgHUGDmb7mxpz9WXRWls3JJ3P7Ht6Q9IBGNjAC1dXjtizcYld0Liklv5ocUPSWW9R4+qZ1/94Vc8E6Rb9Y+MeDfJsjbbTDNU+tVCkT+jTgN2AJcBEUmA+o8B6/YERwKX5QfBvkHoI/SLwlYjYhtRq6Mq8/BzSReW9gDOB6/PZw2oiYnxEjIyIkWuvvV6BbJiZ1UiQuncoMjSIpK0k7SvpgLahyHqdlvwj4k3gW3moxixgVkQ8kMcnk4L/P5DOACDdKHZFTmcJ6QBD7uN6OrAzqbmpmVlzaKKSv6TvA58AngRW5MkB/KGzdTsN/pJGAt8EhpUuHxHv6Wi9iJgraaakXXIT0VE5gzsA/0i6gHwQ+WxM0mbAwtyT6A6k7kn9gHgzaypNVu1zFLBLLjxXpUid/3XA10jdhFZbS3wacF1u6fM8cDypf+qL8+Mg3ybX35MuDp8naTnpCHZyRCysMj0zs/pqruD/PLA2udakGkWC/8sRcWvVWSI1CwXKH2P2J+C9FZb9JfDLrqRjZtYwzRX83wSmSbqLkgNARHy5sxWLBP/vSLoCKN/4r7qQUTOzXkvRdNU+t+ahakWC//GkBwSvzapqnwAc/M2s9TSwJU9nImKCpHXpQvc7RYL/nhGxR9eyZmbWtzRTyV/Sh+li9ztF2vnfL2nXbubRzKxviIJDY5xL6n7nVfj7ddbti6xYpOT/D8AYSS+Q6vyV0ui4qaeZWZ/TfHX+lbrfKZTDor16mpkZNFtrn652v1PoDt+/djNzZmZ9hprjYS5tTiP1vrAEuB64g4K9W3X0GMeHImJERysXWcbMzOqjrfsdSd+LiDeqWbejkv+7JT3awXyRumQ2M2sdNar2kTSQ1AfPOqRYPDkiviNpY+BGUpc6M4CPR0TFrlYl7UvqH219YNvcg/IXIuJLnaXfUfB/V4H8r+h8ETOzPqK2F3yXAAdFxGJJawN/knQb8FHgroi4SNI4UoeY32hnGz8BDiPf6BURj3S7V0/X9ZuZVVCj4B8RAbQ9EGLtPAQwmlVPN5xA6gSzveBPRMwsa+1TqFBepJ2/mZm1Kd7Of1NJU0qGk8o3JamfpGnAfODO3AX+FhExByC/dvTEm5m56ickDZD0VdKz0DtVpKmnmZmRLnRW0dpnQUSUd2y5mohYAQyXNBj4L0m7V5mlk0nPSt+K9AyV3wGnFFmxSH/+pwLXtXfBwcysZdTpJq+IeFXS3aT7quZJGhoRcyQNJZ0VrEFSP+CzEfHprqRZpNrnHcCDkiZJ+pCqfZK7mVlfUqPuHSRtlkv85M7ZDgaeJl28HZMXG0N6Bsqa2UhnDaO7+jGK3OR1tqRzgENJPXxeImkScGVETO9qwrUwZNvX+djP7mhIWtee/08NSefqMT9vSDoA+6zTuFq/w37WuAe4rzu3cZeyXnpt64aks2JQ424r1SZvNiytWaMaWJa8uUbbqd1XMRSYkEvwawGTIuI3ku4DJkk6EXgROKaDbdwr6RJS09C/t/OPiIc6S7zQvz8iQtJcYC6wHBgCTJZ0Z0S26EyFAAARG0lEQVR8vcg2zMz6glpV+0TEo8BeFaa/QnrsbRH75tfzSjdBekRuh4rU+X+ZdOqxgHQzwdciYpmktUjP33XwN7PW0UR9+0TEB7u6bpGS/6bAR8vb/UfESkn/3NWEzcx6nWiuvn0knVlh8mvA1Ny9c7uK1Pl/u4N5hdqTmpn1GU1U8ic9I30k8Os8/k/Ag8DJkm6KiB+0t6Lb+ZuZVaHJ+vPfBBgREYsBJH0HmAwcAEwFHPzNzGqiuYL/tsDSkvFlwHYR8ZakJR2t6OBvZlZUYx/RWMT1pEfttt0L8GFgoqT1gCc7WtHB38ysINFc1T4Rcb6k35Ietyvg5IiYkmd3eOevg7+ZWRWaKfgDRMRUUv1+VRz8zcyq0WTBv6sc/M3MqtFHgn9dO0GRNFjSZElPS3pK0gckDZd0v6RpuY/rvUuWP0vSc5KekXRYPfNmZla13KtnkaHZ1bvkfzFwe0QcLWkAMAiYBHw3Im6TdASpHeqBknYFjgV2A7YE/kfSzrnnOjOz5tALAnsRdSv5S9qQdKPBlQARsTQiXiXtug3zYhsBs/P70cANEbEkIl4AngP2xsysiWhlsaHZ1bPkvwPwMnB1fqL8VOB04AzgDkk/JB182nql2wq4v2T9WXnaavKj0E4CGLLlOnXLvJlZJb2hSqeIetb59wdGAJdGxF6kvqbHAV8EvhIR2wBfIZ8ZkNqolltjN0fE+IgYGREj1x8yoD45NzOrpOiDXHrBAaKewX8WMCs/kBhSfxMjSN1D/ypPu4lVVTuzgG1K1t+aVVVCZmbNwcG/YxExl/Rk+V3ypFGk241nA/+Ypx1EeiYApEeXHStpHUnbAzsBf65X/szMqtV2h69b+3TuNOC63NLnedJjIG8BLpbUH3ibXH8fEU/kx0M+SXpa2Clu6WNmzUYre0FkL6CuwT8/TGBk2eQ/Ae9tZ/kLgQvrmSczsy7rJVU6RfgOXzOzKvSGKp0ienXwn/faRvz4tsY8SfKKCy9vSDrn73N4Q9IBWPHK3xqW1i9m3t2wtL7x0oadL1Qjs7+yfUPS+d7EKxqSDsBZt5zUsLR2uXRhw9KaUasNOfibmbUel/zNzFpRHwn+de3YzcysT4nade8gaRtJ/5s7vXxC0ul5+saS7pT0bH4dUo+P4uBvZlZQjdv5Lwf+JSLeDewDnJI7uBwH3BUROwF35fGac/A3M6tGRLGh083EnIh4KL9fBDxF6s9sNDAhLzYBOKoeH8N1/mZmVajigu+mkqaUjI+PiPEVtykNA/YCHgC2iIg5kA4QkjbvcmY74OBvZlZUdTd5LYiI8ptc1yBpfeCXwBkR8bpUqY/L2nO1j5lZFWrZn7+ktUmB/7qIaOvwcp6koXn+UGB+PT6Hg7+ZWRVq2NpHpC7tn4qIH5fMupXU+zH59ZZafwZwtY+ZWXFBoYu5Be0HfBZ4TNK0PO2bwEXAJEknAi8Cx9QqwVIO/mZmVajVHb4R8ScqP8QKUhf4deXgb2ZWjT5yh6+Dv5lZQW03efUFDv5mZkVF+GEuZmYtqW/Efgd/M7NquNrHzKzVBOBqHzOzFtQ3Yr+Dv5lZNVztY2bWgtzax8ys1VTXq2dT69XBf8CiYJvfr2hIWmfMPLkh6Sz6t7cbkg7Aljdv37C0Fq68p2FpPX7F7g1La9sfPNeQdOYu37Ah6QDMPHjdhqW13qzGpcWT3d9Eusmrb0T/Xh38zcwarmB3zc3Owd/MrAou+ZuZtRrX+RcjaTBwBbA7aZedAJwB7JIXGQy8GhHD8zMsnwKeyfPuj4jGVLSbmRXivn2Kuhi4PSKOljQAGBQRn2ibKelHwGsly0+PiOF1zpOZWde52qdjkjYEDgDGAkTEUmBpyXwBHwcOqlcezMxqKoo/n7fZ1fMZvjsALwNXS3pY0hWS1iuZvz8wLyKeLZm2fV72Hkn71zFvZmZdE1FsaHL1DP79gRHApRGxF/AGMK5k/ieBiSXjc4Bt87JnAtfns4fVSDpJ0hRJU5YtfaN+uTczqyQKDk2unsF/FjArIh7I45NJBwMk9Qc+CtzYtnBELImIV/L7qcB0YOfyjUbE+IgYGREj1x6wXvlsM7O60sqVhYZmV7fgHxFzgZmS2lr2jGLVPXYHA09HxKy25SVtJqlffr8DsBPwfL3yZ2ZWtSDd5FVkaHL1bu1zGnBdbunzPHB8nn4sq1f5QLo4fJ6k5cAK4OSIWFjn/JmZFSbCN3kVERHTgJEVpo+tMO2XwC/rmR8zs27rI8G/nnX+ZmZ9T41a+0i6StJ8SY+XTNtY0p2Sns2vQ+r1MRz8zcyKqm2d/zXAh8qmjQPuioidgLtYvYVkTTn4m5lVoVatfSLiD0D5dc3RwIT8fgJwVG1zv4o7djMzK6yqG7g2lTSlZHx8RIzvZJ0tImIOQETMkbR5V3JZhIO/mVlRQTXBf0FErNHgpVm42sfMrBr1bec/T9JQgPw6v5u5bZeDv5lZFRRRaOiiW4Ex+f0Y4JaaZLoCB38zs2rUrqnnROA+YBdJsySdCFwEHCLpWeCQPF4XrvM3MysqAlbUpu+GiPhkO7NG1SSBTvTq4L9805Us/PzihqQ1+Kr1G5LO63v0a0g6APNHNi6tn847uGFpDf7kzIaltfjrQxuSznk7j21IOgADNmlYUgxasKJxidVKH7nDt1cHfzOzhnPwNzNrMQH4Gb5mZq0mIHpBf80FOPibmRUV1OyCb09z8Dczq4br/M3MWpCDv5lZq6mqY7em5uBvZlZUAL3g4exFOPibmVXDJX8zs1ZTu+4depqDv5lZUQHhdv5mZi3Id/iambUg1/mbmbWYCLf2MTNrSS75m5m1miBW9MJnEFTg4G9mVpS7dDYza1F9pKlnXR/gLmmwpMmSnpb0lKQPSLpR0rQ8zJA0rWT5syQ9J+kZSYfVM29mZtUKIFZGoaHZ1bvkfzFwe0QcLWkAMCgiPtE2U9KPgNfy+12BY4HdgC2B/5G0c0T0jQo2M+v9wg9z6ZSkDYEDgLEAEbEUWFoyX8DHgYPypNHADRGxBHhB0nPA3sB99cqjmVm1+soFX0Wdmi1JGg6MB54E9gSmAqdHxBt5/gHAjyNiZB6/BLg/Iq7N41cCt0XE5LLtngSclEd3AZ6pywfomk2BBT2diSr1tjz3tvyC89wIRfK7XURs1p1EJN2e0ypiQUR8qDvp1VM9q336AyOA0yLiAUkXA+OAc/L8TwITS5ZXhW2scWSKiPGkg0rTkTSl7WDWW/S2PPe2/ILz3AiNym8zB/Nq1fOC7yxgVkQ8kMcnkw4GSOoPfBS4sWz5bUrGtwZm1zF/ZmYtq27BPyLmAjMl7ZInjSJVAQEcDDwdEbNKVrkVOFbSOpK2B3YC/lyv/JmZtbJ6t/Y5Dbgut/R5Hjg+Tz+W1at8iIgnJE0iHSCWA6f0wpY+TVkd1Ynelufell9wnhuht+W3x9Xtgq+ZmTWvut7kZWZmzcnB38ysBTn4d4GkXUq6qJgm6XVJZ0jaWNKdkp7Nr0N6Oq9tOsjzuZJeKpl+RE/ntZSkr0h6QtLjkiZKGtjk+7lSfpt9H5+e8/uEpDPytGbex5Xy29T7uBm5zr+bJPUDXgLeD5wCLIyIiySNA4ZExDd6NIMVlOX5eGBxRPywZ3O1JklbAX8Cdo2It3KDgN8Cu9KE+7mD/A6jeffx7sANpLvplwK3A18EPk9z7uP28vtpmnQfNyuX/LtvFDA9Iv5K6qJiQp4+ATiqx3LVsdI8N7v+wLr53pBBpHs/mnk/V8pvM3s36c76NyNiOXAP8BGadx+3l1+rkoN/95U2W90iIuYA5NfNeyxXHStvanuqpEclXdVMp/cR8RLwQ+BFYA7wWkT8jibdzx3kF5p0HwOPAwdI2kTSIOAI0s2WTbmPaT+/0Lz7uCk5+HdDvn/hSOCmns5LURXyfCnwTmA4KWD9qIeytob8Bx4NbE/q6XU9SZ/p2Vy1r4P8Nu0+joingO8Dd5KqUB4h3WfTlDrIb9Pu42bl4N89hwMPRcS8PD5P0lCA/Dq/x3LWvtXyHBHzImJFRKwE/oNUl9osDgZeiIiXI2IZ8CtgX5p3P1fMb5PvYyLiyogYEREHAAuBZ2nefVwxv82+j5uRg3/3lHdOdyswJr8fA9zS8Bx1brU8t/3Bs4+QTqubxYvAPpIG5S7ARwFP0bz7uWJ+m3wfI2nz/Lotqc+tiTTvPq6Y32bfx83IrX26KNc3zgR2iIi2B9JsAkwCtiUFgmMiYmHP5XJ17eT5F6RT5QBmAF9oq+ttBpK+C3yCdGr/MPA5YH2adD+3k98raO59/EdgE2AZcGZE3NXMv+V28tvUv+Nm5OBvZtaCXO1jZtaCHPzNzFqQg7+ZWQty8Dcza0EO/mZWM5K+KikkVXzIuaTBkiZLelrSU5I+UDLvNEnP5A7bfpCnHSJpqqTH8utBBfJwjaQXSjp5G167T9h31PtJXmbWx0g6EBgbEWPLpm8DHEJqGtqei4HbI+LofLf5oLzuB0l3R78nIpa0teUHFgAfjojZuVO3O4CtCmTzaxExuYqP1XJc8remJWmYpLckTavR9oZ3patfSe/MJcjFtchHH/YT4OuktvZrkLQhcABwJUBELI2IV/PsLwIXRcSSPG9+fn04Ito6x3sCGChpnby9QyXdJ+khSTdJWr9eH6wvcvC3Zjc9Imp12j6c1BHYGnIvnBVFRC3z0CdJOhJ4KSIe6WCxHYCXgaslPSzpCknr5Xk7A/tLekDSPZLeV2H9jwEP5zODTYGzgYMjYgQwBTizZNkLcydvP2k7WNjqHPytR0h6X/5zDpS0Xq7n3b2TdYbluuIrlB7mcZ2kgyXdq/TQkb3zcuvlnh0fzEFmdK5iOA/4RC7Ff0LpASDjJf0O+E9J/ST9W17vUUlfaMCu6DVyYJ5GumP5yJI69dHAt4Bvd7KJ/sAI4NKI2At4AxhXMm8IsA/wNWBS7iKjLe3dSB26tX0n+5Ce63BvztMYYLs87yzgXcD7gI2BHn8OQVOKCA8eemQALiB1gfz/gLMqzB8GPF42vhzYg1RwmQpcBYhUX3xzXu57wGfy+8HAX4D1gLHAJSXbOzdvY908fhJwdn6/Dqk0uX3J8ot7ep81wwAcCFxTMr4HqeO3GXlYTqr3f0fZeu8AZpSM7w/8d35/O3BgybzpwGb5/db5O9yvZP6HgYkF8/qbnt5nzTi45G896TzSBcKRwA8KrvNCRDwWqffGJ4C7Iv3LHyMdHAAOBcblEuHdwEBSHzWV3BoRb5Wsd1xe7wFS/zE7VfWJWlD+PjaPiGERMQyYBYyIiLlly80FZkraJU8aBTyZ398MHAQgaWdgALBA0mDgv0mFg3tLNnc/sJ+kHfM6g/J6f++sMJ85HIU7eavIrX2sJ21M6qRtbVKAfqPAOktK3q8sGV/Jqt+zgI9FxDOlK0p6f4XtlaYp4LSIuKNAPqwASVsCV0RE27WW04DrcjXc86THiEI6g7tK0uOkxzOOiYiQdCqwI3COpHPysodGxHxJY0k9erbV6Z9NOkO4TtJmpO9zGnByfT9l7+Tgbz1pPHAO6eEn3wdOrdF27wBOk3RaDiB7RcTDwCJgg07W+6Kk30fEslySfCkiihyUWkZE3E06o2pv/rCS97MpucgeEdNIZ3rl6ywF1nhQT0RcQKoerJTO70n1+uXTO70XwHzB13qIpOOA5RFxPXAR8L4iN/AUdD7pbOLRXJI8P0//X2DXtgu+Fda7glQN8VBe73JcQLI+yl06W9OSNIx0sa7DVkCNImlxRLgtufUJLvlbM1sBbFSrm7y6qu0mL2Bepwub9RIu+ZuZtSCX/M3MWpCDv5lZC3LwNzNrQQ7+ZmYt6P8DEvbLllgceAQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAxT0lEQVR4nO3debgcVZ3/8fcnJCEEDEnYZA8oRBYlQGRRQSSsKuDIKjImgMPgIOu4wCiKKIrIODI/HTQDAqNhCQEBdQARBxRkh8gaIIQIISEQIhACJCT5/P4455pKp++91Ul33763v6/nqed2VZ2qc7q677dPnTp1SrYJIYTQXvr1dAFCCCE0XwT/EEJoQxH8QwihDUXwDyGENhTBP4QQ2lAE/xBCaEO9PvhL+qmkM0umvU3S5xtQhi9Imi3pDUlr1Xv/9SBpN0lP9nQ5QgitoVcFf0njJN1RXGb7eNvf7sEyDQB+COxjew3br9Rx32MkTZH0pqT/k7RpDdta0ns75m3/yfbIepWt3iStK+kKSTMlvSbpTkk7V6Q5UtJfJc2XdJ2k4YV1h0n6cz5Wt1XZ/yqSvpP3P0/SQ5KGdlGe8ZKelLRE0riKdWMlPSDpdUkzJJ0nqX8X++oyvaStJP0hv++pkv4hL/9srlC8IemtXJaO+Tdymi9Kul/SAkmXVuS7i6RbJM2V9LKkqyWt30U5z5L0TjEPSZvndd1+Pl3s95LK76Ok8yU9nT+LKZI+18X2H5P0iKRXJb0i6VeSNqySbnh+n3cUlu1W8X7eyGU5uMr2f8jrip/NbZLeLmz7ZGHdQEmTJE3P2+1R5ni0il4V/HtCV//U2XrAIOCxOue7NnAtcCYwHLgfuKqeebSYNYD7gB1J7/cy4LeS1gCQtA3wM+AfScf8TeC/CtvPBX4EnNvJ/r8FfAjYFRiS9/N2F+X5C/AvwINV1g0GTgHWBnYGxgBf6mJfnabP36/rgd+Q3vdxwC8lbWl7Qq5QrAHsD8zsmM/LAGYC3wF+XiXfYcB4YASwKTAPuKSLcgJcVczD9rS8vMvPpzOSPgK8p8qq+cABwJrAWOACSR/qZDePA/vaHgpsADwNXFgl3feBJ4oLcqWneMw+CbwB3FRRzs8Cnf2vf7Gwj8oK1B3AUcCLnWzbumw3ZAK+CrxA+sI9CYzJy88CJpEC2TzSP9d2he1OB57J6x4H/iEv34r0z7qY9OG9mpdfCnwnvx5G+id6Gfhbfr1RYd+3AZ/vptzjgDuB/yAFlO8AqwLnA88Bs4GfAqsBW5K+xM5l+kMdj99xwJ8L86sDbwHvK7HtH3OZ5udyHQ7sAcwopJkOfBl4OKe7mBRUb8zH/vfAsEL6XYA/A6+SAuMejfruFPJ8Hdgxv/4ucHlh3XuAhcC7Krb5PHBbxbJh+Ti8ZwXKcAcwrps0pwG/rmGff08PbJvLpsL63wHfrthmmc+vyj6/A1zaTb47APO6WH8W8MsV+Xw6Wd8feAj4QP4+vreLtDcA/1oiz1WB7wGPVyzfFbgLOBq4o4vtLwEuqVi2JvBU/o4b6F9YdxvdxIycbkYz/ifqOTWk5i9pJPBF4IO23wXsSwo2HQ4CribVIC4HrlNqPoEU+HfLH8i3SLWg9W0/ARwP3OX0Czy0Stb9SB/upsAmpGD54xV4CzsD04B1gXNINYotgVHAe4ENgW/YfgrYJm8z1Pae1XaWT1c7m07vpAzbkIIsALbnk47NNp2kp5B29/xyu3ysOjtjOBjYO7+3A0iB/99INdR+wEm5/BsCvyUFmOGkWus1ktbp5P3+pov3+5vuyp/3MQoYCEzNiyqPxzOk4L9lid29H1gEHCLpRUlPSTqhTDlK2p3azvyK6VVlvUg/CvW2TDmVmtEerkhzQG4mekzSFzrbUeXnI2mT/PluUkh2KvBH25V5VO5rNeCDdHEMO/ZP+p/+EnBeYd0qwE9IMafT8WokDQYOIZ21FH2XdCbRWe39e5Lm5KauPbp6L71KI35RSAHyJWAvYEDFurOAuwvz/YBZwG6d7GsycFB+PY6KX3UKNf8q2x5O+qefTGo2eYAqv+LAfqSzk6mkH6Xn8vJRwN2ks41HgJ0KtYxnST8wHTX//p0dj7yNSD8kT5FOTU/qJv3FwLkVy+6km1poIe0yNS2q1/w/W5i/BriwMH8icF1+/VXgFxX7vxkY26Dvz5B8vM8oLLsVOL4i3QtU1LaoXvM/Mh+Pi0lnbB8gnR3uXaIsXdb8STXNGcDaJd/bMumBAaSKxlfy631IP2o3V2y3zOdXZb9d1vzze57b2f9ZTrM1qVllFVIT2SzgM2U+nyppNs7/T2tW+z5WpL2M1AyjzvZXSDs8fx93KSw7teO7S5UYUUj3j/n/tniWNZoUH/qTmscqa/47A+8inXGMJZ0VL3cGSdT8E9tTSW2cZwEvSbpS0gaFJM8X0i7JB24DAEmfkzS5o6ZIqgGt3V2ekvaQ9AtJP1O6KPg6MIH0Rd4R+AZV2h4LtYb9SV/+nYE5efV5pHbkfsBmwJ9zmW4C1iE1Dd3W7QFJxpH+Id5neyvgym7Sv0H6JysaQvry1cvswuu3qsx3tOduChxarMEDHwE6vXi4onIt8NekCsL3CqtW5ni8lf+ebfstp5rolcDHc57Fi4GbdLqX5cv6KdI1hv1tz8nLihdpb+wuve13gE8BnyDVPP8VmEj6n6iLfKH1RuBk23/qLJ3tx23PtL3Y9p+BC0g15eK+Ovt8Kv2IdLxf66ZsPyD9jx/mHEW7Ynsu6cfiekn9c1w5Cfhad9uSgvf/dOQjqR/putHJthd1kt89tufZXmD7MlIF7OMl8mp5Dbvga/ty2x8hBQ6Tmk46bNzxIn8AGwEzlXqz/Dfp9G0tp6adR1l6atzdl2MbYCSws+0hwL0d2ZCakRZU2WYnYKrtabYXAveQahfF/N4i1cwm2h5qe03SRZ5ppItPfydpH0l3SXpQqXfFGko9My4iNbO8nuen5QDxb528l8eA7Qr7XZ3041XXC8slPU+q+Q8tTKvbrnpxVdKNVXpYVA2IFdutClxHqtH/c8XqyuOxOak29lSJ8nc0O1T9/njZC5zPldgfkvYjfVcPsP1IYV8TCvvav7v0eZuHbX/U9lq29wU2Z+l3d6Xk/6nfk64h/KLGzU2hWaqbz6fSGOAHuZmtoznlLklHFvb3LVKlax/br9dQrv6kJtkhpP/f9YHHcz4XADvlfFcp5LUx6ezpfwr7GUKq+V+Vt70vL58habdO8l7mmPRmDWvzl7Rn/rK8TQqeiwtJdpT06dzT4RRSUL6bdFHTpFNyJB3Nsm2fs4GNJA3sJOsBOa9XlboBzs/LnyVdsJ1WZZsNKZyJkC4Ud+z/FFLtf3He/vxcrveS2gm/VfG+1wa+DuxlewdSU9NpTr0MXs3bTAH+BGyfA8R3O3kvvwK2lXSwpEGkM5eHbU/JeY2TNL2TbSEdq827WF+LX5LagvdV6jI5KJ9pbVQtse39KwLqGtUCYpHSNZ9JpM/vc/mMsGhCLsNu+YfwbOBa2/Py9qvk49Qf6JfLOCCX5xnSMf+apFUlbUVqEuz0+oNSN75BpH/0AXl//fK6PXN5DrbdbZDuLr2kD+T9D5b0JVIwu7S7/eZt++dyrgJ0fDb987oNgT8AP7H90xL7OkjSMCU7kWrU1+d13X0+lbYk/ViPyhOk60q/yvs7g9Qct7e76R6dY8VISf2UrjP9EHgonwXcSGqu6cjnG6SLzKNsF2POP5I6UDxTWPYaqcWhY9uOGv2OwD2Shubv/KB8nD9Lum5yc6Fsq+bjDzAwp+0dPw6NaEsitS/eSzoln0v6J9sgrzuLZXv7PATsUNj2nLzNHNKHfDu5nZ4UlH/bsT4ve5l0ujyVFLjfIAXrGaQvvkkB4bC8/vMVZT0UuKgwP57UpQ7gP0m19UGkbpdvkno4vELuMUA6ve3I45O53JPz9DhwcU73Brk3A/Bp4E8ljuNepB+Lt0jNSyMK684EJnSx7fGkNttX83vfg+Xb/PcqzP8SOKsw/3ng94X5nfNnMTcf898Cm9TxO/PRfBzfzMeqY9qtkOZIUo+r+aSgNLywblzevjhdWli/Iam57g1SJeCfuynPbVX2t0de93+ka0nFct7Yxb66TA/8gKXf3Rup0jZe+fkVlp9VpZxn5XXfZGlPtL9PhW0/CzxWmL+C9N1+I3/vTiqs6/LzIV3/eqOz7wTLX4MyqdJX3Ne/FdYX930iqQI3n/S/fiWwaSf5jKNKm39+P8d285mPoNDmT2ravY8Up14lVVD3rthmepXjP6KrfFplUn4DTSPpLNKX4Kg673cP0oW5cYVlr5F64Tj/Gr/m1BxU3G5X0j/Lvnn+DADb3+tse0l/YmnT1VBgCanG8VfgSNufqVK+KcB+tqfnfb3q1Hy0ou/3d6S2yie6TRxCCBX6+k1eM0k1FoA9qWifz+4DtpC0WW5OOoLU57jT7W3vZnuE7RGkmv93bf+YVDP4cG4WIp/Gd3RFvC7vg7zPMm3VnbK9TwT+EMKK6u7u1RWm1Ne/2L98c1LteDVgjKSnSadMh9n+W97mDOBYUrPNSbZvZuX8E+nOwf6kaw/H5Xz+h9SE0HGH5yosvbHsPNuPdbV9Z2y/rDQUwBX5egekawBPkXp5TJB0KumUtu5jDIUQQllNafbJV91fILUbnwDMtX2u0g1Ow2x/VdLWpDbHnUgXYX4PbOllL9qEEEKog2Y1+4wBnrH9V9LdvR132F1G6uNMXn6lU3/aZ0kXcHdqUvlCCKGtNKzZp8IRpFo9wHq2ZwHYniVp3bx8Q1KbeYcZedkyJB1HR/PNgIE7Dhq2bmWShljl7eZcGO83v9qtCI2x4N2Duk9UJ/3f6j5NvWy84UtNy2vmM80ZwfvtdZp3eW6Dd73atLzmTqu8b69xXn9z1hzbVYckKWvfj63uV+aWa4x44OEFN9veb2Xya6SGB/98EfVA4IzuklZZtlzEtT2e1B2Twett7PceedpKl7GMYU+905R8Vrur2jXpxph60tZNy2vtv3TXLbx+LvjuigzntGK+cci4puQz5fjVmpIPwNm7X9u0vH55ZNXbPhrid/ef9deV3ccrcxdz783lbgJfZf2nux2ZoCc1o+a/P/Cg7Y6hA2YrDdQ2S2ls8Y5q2gwKd/6S7/ptQvlCCKEUA0toXkWmkZpxLvkZljb5QOpGOTa/Hku+gzAvPyLfMbcZsAV1usU9hBDqwZh3vLjU1OoaWvNXGkJ1b5YdB+RcYKKkY0l3ax4KYPsxSRNJd8UuAk6Inj4hhFbTV2r+DQ3+tt8E1qpY9gqp90+19OeQhncIIYSWY8ziJo+K0CjN6u0TQgh9wpJuBxfuHSL4hxBCSQYWR/APIYT2EzX/EEJoMwbeiTb/EEJoL8bR7BNCCG3HsLhvxP4I/iGEUFa6w7dviOAfQgilicV94/ntEfxDCKGsdME3gn8IIbSV1M8/gn8IIbSdJVHzDyGE9hI1/xBCaENGLG7a028bK4J/CCHUIJp9QgihzRix0Kv0dDHqIoJ/CCGUlG7yimafHjfgbwvZcNL0puT118+NaEo+mzy/XlPyAVhzatOy4vLvn9+0vP7l48c2La+dJkxuSj7D56/TlHwAZr0zrGl59Zs+q2l51Utc8A0hhDZji8WOmn8IIbSdJVHzDyGE9pIu+PaNsNk33kUIITRBX7rg2zfeRQghNMliq9RUhqShkiZJmiLpCUm7Shou6RZJT+e/DbkCH8E/hBBK6rjDt8xU0gXATbbfB2wHPAGcDtxqewvg1jxfdxH8QwihBkvcr9TUHUlDgN2BiwFsL7T9KnAQcFlOdhnwqUa8j2jzDyGEktLAbqXrzGtLur8wP972+ML85sDLwCWStgMeAE4G1rM9C8D2LEnrrnzJlxfBP4QQSjLinfLDO8yxPbqL9f2BHYATbd8j6QIa1MRTTTT7hBBCSTYsdr9SUwkzgBm278nzk0g/BrMlrQ+Q/77UiPfS0ODfyZXs7STdJekRSb/O7V5IGiHpLUmT8/TTRpYthBBqJ5aUnLpj+0XgeUkj86IxwOPADcDYvGwscH0j3kmjm306rmQfImkgMBi4BfiS7dslHQN8GTgzp3/G9qgGlymEEFaIod7DO5wITMjxcRpwNKlSPlHSscBzwKH1zLBDw4J/4Ur2OEhXsoGF+VfujznZLcDNLA3+IYTQ0ur5MBfbk4Fq1wXG1C2TTjSy2ad4JfshSRdJWh14FDgwpzkU2LiwzWY57e2Sdmtg2UIIoWZGLHG5qdU1Mvh3XMm+0Pb2wHzSlexjgBMkPQC8C1iY088CNslpTwMu77geUCTpOEn3S7p/4ZK3Glj8EEJYloF33L/U1OoaGfyrXsm2PcX2PrZ3BK4AngGwvcD2K/n1A3n5lpU7tT3e9mjbowf2W62BxQ8hhEpiccmp1TUs+Hd2JbvjhgVJ/YCvAz/N8+tIWiW/3hzYgnQBJIQQWoKp3x2+Pa3R5ybVrmR/TtIJef21wCX59e7A2ZIWAYuB423PbXD5QgihJr2hVl9GQ4N/J1eyL8hTZdprgGsaWZ4QQlgZtnpFrb6M1r8qEUIILSJd8C09vENL69XBf8G6A5n6LyOakte7713clHw2+vmMpuQD8L8bTWxaXpvfdErT8jrm8jubltdde2/cfaI6mLv3e5qSD8Cr963VtLxmH9yQMcuq+1k9dhLP8A0hhLaTLvhGm38IIbSdet7h25Mi+IcQQkkdd/j2BRH8QwihBn3lAe4R/EMIoSQb3lkSwT+EENpKavaJ4B9CCG0n7vANIYQ2E109QwihLUWzTwghtKUyz+ftDSL4hxBCSam3T4ztE0IIbSVu8gohhDYVzT4hhNBmordPCCG0qejtE0IIbcYWi+oY/CVNB+aRHl27yPZoScOBq4ARwHTgMNt/q1umWd/4CQshhCZZYpWaavAx26Nsdzzy9nTgVttbALfm+bqL4B9CCCV1tPnXOfhXOgi4LL++DPjUSha7qgj+IYRQgxqC/9qS7i9Mx1XZnYHfSXqgsH4927MA8t+GPOsy2vxDCKGkGvv5zyk05XTmw7ZnSloXuEXSlJUrYXlR8w8hhBosQaWmMmzPzH9fAn4F7ATMlrQ+QP77UiPeR6+u+a866y3ec+4jTclr+mnvb0o+r87ctCn5AOw9b3jT8hp+z8Cm5XX59I81La+3z1rclHzO2OP6puQDcN3sUU3L6+T1r25aXuN+tvL7sGFRnR7mIml1oJ/tefn1PsDZwA3AWODc/LchH36vDv4hhNBsdbzJaz3gV5IgxeLLbd8k6T5goqRjgeeAQ+uVYVEE/xBCKKmeY/vYngZsV2X5K8CYumTShQj+IYRQA8fwDiGE0H76ysBuDe3tI2mopEmSpkh6QtKukraTdJekRyT9WtKQQvozJE2V9KSkfRtZthBCqJXdlJu8mqLRNf8LgJtsHyJpIDAYuAX4ku3bJR0DfBk4U9LWwBHANsAGwO8lbWm7Od0pQgihW2JxnXr79LSGvYtco98duBjA9kLbrwIjgT/mZLcAB+fXBwFX2l5g+1lgKqnPawghtAxbpaZW18ifsM2Bl4FLJD0k6aLcl/VR4MCc5lBg4/x6Q+D5wvYz8rJlSDqu43bphX67caUPIYQKTRrbpykaGfz7AzsAF9reHphPGp3uGOAESQ8A7wIW5vTVjpaXW2CPtz3a9uiBGtSYkocQQjVO7f5lplbXyOA/A5hh+548PwnYwfYU2/vY3hG4AnimkH7jwvYbATMbWL4QQqhZPYd36EkNC/62XwSelzQyLxoDPJ4HMEJSP+DrwE/z+huAIyStKmkzYAvg3kaVL4QQauV8wbfM1Ooa3dvnRGBC7ukzDTga+JykE/L6a4FLAGw/Jmki8DiwCDghevqEEFpNb2jSKaOhwd/2ZKBySNML8lQt/TnAOY0sUwghrIze0JOnjLjDN4QQSkoXcyP4hxBC2+kN3TjLiOAfQgg1iDb/EEJoM0Ys6QU9ecqI4B9CCDVohYq/pE+XSPa27f/tbGUE/xBCKKt1Lvj+N+nxjl0VZncggn8IIdRFK1T94Ubbx3SVQNIvu1ofwT+EEGrQCjV/20etbJpeHfzf3ngQU762VVPyev/7pjUln29s+uum5ANwzI9Oblpe3/hSl5WQuvrKjUc2La+RP53XlHy+N3j/puQDsNH6c5uW1zl/ad77grtWeg8Glizp+eAvafeu1tv+Y1froYvgL+mGEmWYa3tciXQhhND7GWiBmj/pIViVTHog/EbAKt3toKua/1bA57tYL+An3WUQQgh9SSv087d9QHFe0keArwGzgC+W2UdXwf9rtm/vamNJ3yqTSQgh9BktEPw7SBoDnEkq1Xdt31J2206Dv+2JFZmsbnt+V2lCCKFvq+8jGiWtAtwPvGD7k5KGA1cBI4DpwGG2/1Zlu0+QavqvkSrqd9aad7e3qkn6kKTHgSfy/HaS/qvWjEIIoU9wyamck8mxNTsduNX2FsCteb6aX5Pa9hcBX5V0Q3Eqk3GZ3j7/AexLetgKtv/S3ZXmEELokwyuU28fSRsBnyANY39aXnwQsEd+fRlwG/DVKpt/bGXzL9XV0/bz0jJvOB6yEkJoU6WD/9qS7i/Mj7c9vjD/I+ArpGeZd1jP9iwA27M6nnxYqXg9VtI6ednLZQsG5YL/85I+BDg/kesklj1NCSGE9lG+SWeO7cqHWQEg6ZPAS7YfkLRHrUVQqo1/k9SzR0A/SYuA/2f77DL7KDM83fHACcCGpIesj8rzIYTQfurT5v9h4EBJ04ErgT3zcAyzJa0PkP++1Mn2p+R9fND2WraHATsDH5Z0apm30WXwz1eif2T7s7bXs72u7aNsv1Jm5yGE0Kd03ORVZupqN/YZtjeyPQI4AvhDHo7hBmBsTjaWNHhbNZ8DPmP72cI+pwFH5XXd6jL45weor5Obe0IIoe2lRzl2P62gc4G9JT0N7J3nqxlge87yZfPLwIAyGZVp858O3Jm7D/29n7/tH5bJIIQQ+pQ6j+1j+zZSrx5yq8qYEpstXMF1f1cm+M/MUz+WXpVuoXvcQgihedQa0W87Sa9XWS5gUJkdlAn+j9u+epm9S4eW2XkIIfQptd3A1TC2ux24rTtlevucUXJZCCH0cSUv9rbGyJ9d6mpI5/2BjwMbSvrPwqohpFuKQwih/bRAzV/Sg7Z3WJk0XTX7zCQNOHQg8EBh+TygVD/SEELoc5b0dAEA2ErSw12sF7BmVzvoalTPvwB/kXR5TreJ7SdXqJghhNAXtM7DXN5XIk2Xw/CUueC7H3A+MBDYTNIo4GzbB3a3oaShwEXAtqTDdgzwFvBT0hXpRcC/2L5X0gjSsBEdPzB32z6+RPlCCKFpWqG3j+2/ruw+ygT/s4CdWNoPdXIO1GVcANxk+5B8o9hgYCLwLds3Svo4cB5LR7F7xvaosoUPIYSma4HgXw9lgv8i269VjOrZLUlDgN2BcQC2FwILJZl00RhSm9TMmnYcQghhpZUJ/o9KOhJYRdIWpFE9/1xiu82Bl4FLJG1Humh8MmlAopslnU/qavqhwjabSXoIeB34uu0/Ve5U0nHAcQCrDhrKZlc35+rLvH4bNSWfoz50clPyARjUxAtXF++wXfMy+07zslr47280JZ/V5zWvnXmNw5Z7cFTD6KNVRyxuiKfrtJ9WaPaphzL9/E8EtgEWAFeQAvMpJbbrD+wAXGh7e9LQEKcDXwBOtb0xqdfQxTn9LNJF5e1JDza4PJ89LMP2eNujbY8eMGD1EsUIIYQ6MWl4hzJTE0j6tKSnJb0m6XVJ8zq583c53db8bb9Jelbk12os1wxghu178vwkUvD/COkMAOBq0gVhbC8g/cCQx7h+BtiS1N00hBBaQ2vV/M8DDrBd8zNWyjzDd7SkayU9KOnhjqm77Wy/SHoQzMi8aAzwOKmN/6N52Z7kszFJ6+QhpJG0ObAFMK3WNxRCCI0kl5uaZPaKBH4o1+Y/Afgy8Ai1395wIjAh9/SZBhxNGp/6Akn9gbfJ7feki8Nn56fRLAaOtz23xvxCCKGxWqvmf7+kq4DryC0nALav7W7DMsH/ZdulngZfyfZkoPIxZncAO1ZJew1wzYrkE0IITdNawX8I8CawT2GZgboE/29Kugi4lRp/WUIIoS9pcpNOt2wfvaLblgn+R5NuJR7A0mafUr8sIYTQ5zSpJ08ZkrYELgTWs72tpA8AB9rutsNzmeC/ne33r2whQwihL2ilmj/w36Rrsj8DsP1wHo+t2+Bfpp//3ZK2XrnyhRBCH+GSU3MMtn1vxbJSQ+6Xqfl/BBgr6VlSm78A2/5AbWUMIYRersXa/IE5kt5D/rmRdAjphtlulR3VM4QQArRab58TgPHA+yS9ADwLHFVmwzJ3+K700KEhhNBXqDUe5gKA7WnAXpJWB/rZnld2207b/CU92N3GZdKEEEJoDEnrSboYmGR7nqStJR1bZtuuav4r/ZiwEELoc+rU7CNpEPBHYFVSLJ5k+5uShgNXASOA6cBhtjsbavVS4BKWjr32VN724k7S/11XwX+lHxMWQgh9Sn0v+C4A9rT9hqQBwB2SbgQ+Ddxq+1xJp5MGxPxqJ/tY2/ZESWcA2F4kqVRc7uoZvtHWH0IIleoU/G0b6HggxIA8GTiIpU83vIz0FMXOgv98SWuxtLfPLsBrZfIv09snhBBCh/LBf21JxSHpx9seX0yQRzJ+AHgv8BPb90haz/YsANuzJHX1xJvTgBuA90i6E1gHOKRM4SL4hxBCSaKm3j5zbFcObLkM24uBUZKGAr+StG3psqQfjo/maWQu3pO23ymzfZnx/L8oaVjZAoUQQp9Vciz/Wq8L2H6V1LyzHzBb0voA+e9LnWyzGDjI9iLbj9l+tGzgh3LDO7wbuE/SREn7qdYnuYcQQl9Sp+Ed8gOshubXqwF7AVNIzThjc7KxpGegdOZOST+WtJukHTqmMm+jzE1eX5d0Jmm86KOBH0uaCFxs+5kymTTKsE1e5+D/vLkpef3y259oSj6XjP1/TckHYJdVm9fqt+9/Nu8B7qu9WKZOUx8vvLZRU/JZPLh5t5VqrTeblteMMU2sS15Xp/3U76NYH7gsN9/0Ayba/o2ku4CJub/+c8ChXezjQ/nv2RUl3LO7zEv999u2pBeBF0mDBg0DJkm6xfZXyuwjhBD6gnp19bT9MLB9leWvkB57W2YfH1vR/LsN/pJOIp16zCE9bP3Ltt+R1I/0/N0I/iGE9tFCY/tIOq3K4teAB/KTFDtVpua/NvDpyn7/tpdI+mTpUoYQQm/n1hrbh/SY3NHAr/P8J4D7gOMlXW37vM42LNPm/40u1q3QU+NDCKHXaqGaP7AWsIPtNwAkfROYBOxOun9gxYN/CCGEpVpsPP9NgIWF+XeATW2/JWlBJ9sAEfxDCKE2rRX8Lyc9bbGjO+gBwBV5iOfHu9owgn8IIZTV3Ec0dsv2tyX9L+mJiwKOt90xpMRnu9o2gn8IIZQkWq7ZB9sPkNr3axLBP4QQatBqwX9FRfAPIYRaRPAPIYQ21EeCf0MHQZE0VNIkSVMkPSFpV0mjJN0tabKk+yXtVEh/hqSpkp6UtG8jyxZCCDVr0KiePaHRNf8LgJtsHyJpIDAYmAh8y/aNkj5OuglhD0lbA0cA2wAbAL+XtGUetjSEEFpDLwjsZTSs5i9pCOkus4sBbC/MY1YbGJKTrQnMzK8PAq60vcD2s8BUYCdCCKGFaEm5qdU1sua/OfAycImk7UhdkU4GTgFulnQ+6cenY0jSDYG7C9vPyMuWIek44DiAYRus2qiyhxBCVb2hSaeMRrb59wd2AC60vT0wn/QU+i8Ap9reGDiVfGZA6kJbabnDbHu87dG2R68xbGBjSh5CCNWUfZBLL/iBaGTwnwHMsH1Pnp9E+jEYC1ybl13N0qadGcDGhe03YmmTUAghtIYI/l2z/SLwvKSRedEY0lgTM0kPHIb0tJmn8+sbgCMkrSppM2AL4N5GlS+EEGrVcYdv9Pbp3onAhNzTZxrpMZDXAxdI6g+8TW6/t/1Yfjzk46SnhZ0QPX1CCK1GS3pBZC+hocE/P0lmdMXiO4AdO0l/DnBOI8sUQggrrJc06ZQRd/iGEEINekOTThm9OvjPfm1Nfnhjc54kedE5P2tKPt/eZf+m5AOw+JW/NS2vXzx/W9Py+uoLQ7pPVCczT92sKfl894qLmpIPwBnXH9e0vEZeOLdpeU2v144i+IcQQvuJmn8IIbSjPhL8GzqwWwgh9Cmu3/AOkjaW9H950MvHJJ2clw+XdIukp/PfYY14KxH8QwihpDr3818E/KvtrYBdgBPyAJenA7fa3gK4Nc/XXQT/EEKohV1u6nY3nmX7wfx6HvAEaTyzg4DLcrLLgE814m1Em38IIdSghgu+a0u6vzA/3vb4qvuURgDbA/cA69meBekHQtK6K17azkXwDyGEsmq7yWuO7cqbXJcjaQ3gGuAU269L1ca4rL9o9gkhhBrUczx/SQNIgX+C7Y4BL2dLWj+vXx94qRHvI4J/CCHUoI69fUQa0v4J2z8srLqBNPox+e/19X4PEM0+IYRQnil1MbekDwP/CDwiaXJe9m/AucBESccCzwGH1ivDogj+IYRQg3rd4Wv7Dqo/xArSEPgNFcE/hBBq0Ufu8I3gH0IIJXXc5NUXRPAPIYSy7HiYSwghtKW+Efsj+IcQQi2i2SeEENqNgWj2CSGENtQ3Yn8E/xBCqEU0+4QQQhuK3j4hhNBuahvVs6X16uA/cJ7Z+A+Lm5LXKc8f35R85v3g7abkA7DBdZs1La+5S25vWl6PXrRt0/La5LypTcnnxUVDmpIPwPN7rda0vFaf0by8eHzld5Fu8uob0b9XB/8QQmi6ksM1t7oI/iGEUIOo+YcQQruJNv9yJA0FLgK2JR2yY4BTgJE5yVDgVduj8jMsnwCezOvutt2chvYQQiglxvYp6wLgJtuHSBoIDLZ9eMdKSf8OvFZI/4ztUQ0uUwghrLho9umapCHA7sA4ANsLgYWF9QIOA/ZsVBlCCKGuXP75vK2ukc/w3Rx4GbhE0kOSLpK0emH9bsBs208Xlm2W094uabcGli2EEFaMXW5qcY0M/v2BHYALbW8PzAdOL6z/DHBFYX4WsElOexpweT57WIak4yTdL+n+dxbOb1zpQwihGpecWlwjg/8MYIbte/L8JNKPAZL6A58GrupIbHuB7Vfy6weAZ4AtK3dqe7zt0bZHDxi4euXqEEJoKC1ZUmpqdQ0L/rZfBJ6X1NGzZwxL77HbC5hie0ZHeknrSFolv94c2AKY1qjyhRBCzUy6yavM1OIa3dvnRGBC7ukzDTg6Lz+CZZt8IF0cPlvSImAxcLztuQ0uXwghlCYcN3mVYXsyMLrK8nFVll0DXNPI8oQQwkrrI8G/kW3+IYTQ99Spt4+kn0t6SdKjhWXDJd0i6en8d1ij3kYE/xBCKKu+bf6XAvtVLDsduNX2FsCtLNtDsq4i+IcQQg3q1dvH9h+ByuuaBwGX5deXAZ+qa+ELYmC3EEIoraYbuNaWdH9hfrzt8d1ss57tWQC2Z0lad0VKWUYE/xBCKMvUEvzn2F6uw0uriGafEEKoRWP7+c+WtD5A/vvSSpa2UxH8QwihBrJLTSvoBmBsfj0WuL4uha4ign8IIdSifl09rwDuAkZKmiHpWOBcYG9JTwN75/mGiDb/EEIoy4bF9Rm7wfZnOlk1pi4ZdKNXB/9Fay9h7j+90ZS8hv58jabk8/r7V2lKPgAvjW5eXj+avVfT8hr6meebltcbX1m/KfmcveW4puQDMHCtpmXF4DmLm5dZvfSRO3x7dfAPIYSmi+AfQghtxkA8wzeEENqNwb1gvOYSIviHEEJZpm4XfHtaBP8QQqhFtPmHEEIbiuAfQgjtpqaB3VpaBP8QQijLQC94OHsZEfxDCKEWUfMPIYR2U7/hHXpaBP8QQijL4OjnH0IIbSju8A0hhDYUbf4hhNBm7OjtE0IIbSlq/iGE0G6MF/fCZxBUEcE/hBDKiiGdQwihTfWRrp4NfYC7pKGSJkmaIukJSbtKukrS5DxNlzS5kP4MSVMlPSlp30aWLYQQamXAS1xqanWNrvlfANxk+xBJA4HBtg/vWCnp34HX8uutgSOAbYANgN9L2tJ232hgCyH0fo6HuXRL0hBgd2AcgO2FwMLCegGHAXvmRQcBV9peADwraSqwE3BXo8oYQgi16isXfOUGdVuSNAoYDzwObAc8AJxse35evzvwQ9uj8/yPgbtt/zLPXwzcaHtSxX6PA47LsyOBJxvyBlbM2sCcni5EjXpbmXtbeSHK3Axlyrup7XVWJhNJN+W8yphje7+Vya+RGtns0x/YATjR9j2SLgBOB87M6z8DXFFIryr7WO6XyfZ40o9Ky5F0f8ePWW/R28rc28oLUeZmaFZ5WzmY16qRF3xnADNs35PnJ5F+DJDUH/g0cFVF+o0L8xsBMxtYvhBCaFsNC/62XwSelzQyLxpDagIC2AuYYntGYZMbgCMkrSppM2AL4N5GlS+EENpZo3v7nAhMyD19pgFH5+VHsGyTD7YfkzSR9AOxCDihF/b0acnmqG70tjL3tvJClLkZelt5e1zDLviGEEJoXQ29ySuEEEJriuAfQghtKIL/CpA0sjBExWRJr0s6RdJwSbdIejr/HdbTZe3QRZnPkvRCYfnHe7qsRZJOlfSYpEclXSFpUIsf52rlbfVjfHIu72OSTsnLWvkYVytvSx/jVhRt/itJ0irAC8DOwAnAXNvnSjodGGb7qz1awCoqynw08Ibt83u2VMuTtCFwB7C17bdyh4D/BbamBY9zF+UdQese422BK0l30y8EbgK+APwTrXmMOyvvZ2nRY9yqoua/8sYAz9j+K2mIisvy8suAT/VUobpRLHOr6w+slu8NGUy696OVj3O18rayrUh31r9pexFwO/APtO4x7qy8oUYR/FdesdvqerZnAeS/6/ZYqbpW2dX2i5IelvTzVjq9t/0CcD7wHDALeM3272jR49xFeaFFjzHwKLC7pLUkDQY+TrrZsiWPMZ2XF1r3GLekCP4rId+/cCBwdU+XpawqZb4QeA8wihSw/r1nSra8/A98ELAZaaTX1SUd1bOl6lwX5W3ZY2z7CeD7wC2kJpS/kO6zaUldlLdlj3GriuC/cvYHHrQ9O8/PlrQ+QP77Uo+VrHPLlNn2bNuLbS8B/pvUltoq9gKetf2y7XeAa4EP0brHuWp5W/wYY/ti2zvY3h2YCzxN6x7jquVt9WPciiL4r5zKweluAMbm12OB65teou4tU+aOf/DsH0in1a3iOWAXSYPzEOBjgCdo3eNctbwtfoyRtG7+uwlpzK0raN1jXLW8rX6MW1H09llBub3xeWBz2x0PpFkLmAhsQgoEh9qe23OlXFYnZf4F6VTZwHTgnzvaeluBpG8Bh5NO7R8CPg+sQYse507KexGtfYz/BKwFvAOcZvvWVv4ud1Lelv4et6II/iGE0Iai2SeEENpQBP8QQmhDEfxDCKENRfAPIYQ2FME/hFA3kr4kyZKqPuRc0lBJkyRNkfSEpF0L606U9GQesO28vGxvSQ9IeiT/3bNEGS6V9GxhkLdRdXuDfUijn+QVQuhjJO0BjLM9rmL5xsDepK6hnbkAuMn2Iflu88F524+R7o7+gO0FHX35gTnAAbZn5kHdbgY2LFHML9ueVP5dtZ+o+YeWJWmEpLckTa7T/katyFC/kg6XNFXSb+pRjj7sP4CvkPraL0fSEGB34GIA2wttv5pXfwE41/aCvO6l/Pch2x2D4z0GDJK0at7fPpLukvSgpKslrdGg99UnRfAPre4Z26PqtK9RpIHAlpNH4azK9lWkm7VCJyQdCLxg+y9dJNsceBm4RNJDki6StHpetyWwm6R7JN0u6YNVtj8YeCifGawNfB3Yy/YOwP3AaYW05+RB3v6j48ciLCuCf+gRkj6Y/zkHSVo9t/Nu2802I3Jb8UVKD/OYIGkvSXcqPXRkp5xu9Tyy4305yByUmxjOBg7P7cCHKz0AZLyk3wH/I2kdSdfk7e6T9OEmHIpeIwfmyaQ7lg8stKkfBHwN+EY3u+gP7ABcaHt7YD5wemHdMGAX4MvAxDxERkfe25AGdPvnvGgX0nMd7sxlGgtsmtedAbwP+CAwHOjx5xC0JNsxxdQjE/Ad0hDIPwHOqLJ+BPBoxfwi4P2kissDwM8BkdqLr8vpvgsclV8PBZ4CVgfGAT8u7O+svI/V8vzlwEfy602AJwpp9wB+09PHrBWmfCwuLcy/nzTw2/Q8LSK1+7+7Yrt3A9ML87sBv82vbwL2KKx7Blgnv94of4YfLqw/ALiiZFnjc6syxQXf0JPOBu4D3gZOKrnNs7YfAZD0GHCrbUt6hPTjALAPqWb6pTw/iBTMq7nB9lv59V7A1oUK5xBJ77I9r+wbakf58/j7eP+SpgOjbc+pSPeipOcljbT9JGngu8fz6uuAPYHbJG0JDATmSBoK/JZUObizsLu7gZ9Ieq/tqXncqo1sPyVpfduz8pnDp4hB3qqK4B960nDSIG0DSAF6foltFhReLynML2Hp91nAwTnA/J2knavsr5hnP2DXwo9BWEmSNgAust1xreVEYEJuhptGeowopDO4n0t6lPR4xrH5R/2LwHuBMyWdmdPuY/slSeNII3p2tOl/nXSGMEHSOqTvwWTg+Ia+yV4qgn/oSeOBM0kPP/k+8MU67fdm4ERJJ+YAsr3th4B5wLu62O53uQw/gNQ7yPbkOpWpz7B9G3BbF+tHFF7PpHCRPR/P0VW2WQgs96Ae298hNQ9Wy+cPpHb9yuXd3gsQ4oJv6CGSPgcssn05cC7wwTI38JT0bdLZxMO5JvntvPz/SM06kyUdXmW7k4DR+UL040SNMfRhMaRzaFmSRpAu1nXZC6hJZdkD+JLtT/ZwUUKoi6j5h1a2GFizXjd5rah8lvBfwN96shwh1FPU/EMIoQ1FzT+EENpQBP8QQmhDEfxDCKENRfAPIYQ29P8BX+Kwr5sWpsgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -114,7 +559,7 @@ "metadata": {}, "outputs": [], "source": [ - "xds_lonlat = xds.rio.reproject(\"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs\")" + "xds_lonlat = xds.rio.reproject(\"EPSG:4326\")" ] }, { @@ -124,19 +569,462 @@ "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset>\n",
+       "Dimensions:      (time: 2, x: 10, y: 10)\n",
+       "Coordinates:\n",
+       "  * x            (x) float64 -51.32 -51.32 -51.32 ... -51.32 -51.32 -51.32\n",
+       "  * y            (y) float64 -17.32 -17.32 -17.32 ... -17.32 -17.32 -17.32\n",
+       "  * time         (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n",
+       "    spatial_ref  int64 0\n",
+       "Data variables:\n",
+       "    blue         (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n",
+       "    green        (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41
" + ], "text/plain": [ "\n", "Dimensions: (time: 2, x: 10, y: 10)\n", "Coordinates:\n", " * x (x) float64 -51.32 -51.32 -51.32 ... -51.32 -51.32 -51.32\n", " * y (y) float64 -17.32 -17.32 -17.32 ... -17.32 -17.32 -17.32\n", - " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T12:52:42.347451\n", + " * time (time) datetime64[ns] 2016-12-19T10:27:29.687763 2016-12-29T...\n", " spatial_ref int64 0\n", "Data variables:\n", " blue (time, y, x) float64 6.611 5.581 0.3996 ... 3.491 5.056 3.368\n", - " green (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41\n", - "Attributes:\n", - " creation_date: 2019-04-12 14:35:16.846951" + " green (time, y, x) float64 7.921 66.15 30.1 ... 21.76 27.29 18.41" ] }, "execution_count": 6, @@ -156,7 +1044,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 7, @@ -165,7 +1053,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xe8FNX9//HXGxBQERVBBVGwEA1YUFFjSb4qmliiaDCW2Ij6M8YYTTUQo2JLLN/EkviNEmuw94oaNWLsigoKooKGCAFFBBVstM/vj3NWhnXL3Ht3Z3fv/Twfj3nsTjllZu+dM2fmzDkyM5xzzrmstKt1BpxzzrUtXvA455zLlBc8zjnnMuUFj3POuUx5weOccy5TXvA455zLVKsveCStJ2mBpPa1zotzLjuSLpN0asptx0o6pgp52FHSlHgO2q/S8TeqVlfwSJomabfcvJm9Y2ZdzGxJLfNVjKROkq6U9B9J8yW9LGnPvG0GS3pd0qeSHpPUJ7Ful7jsI0nTiqRxkqR/S/pE0mRJXyuRn7MkvSppsaSReev2lvSkpA8lvSvpb5JWKRFXye0lrSPpbklzJc2QdFxc/s34j7og5tkS8wvixcSBkp6Ox2RsXrpfi/G+H+N+SNLGJfI5TNKSvDR2juvK/j4l4j095n23xLJfS5oY4/q3pF+XCN9f0jhJ8+L0iKT+BbbrGP8+ZiSWrZe3PwtiXn5ZIPzVcd1GiWXXSFqYF759Yv0oSW9IWippWJrjUU3xN3wyuczMjjOzs2qVp+hM4C/xHHRXpSKV1Df+338af/vdyoeqH62u4GlAHYDpwP8AqwKnArdI6gsgqTtwR1zeDRgH3JwI/wlwFVDwBBav4o4G9ga6AN8F5pTIz1TgZOD+AutWBc4GegFfB3oDF5SIq9z21wH/BtaK+fu9pF3M7In4j9oFGBC3XS23zMzeAeYCFwHnFkh3NeAeYOMY9/PA3SXyCfBMIv4uZjY2Li/5+xQjaUPgAGBW/irgCGB1YA/gBEkHF4lmZoyjG9A97tNNBbb7NTA7uSBxwZU7jpsBS4Hb8/K5E7BhkfTPzzsmyYu3CcDxwEtFwrZ6kjqk2KwPMKkKyd8IvAysAZwC3CapRxXSqQ4zazUTMJrwz/UZsIBwAu0LGNAhbjOWcDJ8Om5zL+HHux74GHgB6JuIcxPgYcKJ7g3gwAz24xVgaPx+LPB0Yt3Kcf82yQuzGzAtb1k7wklzcDPycB0wssw23wNebUKcX25PKAQN6JFYPwoYnRdmud+vQJzHAGPLpNstxrFGkfXDgCeb8/uU2OYBYC9gGrBbie0uAf6cIs0OwE+AT/OWrw9MBvYEZpQIfzrwWIE4XwY2j8dno8S6a4CzU+TrSWBYE/+2fgP8F5gf/6cGx+UjgdsIF1bzCYXaFolww4G34rrXgP3j8q8DnwNL4v/0h/n7QCjo7wPeB+bF770TcY8FjimT72HAU8CFhPNBLu6j4m8wD3gI6BOXv8Xy56NOTTlOJfLxNeALYJXEsieA4yoRfxZTq6rxmNnhwDvAPhau0M4vsunBwOHAOoSrvWeAqwknqMmEf1IkrUwodG4A1gQOAf5P0oACcSLp/+JtpULTK2n2QdJahD+s3FXSAMLVZW4fPyH8QRfMQ57ecdpU0vR4a+cMSZX63b9F067mktsr7zP3fdMK5KtQuu+a2QcQrvIlfZi3zZaS5kh6U9Kpxa5mC/w+xN93p8T894GFZjamVKYkCfgmZY5hzOvnwJ+B3+et/jPwW8LJrZQjgGvzlv0c+JeZFfvbPD7eqnxR0tAy8acSb3meAGxjZqsA3yEUzjlDgFsJ/4s3AHdJWiGue4twvFYFzgCuk9TTzCYDx7Gs1rpagaTbEf7H+wDrEY7XX5qxC9sBbxPOB+coPLf5LeGiqgehALgRwMw2ZPnz0RcFjsd9Jc4Z9xXJwwDgbTObn1g2gXTnhPpQ65Kv0hN5V5gUrvGcklj/R+CBxPw+wPj4/SDgibz4LwdOT5GP7xNOKEuBQUW22RgYn5g+JlwBXg6cRbiy/oBwO6pXDLM74eppOvAisGtcXqjGs0Pc94mEfxYj3Er7fynyX7LGE/MxD/hayt/lK9sTrpb/DHQGtiLWKvPCLff7FYi3ZI2HUPD+FzikxDYbEGoO7Qi3pF4DRhTYbgXgEeDyEnF1AaYA6xf6e8zb9gzCCaPslTChpns8sHdi2f7Ag/H7zhSp8RBO1guALoll68a/hVXjfH6NZyvCnYAOhJrbfGDHAnE3qcYDbES4LbgbsELeupHAs4n5doRbld8sEtd4YEj8Poy8Wislam3AQGBeYn4s6Wo87+QtewA4Oi/Pn7Ks1lP092/uRLhofjZv2TnANZVMp5pTq6rxNMF7ie+fFZjvEr/3AbZLXoUAhwJrp0hjIuEq6F/FNjCzN8xsoJkNBAYRTmz/JVwRXmBmmxMKgBnAaTHYHEKh8zPgSMLtxWJyV8EXArsC/wH+TjiRIGlS4sHxN1PsEzHcNwhXoweY2ZtxWbJBwKRy20eHEk7404G/Em53zqBC4j3vfwD/Z2Y3FtvOzN42s3+b2VIze5XwQPiAvLjaEY71QsLvU8wZhNuF/y6TtxMItZC9rcCVcIE8fgJcBvxd0pqxNn4+8NNyYQl/J7eb2YLEsouAM83soyLpvWRmH5jZYgs1t+sJf88tYmZTCX+7I4HZkm6S1CuxyfTEtksJfw+9ACQdIWl84n9xU8Kzr7IkrSTpcoVGIh8T/i9XU9Nbu07Pm+8DXJzI01xCzX2dJsbbFAuArnnLuhIuDhpCayx4Ktnd9nTgcTNbLTF1MbMfF9pYofnmAkkLCM+KXiRcbf4r/2ScF06Eh/kLCSeiRWb2cVw9iXB1mtuvN1n2wHIS0FlSp7ius6RnJL0k6VbCP+1CYIqZTctP18wG2LIHx0+kOSCStiQ85D7KzB5NxPVEIq4B5baPYf5jZt81sx5mth3hCvv5NPlIkc/VCYXOPWZ2ThODG4lbgPH3uZLQUGGomS0qEXYwcKJCK753Cb/dLZJ+k4jvKMLzisFm1pSCth2wEuGk1o9QG3wipnMH0DOm2zeR1oqE2nf+bbbBwAWJfAI8I+kHRdJe7pi0hJndYGY7Ef6ODTgvsXrdRN7bEWqsMxVacv6NUOivYeF22sREnsr93/+ScIdhOzPrSrj9Ck3fp/x0pgM/yjtHrGhmT6eJTNID+mrrw9z0QJFgk4ANtHyL0i2oTiOGqmiNBc97hFsnlXAf8DVJh0taIU7bSPp6oY0tNN9MtgLqQrjn+63kybiAvwJbAmeY2Zf36iWdQ3jetC7wvKTOhJrPK2b2OjCU8HBYhJP2aoTWYd8gtH77MeFB7cnxj7Q9oZpe7N4xcR87E/42OkjqnLsqlLQp8CDwUzO7t+SRS7G9pK9LWkWhOfBhwLeBP5WLN4ZtH/PZAWgX87lCXNeV8JD3KTMbniKuPeOzGyRtQmi5lmwF91fCA+x9kr9PEYMJV+ID4zQT+BFwaYz/UMJzmt3N7O0y+dpd0pZxX7sSjs08wnPIiYS/i1w6xxD+9gey/FX5/sCHwGN50X+NcLLKhYdwm/nOmPYBkrpIaifp28BhhAuIXN46xuMvYIV4/NvFdTtLKlgQSNpY0q7xYulzQq082Vpua0nfU3jG9jPCQ/RnCbcajdA4AEk/ZPnnge8BvSV1LHI4V4lpfSipG/E5bgVcBoxQfO4raVWFZ3ypmNme+eeMxFSw2X68azAeOD0e9/0JDURuL7R9Xar1vb5KT4SHk+8Q/tl+ReFnPMcktj+bxL1Rwr3nqYn5jQm1kfcJz1v+CQyM6x4hnADypyGJ8GMp8ownrs9d9RmhafSCOB2a2OYKwi22z2J8fQkPEt8CfpAIn5sWEJ5TXEmogt9EqIYvJjQ/Von8XFMgvmFx3dWEZ1YLEtOkEnGV3J5wYnk/7veThY5T/u+XWD6sQD6vieuOLHA8FwDrxfXfBBYk4vpfwonrE8KzsDOJzx8Sv8/neXElf58FFH8OMY3lnzn+G1iUF9dlifWTcnETaiqvx23eB8YAmxdJZ2cKPOMhFMBnpfi/yX/G8wTwEeG54wTg4LztxxY4/jvHdYeTaImZF25zQq12PuG21H0se345kuVbtb0MbJUIe04MM4dQCD9O/F8GOhL+T+cCcxJ/y7mWZ71inhcQ7hr8iBLnhSJ5H0aB1o9xf1+Nx2o6cFWx37+C57m+Mc+fEZ4LVzyNak6KO+GqROHlxl+Z2bgS2wwBfmJm3y6yvg9wv5ltGud7EwrAH5rZU3HZPsAPzOyQEulMI5zcS73H41yLSLoCuNXMHmpiuJGEwu+wqmTM1Y3WeKutER1CbIKZI6lfYnZfwpUvklYjXNmNyBU60bPAjopvn8eHqUV7KHCuWszsmKYWOq5t8YKnSiTtr9CFyfbA/ZIeist7SRqT2G4lQlPjO/KiOFeha5VXCM8+TorLTyA0ST01tvAZL2lNM3ufcCvgxhjmWcLLr0g6MealN/BKvCJ1zuVJNhDKmy6rdd5aE7/V5pxzLlNe43HOOZepNJ3cuQI6rLiydezarerptP88uxppu0/KvsdYMV+s3TmztDqUawBdQeuuM7v8RhUw8601MkkH4PMe2V2f9lolvyej6pn7dv47mNXz8aez5phZizrx/M4uK9sHc9N1sv/iK188ZGZ7tCS9avKCp5k6du3GRj/4RdXTWf3NUu8qVtaKz0zJLK2pJ36ld/+q6T5haSbpXPz7vxBfsq+60w4Ylkk6AK8ft2JmaZ35rfxHndVz3Q9SjW5REf8YN/I/LY3jg7lLeP6h9VJt277nlFQ9OtSKFzzOOdcADFhKNhdR1eYFj3PONQDDWFSf41k2mRc8zjnXILzG45xzLjOGsaSVvP7iBY9zzjWIpRXtfL92vOBxzrkGYMASL3icc85lyWs8zjnnMmPAIn/G45xzLiuG+a0255xzGTJY0jrKHS94nHOuEYSeC1oHL3icc64hiCWo1pmoCC94nHOuAYTGBV7wOOecy0h4j8cLHueccxla6jUe55xzWfEaj3POuUwZYgnZjQZbTV7wOOdcg/Bbbc455zJjiIXWvtbZqAgveJxzrgGEF0j9VlubtsK8haxz27Sqp/OfI/pWPY2c9aavlVlaq07NLCluOO9/M0vr+L2OziSdba8fn0k6AN0+6ZFZWrMWrZ5ZWu2mzcosrUrxxgXOueVkVei4tslMLDGv8TjnnMvQUq/xOOecy0poXNA6TtmtYy+cc66Va02NC2qyF5K6SXpY0pT4WfCJoqQ9JL0haaqk4eXCS9pd0ouSXo2fuybCHCTpFUmTJJ2fWN5J0s0xjeck9a3enjvnXPMtMaWaypG0mqTbJL0uabKk7dOelyuhVsXncOBRM+sHPBrnlyOpPXApsCfQHzhEUv8y4ecA+5jZZsCRwOgY1xrABcBgMxsArCVpcAxzNDDPzDYCLgTOq/TOOudcS+V6LkgzpXAx8KCZbQJsAUwmxXm5UmpV8AwBro3frwX2K7DNtsBUM3vbzBYCN8VwRcOb2ctmNjMunwR0ltQJ2AB408zej+seAYYWiOs2YLCk1vEEzznXqiy1dqmmUiR1Bb4FXAlgZgvN7EPSnZcrolYFz1pmNgsgfq5ZYJt1gOmJ+RlxWdrwQ4GXzewLYCqwiaS+kjoQDui6+emY2WLgI2CNQpmWdKykcZLGLVz6Weqddc65lgqdhKau8XTPnavidGwiqg2A94GrJb0s6QpJK5PuvFoRVWtcIOkRYO0Cq05JG0WBZalGHJc0gHDL7NsAZjZP0o+Bmwmjxz5NOPhNSsfMRgGjAFbtuFYrGf3cOdcIDLEofZc5c8xsUJF1HYCtgJ+a2XOSLqaKt9WKZaAqzGy3YuskvSepp5nNktQTmF1gsxksq5UA9AZyt9GKhpfUG7gTOMLM3krk517g3rjNscCSvHRmxNrQqsDcpu2tc85VlxmVeoF0BjDDzJ6L87cRCp405+WKqNWttnsID/+Jn3cX2OYFoJ+k9SV1BA6O4YqGl7QacD8wwsyeSkYmac34uTpwPHBFgbgOAP5pZl6bcc7VGbE05VSKmb0LTJe0cVw0GHiNdOfliqjVezznArdIOhp4B/g+gKRewBVmtpeZLZZ0AvAQ0B64yswmlQoPnABsBJwq6dS47NtmNhu4WNIWcdmZZvZm/H4lMFrSVEJN5+Aq7bNzzjWbUbEaD8BPgevjRf3bwA8JFZFC59WKq0nBY2YfEErZ/OUzgb0S82OAMU0IfzZwdpE0Dymy/HOqeICdc65SKjUQnJmNBwo9A/rKebUavOcC55xrAIZ8IDjnnHPZMWCR99XmnHMuO/LxeJxzzmXHoGyvBI3CCx7nnGsQXuNxzjmXGTN5jcc551x2QuOC1F3m1DUveJrpizU7MvX4vlVPZ+3nl5TfqEJ6XzUjs7TG9L4ls7Q2ePBn2ST0Czhq0FPlt6uAZ3Zft/xGFTJ39w0zS+vDFwr2z1sV7w2tWh+YX3V5JSJRJV8grSkveJyrkKwKHdc2hcYF/ozHOedchirVc0GtecHjnHMNoM31XCBpB6Bvcnsz+3uV8uScc66ApW2lxiNpNLAhMJ5lY9gY4AWPc85lxAwWLW0jBQ+hB9P+PkaNc87VTrjV1nYKnomEIaxnVTkvzjnnSmhLPRd0B16T9DzwRW6hme1btVw555xbTltrTj2y2plwzjlXThu61WZmj0taC9gmLno+DiXtnHMuQ0tbya22ssWnpAOB5wnDQx8IPCfpgGpnzDnn3DKhVVv7VFO9S3Or7RRgm1wtR1IP4BHgtmpmzDnn3DJt7QXSdnm31j4gRU3JOedcZbWWW21pCp4HJT0E3BjnDwLGVC9Lzjnn8rWpVm1m9mtJQ4EdAQGjzOzOqufMOefcctpMqzYAM7sduL3KeXHOOVeEmVhcoYJH0jRgPqEbtMVmNkhSN+BmQr+c04ADzWxeRRLMU3QvJD0ZP+dL+jgxzZf0cTUy45xzrrilplRTSruY2UAzGxTnhwOPmlk/4NE4XxVFazxmtlP8XKVaiTvnnEsng2c8Q4Cd4/drgbHAb6qRUJr3eEanWeacc666mlDj6S5pXGI6Ni8qA/4h6cXEurXMbBZA/Kza2OBpnvEMSM5I6gBsXZ3sOOecK6SJ7/HMSdxCK2RHM5spaU3gYUmvtzyH6ZV6xjNC0nxg8+TzHeA94O7Mcuiccw4I7/Gkmcoxs5nxczZwJ7At8J6kngDxs2pdo5V6xvMH4A+S/mBmI6qVgUbVadZnbHjuq1VPZ9ovNqt6GjkfzuyTWVq7z++WWVrdnuuYSTp3PbcLn66VSVJ8PnJJ+Y0qZMTO2V1n3vXewMzSOqnnrZmlNezylsdhBosrMBCcpJUJHQPMj9+/DZwJ3AMcCZwbP6v2w6e51fa8pFXN7CMASasBO5vZXdXKlHONKKtCx7VdFWpcsBZwpyQIZcANZvagpBeAWyQdDbxD6J+zKtIUn6fnCh0AM/sQOL0liUrqJulhSVPi5+pFtttD0huSpkoaXi68pN3jw7JX4+euiTAHSXpF0iRJ5yeWD5P0vqTxcTqmJfvmnHPVkHvG09Lm1Gb2tpltEacBZnZOXP6BmQ02s37xc2619iVNwVNom1QvnpZQtr24pPbApcCeQH/gEEn9y4SfA+xjZpsRqoqjY1xrABcAg81sALCWpMGJ5G6O7dkHmtkVLdw355yrCjOlmupdmoJnnKQ/SdpQ0gaSLgRebGG6QwjtxImf+xXYZltgaiydFwI3xXBFw5vZy7mHZsAkoLOkTsAGwJtm9n5c9wgwtIX74JxzmapU44JaS1Pw/BRYSOhK4RbgM+AnLUw3TXvxdYDpifkZcVna8EOBl83sC2AqsImkvrE5+H7Auslt42242yStWyAuACQdm2sXv9A+T7enzjlXAWYV77mgZtJ0EvoJMFxSFzNbkDZiSY8AaxdYdUraKAplJ2XaA4DzCK01MLN5kn5MKDyXAk8TakEA9wI3mtkXko4j1KB2/WqsYGajgFEAq7bvniovzjlXGWJJBVq11YOyBY+kHYArgC7AepK2AH5kZseXCmdmu5WI8z1JPc1sVon24jNYvlbSG8jdRisaXlJvQrv0I8zsrUR+7iUUMsQ3dZfE5R8k0vgbocByzrm60wjPb9JIU3xeCHyHMAAcZjYB+FYL0821F4fi7cVfAPpJWl9SR+DgGK5o+NjU+35ghJk9lYwsvqFLbAF3PKEwzb0olbMvMLlFe+acc1WQ66utNdxqS1VvM7PpeYta+vbaucDukqYAu8d5JPWSNCamuRg4AXiIUBjcYmaTSoWP228EnJpoHp17/nOxpNeAp4BzzezNuPzE2MR6AnAiMKyF++acc5Vn4TlPmqnepWkWPT3ebrNY8ziRFtYK4u2twQWWzwT2SsyPocBopyXCnw2cXSTNQ4osHwF4zwzOubrXCC3W0khT8BwHXExoUTYD+Actb9XmnHOuCawtNS4wsznAoRnkxTnnXAmNcBstjaIFj6STzex8SX/mq82YDZgLXJdsOeacc656WkurtlI1ntxznHFF1q8B3AFsUdEcOeec+4rQcKCVFzzxvRfM7FoASauE2WUvkUr6pOo5dM45B1R96OvMpBn6elNJLwMTgddir88DAMysAqNMOOecS6MtNaceBfzCzB4DkLQz4Q3/HaqYL+eccwmGWNpWWrUBK+cKHQAzGxtHrXPOOZehBqjMpJKm4Hlb0qnEsW2Aw4B/Vy9LzjnnvqIOGhdIuiTFZh+b2e9KbZCm4DkKOIPQgg3gX8APU4RzzjlXSbWv8gwBTiuzzXCg+QVPHAX0t2Z2YtPy5pxzrtJqXeMBLsy1dC4mdsRcUsmCx8yWSNq6qTlrCz5ftzOvn/L1qqez2SZvVz2NnNP63JtZWkdddFJmaZ32q+syS+vkB36QSTobXzY/k3QA/rDSnpml1bvn3MzSOmdCdvsFz7Q4BgOWLq1twWNmF1VimzS32l6WdA9wK/DleztmdkfxIM61PVkVOq6NMqD2z3hK3WYzMzsrTTxpCp5uhLF4kqNyGsue+TjnnMtAHbyjU6jTgJWAYwi92VSm4DEzb0jgnHP1oMYFj5n9Mfc99mZzEqEB2k3AH4uFy5em54INJN0r6X1JsyXdLWn95mTaOedccwmzdFOq2KT2kl6WdF+c7ybpYUlT4mfBRgJxu7OBVwiVl63M7DdmNjvtnqR5DfYG4BagJ9CL8KznprQJOOecqxBLOaVzEssP6jkceNTM+gGPxvnlSLoAeAGYD2xmZiPNbF5TdyNNwSMzG21mi+N0HTWv8DnnXBtjYEuVaipHUm9gb+CKxOIhQK6p9LXAfgWC/pJQAfkdMFPSx3GaL+njtLuSpnHBY5KGE2o5BhwE3C+pG4CZZdf+0Tnn2rTUrdq6S0oOaTPKzEYl5i8CTgZWSSxby8xmAZjZLElr5kdqZhXpLC5NwXNQ/PxR3vKjCAXRBpXIiHPOuTLS32uaY2aDCq2Q9F1gtpm9GDt9bjJJmwGbxNnXzGxSU8KnadXmDQmcc64eVOYhx47AvpL2AjoDXSVdB7wnqWes7fQEvtJYQNKqwN3AesAEQhVsM0nvAEPMLNXtttbRx7ZzzrV2uRdI00ylojEbYWa9zawvcDDwTzM7DLgHODJudiShgMl3FmFU6o3MbH8z2w/oR2hwcE7aXUlzq80551wdqPILpOcCt0g6GngH+H6BbXYDNjezpcvyZEsl/RZ4NW1CRQseSTua2VOSOpnZF+nz7pxzrioq3FebmY0FxsbvHwCDywRZaGaLC8SzWFLqcqJUjecSYGtC73ZbpY3QOedcdaj2L7J0lrQlX21eJ6BT2khKFTyLJF0NrFNo8B8fKsE55zLUtJdDq+Vd4E8l1qVSquD5LuF+3q7Ai+nz5ZxzrvLKNxyoNjPbuRLxFC14zGwOcJOkyWY2oRKJOeeca4Ea13gkbWVmL7V0mzTNqT+QdGfsIPQ9SbfH7hacc85laWnKqXqulrR67Ci04ARcWS6SNM2pryZ0FJprWndYXLZ7s7PunHOuaepgIDhgVcKjl1IZeb9cJGlqPGua2dWJTkKvAXqky2NhTeh+ew9Jb0iaGvuLKxle0raSxsdpgqT9E2G2lvRqjOsSSYrLO0m6OS5/TlLfluybc85ViyzdVC1m1tfMNjCz9UtM25aLJ03B876kw+LYDe0lHUYYkbQl0nS/3R64FNgT6A8cIql/mfATgUFmNhDYA7hcUq5W91fgWMJbtv3ieoCjgXlmthFwIXBeC/fNOeeqo7LDItRMmoLnKOBAQlO5WcABcVlLpOl+e1tgqpm9bWYLCb1jDykV3sw+Tbzc1Jn4E8R+h7qa2TNmZsDfE2km47oNGJyrDTnnnKu8NJ2EvgPsW+F0y3a/DawDTE/MzwC2Kxde0nbAVUAf4PD4Ru06MXwyrnXy04nbfkQYO3xOfoYkHUuoNdGp82qsf2t1n+IBzG+XXTuOw3Y4KbO0Olf/0H3pyq22yCSdjZnEG2cPyCSthX9ckEk6ACvPz+46rMuBTR5TrNn0P4VOO9UxpULx1MELpBVRtb7aJD0CrF1g1SlpoyiwrOxhN7PngAGSvg5cK+mBMnGlTieOZzEKYJWuvVvJn4CrlKwKHddGGRXvMqcl4gV9HxLliJn9K03YqhU8ZrZbsXWxWXbJ7rcJtZJ1E/O9gZnxe9nwZjZZ0ifApjGuZNUhGVcunRnxedCqgA9u55yrP3VyuSvpPMJYba8BS+JiA1IVPLUaFiFN99svAP0krS+pI6H77ntKhY/bdojf+wAbA9Pibbn5kr4Rn98ckUgzGdcBhC7C6+Tndc65ZWrdqi1hP2BjM9vLzPaJU+pHMmULHklrSboy3rJCUv/YbXZLnAvsLmkK4X2gc2PcvSSNgfC8BTgBeAiYDNySGOWuYHhgJ2CCpPHAncDxsQcGgB8TxhefCrwFPBCXXwmsIWkq8AsKtLBzzrm6UD+t2t4GVmhu4DS32q4hvDCaezbzJnAzKd5OLaZY99tmNhPYKzE/BhjThPCjgdFF0hxHuO2Wv/xzCo874Zxz9aV+7sV8CoyX9Cjw5XAIaTuPTlPwdDevl8puAAAZAklEQVSzWySNiBEvlrSkXCDnnHOVk+FttDTuYdmjjyZLU/B8ImkNlr0T8w3go+Ym6JxzrpnqpFWbmV0raUVgPTN7o6nh0zQu+AWhZNtQ0lOEly99LB7nnMtYvTQukLQPMB54MM4PlJS6BpSmxjMJ+B9CCzEBb1C71nDOOdd21c+ttpGE3mXGApjZeEnrpw2cpgB5JnYOOsnMJprZIsJw2M4557KSsraT0XOgxWaW/8gldcpFazyS1iZ0J7Ni3hjbXYGVmppL55xzLVQ/NZ6Jkn4AtJfUj/D45em0gUvdavsOMIzwln9yjO35wG+bnk/nnHMtoQz7OCzjp4RXbL4gjNf2EHB22sClhr6+ltDX2VAzu72luXTOOdc6mNmnwCmSfm9mnzQ1fJreqW+XtDcwgDDUQG75mU1NzDnnXAtU4FabpM6EPtU6EcqA28zs9Dhs9c1AX2AacKCZFewuXNIOhJ5gugDrSdoC+JGZHZ8mD2m6zLmM0BncTwnPeb5P6JHUOedcVirXuOALYFcz2wIYCOwR388sO0BnwoWExzEfAJjZBOBbaXclTau2HczsCMIonWcA27N8r9HOOeeyUIG+2izIDei0QpyMdAN0JuOZnrcodY82aQqez+Lnp5J6AYuA1O21nXPOVUj6gqe7pHGJ6dhkNJLax86UZwMPx3HMlhtgEyg1Ut70eLvNJHWU9CtCZ86ppHmB9D5JqwEXAC/F3boibQLOOedaTjSpVdscMxtUbKWZLQEGxnP7nZK+0oFyGccBFxNeuZkB/AP4SdrAaRoXnBW/3i7pPqBzgReHnHPOVVMVXg41sw8ljQX2IMUAmxBqS8DhZnZoc9NN1fWNpB3iy0IHAUMkHdHcBJ1zzjVTBZ7xSOoRazrEjj53A14n3QCdudrSkJbsRtkaj6TRwIaEDuGSQ5z+vSUJN7rV1/uYoZc8VPV0rjtr76qnkXP1kX/OLK1vdKraqOtf8Z1LtsgknY1Oepb/jtghk7T++1Hv8htVyJKVsntdXmt8mllaMwZn2NPzXRWKpzI/RU/CO5rtCZWPW8zsPknPALfEgT7fofQ4ZU9J+guh+fWX7/GY2UtpMpDmv38Q0N+Hg3autKwKHdd2VeJWm5m9AmxZYHnBATaLyP2xJ9/nNGDXNIHTFDwTgbWBWSkz5Jxzrhrq5PLfzHZpSfhUI5ACr0l6nuWHON23JQk755xrAqufvtok/aLA4o+AF81sfLnwaQqekU3NlHPOuSqokxoP4RHMIODeOL838AJwnKRbzez8UoHTNKd+vMVZdM4512IZjbWTxhrAVrkeECSdDtxG6DbnRaB5BY+kJ81sJ0nzWb6cFaHXha4tzblzzrkmqJ+CZz1gYWJ+EdDHzD6T9EWRMF8qNSzCTvFzlRZn0TnnXMukeEcnQzcAz0rKveuzD3CjpJWB18oFLlXj6VYqoJnNbUounXPONZ+on1ttZnaWpDHAToSsHWdm4+Lqsj0alHrG8yKhfBWhWjUvfl+N8HKRdxTqnHMZqpeCB8DMXiSUE01WtMscM1vfzDYgDGm6j5l1N7M1gO8CdzQrp84555qvAl3m1IM0fbVtY2ZjcjNm9gDwP9XLknPOuYJaScGT5j2eOZJ+B1xH2KXDiKPOOeecy0gVeqeulTQ1nkOAHsCdceoRlznnnMtSW6jxxN5LR5jZSRnlxznnXBH10mVOS5Ws8cRxF7audKKSukl6WNKU+Ll6ke32kPSGpKmShpcLL2lbSePjNEHS/okwW0t6NcZ1iSTF5cMkvZ8Id0yl99c55ypBlm6qd2lutb0s6R5Jh0v6Xm5qYbrDgUfNrB/waJxfTqxtXQrsCfQHDpHUv0z4icAgMxtIGFHvckm5Wt1fgWOBfnHaI5HczWY2ME4+rLdzrv6kvc3WSgqeboTGBLsS3k7dh9CkuiWGANfG79cC+xXYZltgqpm9bWYLgZtYNupdwfBm9qmZLY7LOxN/gjiMa1czeyaOK/T3Imk651z9aiUFT5pOQn9YhXTXMrNZMf5ZktYssM06wPTE/Axgu3LhJW0HXAX0IYwLvljSOjF8Mq51EvNDJX0LeBP4uZkl0/2SpGMJtSZW79Up9c4651xL1VPPBS1VtsYjqbekOyXNlvSepNsllR13V9IjkiYWmNKO1V1oXNqyh93MnjOzAcA2wAhJncvEdS/Q18w2Bx5hWU2qUNyjzGyQmQ3qsnrHsjvgnHOVpKWWaqp3ad7juZrQIVxu/O3D4rLdSwUys92KrYsFWM9YW+kJzC6w2Qxg3cR8b2Bm/F42vJlNlvQJsGmMK1lYfhlXHO4152/AeaX2yznnaqJBbqOlkeYZTw8zu9rMFsfpGsK7PC1xD3Bk/H4kcHeBbV4A+klaX1JH4OAYrmj4uG2H+L0PsDEwLd6Wmy/pG7E12xGJMD0Tae4LTG7hvjnnXFW0llZtaXsuOAy4Mc4fQst7LjgXuEXS0YQOR78PIKkXcIWZ7RWfzZxA6CuuPXCVmU0qFZ7QU+pwSYuApcDxZjYnrvsxcA2wIvBAnABOlLQvsBiYCwxLswPvfbQqf3qgpW0syrvinMurnkbOWd/YM7O0lnwwL7O0Rk8fm1FKT/Gb/2ZzDGf+PLs+en9/Y3YNPUfcfWxmaW381+w62J9WqYgaoFBJI03BcxTwF+DCOP9UXNZs8fbW4ALLZwJ7JebHAGMKbFcs/GhgdJE0xxFuu+UvHwGMaEL2nSsoq0LHtV2NUJtJI02rtncIt6Ccc87VUispeKrWqs0551wFWegyJ81UiqR1JT0mabKkSZJOistT9ShTCWkaF1xNeJjfi/Duy71xmXPOuYzk3uOpQOOCxcAvzezrwDeAn8ReYcr2KFMptWrV5pxzrqnM0k0lo7BZZvZS/D6f0JJ3HdL1KFMRaQqeOZIOk9Q+Tj4ej3PO1UATajzdJY1LTAWbC0rqC2wJPEdejzBAoR5lKqKprdoMeJoWtmpzzjnXRE17gXSOmQ0qtYGkLsDtwM/M7OPYYX8mvFWbc841iEqNxyNpBUKhc72Z3REXp+lRpiLStGq7VtJqifnVJV1VrQw555wrrEKt2gRcCUw2sz8lVqXpUaYi0txq29zMPszNmNk8SVtWK0POOecKMMo2HEhpR+Bw4FVJ4+Oy31K8R5iKS1PwtJO0upnNg9DWO2U455xzFVSJngvM7EkK99gPBXqEqYY0Bcgfgacl3UYocw8Ezqlqrpxzzn1VK+m5IE3jgr9LGkcYgVTA98zstarnzDnn3Jda00BwqW6ZxYLGCxvnnKsVa4xB3tLwZzXOOdcoWke54wWPc841itZyqy3NezwnVLOXUueccykYsNTSTXUuTV9tawMvSLpF0h7Ksl8F55xzy1jKqc6VLXjM7HdAP8KbrsOAKZJ+L2nDKufNOedcQoWGRai5NDUezMyAd+O0GFgduE3S+VXMm3POuQQttVRTvSvbuEDSiYR+e+YAVwC/NrNFktoBU4CTq5tF55xzjXIbLY00rdq6E14a/U9yoZktlfTd6mSr/nWcb6z7zyVVT+dn04+reho58y/4PLO0et21fmZpzV36eCbp/Kbngxx+1q8ySWu986dmkg7Au4u7ZpbW9N1WzCytlWdkl1Yl3oIML5C2jpInTc8Fp5VYN7my2XGucWVV6Lg2rELDItSav8fjnHMNos3UeJxzztWBNvaMxznnXM01Rou1NLzgcc65RuG32pxzzmXGyg9r3Si84HHOuUbhNR7nnHOZah3ljhc8zjnXKLS0ddxrS9VXW6VJ6ibpYUlT4mfBYRdib9hvSJoqaXi58JK2lTQ+ThMk7Z8Ic46k6ZIW5KXRSdLNMY3nJPWtzl4751wLGOEF0jRTnatJwQMMBx41s37Ao3F+OZLaA5cCewL9gUMk9S8TfiIwyMwGAnsAl0vK1eruBbYtkJejgXlmthFwIXBeBfbPOecqShiydFO9q1XBMwS4Nn6/FtivwDbbAlPN7G0zWwjcFMMVDW9mn5rZ4ri8M4k7omb2rJnNKpOX24DBPuaQc64umaWb6lytCp61coVA/FyzwDbrANMT8zPispLhJW0naRLwKnBcoiAq5st04rYfAWs0eY+cc67aKlTwSLpK0mxJExPLUj0CqYSqFTySHpE0scA0pHzoEEWBZWWPqJk9Z2YDgG2AEZI6VyodScdKGidp3KKFn5TLinPOVU5ln/FcQ3gckVT2EUilVK1Vm5ntVmydpPck9TSzWZJ6ArMLbDYDWDcx3xuYGb+XDW9mkyV9AmwKjCuR1Vw6M+LzoFWBuUX2aRQwCmCV1XrXf33WOdeqVKpVm5n9q0BDqiHAzvH7tcBY4DcVSTBPrW613UMYXI74eXeBbV4A+klaX1JH4OAYrmj4uG2H+L0PsDEwrQl5OQD4Zxxx1Tnn6kjK22zh9NU9d3cmTsemSCDNI5CKqNV7POcCt0g6GngH+D6ApF7AFWa2l5ktlnQC8BDQHrjKzCaVCg/sBAyXtIhQ4TzezObEuM8HfgCsJGlGTGckcCUwWtJUQk3n4Crvu3PONZ3RlIYDc8xsUBVz0yI1KXjM7ANgcIHlM4G9EvNjgDFNCD8aGF0kzZMpMEy3mX3OsoLLOefqV3Xf0UnzCKQianWrzTnnXBNV+T2eNI9AKsILHuecaxSVa059I/AMsLGkGfGxxbnA7pKmALvH+arwvtqcc64RmMGSirVqO6TIqq88wqgGL3iaaXH3pcz9fwvKb9hCq13Vpepp5Hy8WfvM0po9KLu0LnqvaMv+itr62PG8NT+bd48XnNwzk3QAzvzasMzS6pjhq9srzVmSXWKV0koa3HrB41yFZFXouDbMCx7nnHOZMWCpFzzOOecyY2ANMOZBCl7wOOdcIzAq1rig1rzgcc65RuHPeJxzzmXKCx7nnHPZaYxB3tLwgsc55xqBARUaFqHWvOBxzrlG4TUe55xz2alclzm15gWPc841AgPz93icc85lynsucM45lyl/xuOccy4zZt6qzTnnXMa8xuOccy47hi1pwDGECvCCxznnGoEPi+Cccy5z3pzaOedcVgwwr/E455zLjLWegeDa1ToDzrUWG67yQa2z4Fo5W7Ik1VTvZK2keV7WJL0P/KeF0XQH5lQgO7XU6Pvg+a+9Rt+HNPnvY2Y9WpKIpAdjWmnMMbM9WpJeNXnBU0OSxpnZoFrnoyUafR88/7XX6PvQ6PmvBb/V5pxzLlNe8DjnnMuUFzy1NarWGaiARt8Hz3/tNfo+NHr+M+fPeJxzzmXKazzOOecy5QWPc865THnB00ySukl6WNKU+Ll6ke32kPSGpKmShqcJL2lE3P4NSd8pEOc9kiYm5odJel/S+Dgd04D70EnSzTHMc5L61mP+JT0oaYKkSZIuk9Q+Lm+Y36DEPtT9byBpJUn3S3o95v/cxPZN/g3qLP9NPv4Ny8x8asYEnA8Mj9+HA+cV2KY98BawAdARmAD0LxUe6B+36wSsH8O3T8T5PeAGYGJi2TDgLw2+D8cDl8XvBwM312P+ga7xU8DtwMGN9huU2Ie6/w2AlYBd4jYdgSeAPZv7G9RZ/pt8/Bt1qnkGGnUC3gB6xu89gTcKbLM98FBifgQwolT45DZx/iFg+/i9C/Bk/KOuRMFTT/uQ3KYD4U1w1Vv+E8tWAO4FDmq036DEPjTUbxCXXwz8v+b+BnWW/yYf/0ad/FZb861lZrMA4ueaBbZZB5iemJ8Rl5UKXyrMWcAfgU8LpDVU0iuSbpO0bgPuw5dhzGwx8BGwRh3mH0kPAbOB+cBtie0a5Tcotg8N8xvEfVgN2Ad4NLG4qb9BPeW/Oce/IXnv1CVIegRYu8CqU9JGUWBZufbrBcNIGghsZGY/L3Dv917gRjP7QtJxwLXArtBQ+1AsTN3k/8svZt+R1Bm4nnCcH6ZBfoMvvxTeh4b5DSR1AG4ELjGzt+Pigr9BA+W/Oek0JC94SjCz3Yqtk/SepJ5mNktST8LVY74ZQPKqqzcwM34vFr5YmO2BrSVNI/xua0oaa2Y7m1myW+S/Aec12j4kwsyI/5SrAnPrLP9fMrPPJd0DDAEebqDfoOg+0Fi/wShgipldlNifgr9Bo+SfIse/WN4bmd9qa757gCPj9yOBuwts8wLQT9L6kjoSHhjeUyb8PcDBsYXL+kA/4Hkz+6uZ9TKzvsBOwJvxhE38g8/ZF5jcaPuQF9cBwD8t3uyul/xL6pI71vHEsBfwepxviN+g1D7QAL9BzPfZhJPyz5KJNPM3qJv807zj35hq/ZCpUSfCvddHgSnxs1tc3gsYk9huL+BNQquWU8qFj+tOidu/QWzxkpd2X5Z/MP8HYBKhFc1jwCYNuA+dgVuBqYR/0A3qLf/AWoST0CvxeP8Z6NBIv0GZfWiE36A34fbTZGB8nI5p7m9QZ/lv8vFv1Mm7zHHOOZcpv9XmnHMuU17wOOecy5QXPM455zLlBY9zzrlMecHjnKt7kkZK+q+WdQC6V5HtrpI0W4kOaOPys2KPBuMl/UNSr7h8DUmPSVog6S+J7VdJpDVe0hxJF+Wnl5fGJpKekfSFpF9VYr9bKy94XKslaZqk7vH70y2IZ1juRFWBPPVQ6Hn4ZUnfrEScibj3VaLn5CaG/W3efLOPVxVdaGYD4zSmyDbXAHsUWH6BmW1uZgOB+4DT4vLPgVOB5QoKM5ufSGsg8B/gjjL5mwucCPxvut1pu7zgca1CfBmyKDPboQXRDyO811EJg4HXzWxLM3uiqYFL7aeZ3WNm5xZbX8ZyBU8Lj1fNmNm/KPC2v5l9nJhdmdgVjZl9YmZPEgqggiT1I/TB9kSc7yHpdkkvxGnHGNdsM3sBWFSxHWqlvOBxFSVpm3hLo7OklRXGHNm0wHZHxO0mSBodl/WR9Ghc/qik9cosv0bSnyQ9BpwXb5v8I9YmLifR95WkBfFzZ0ljFTqRfF3S9ZIU150WTyQTJY1ScAAwCLg+3nJZUdLWkh6X9KKkh/LemKdYnhX6qjsf2CsXV16YaZLOk/R8nDYqsp/dJN0V435W0uZxu2G520XFTo4KPRdcLenVGH6owpgwK8Y8XZ93vCTpgnhMXpV0ULnjWEUnxDxfpSLj5pQi6RxJ04FDWVbjSeMQwhAFuZceLybUvrYBhgJXNDUvbV6t32D1qfVNwNmE2w2XkugaPrF+AOFt7u5xPve2+L3AkfH7UcBdZZZfQ7htkhtn5hLgtPh9b8JVbS6NBfFzZ0Kvv70JF17PADsl8xG/jwb2id/HAoPi9xWAp4Eecf4g4KoC+1gsz8Mo0nU/MI34VjxwBHBfkf38M3B6/L4rMD4/bsJ4R7n9Wg+YHL+fB1yUSHP15PFJLM8dr6GEftzaE3o9eIfQ/X/R49iCv5tHgIkFpiEx7fYxrXMKHfNEPH1J9IpRYP0I4Iy8ZaV+l9eArRPzs1nW68B44L/AKon1I4Ff1fr/sJ4n7yTUVcOZhG5ZPifc8863K3Cbmc0BMLPcrZHtCYPEQTjxn19mOcCtZrYkfv9Wbjszu1/SvCL5e97MZgBIGk84UT0J7CLpZMJgXd0I3a/cmxd2Y2BT4OF4gd8emFUgjVJ5LuXGxOeFieXJ/dyJUCBgZv+MNb1V8+LZDeifqIR0lbRKXH5wbqGZFTtGOTsRenxeQugQ83FgG+Bjih/HZrESnXkmSfoboSBurhuA+4HTU6S1BaFLoRcTi9sRxs35rAV5aNO84HHV0I0w4NsKhP6nPslbL9J1915sm+Ty/LjTxPtF4vsSoIPCEAH/R6jZTJc0kpD3fAImmdn2KdJpar7ytyu2n2m6zy94coy3w5rST1ap22dfOY5NiLdJFHuAjrP7E2pCTQnfz8ymxNl9WdYxajmHsOxiIOcfwAnABTHugWY2vin5aev8GY+rhlGElkLXkxgeIOFR4EBJa0AYtz4uf5plV+OHsuzqudjyfP+K65G0J9CU5wC5QmaOpC6E3oFz5gOrxO9vAD0kbR/TWUHSgALxpc1zvoMSn88U2Sa5nzsDc2z5h+ew7ORI3G5gkeW5Y7RI0gpF0jpIUntJPQi1yudT7kslnZ97LgXsAvwcQFIvSV+2cJN0I+G4bSxphqSj46pz43OqV4BvAyclwkwD/gQMi2H6J9I9kK8WPCcCg+LzpteA42I8a0uaAfwC+F2Mq2vFjkAr4jUeV1GSjgAWm9kNktoDT0va1cz+mdvGzCZJOgd4XNIS4GXCPfYTgask/Rp4H/hhDFJseb4zgBslvQQ8TngekYqZfRhv4bxKeNbyQmL1NcBlkj4j3EI7ALgk3t7qAFxEuC2XlDbP+TpJeo5wUXhIkW1GAlfHk+inLOtKH5bVZk4ELo3bdCAUIMcRnr9dqvCeyxLCMbuDcLHwiqSXzOzQRHx3xn2eEOM+2czelbRJyv2pCDM7vMjymYSeo3PzBY+ZmQ0tEXffEus2KLBsDssuEJLL3yU883JleO/UztWJeOU9KPfsqxnhfwl0NbOyzy6cqyWv8TjXCigM9TyMZQ0anKtbXuNxzjmXKW9c4JxzLlNe8DjnnMuUFzzOOecy5QWPc865THnB45xzLlP/H5+DI82uH+ltAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEXCAYAAAByAUkhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5GklEQVR4nO3dedxc4/3/8dc7iQgiIkIkggRBrUFsRYvY1dLSktqifH1RRRdE/bSppV9Lv1+tVhFLqdq12tCQ2mKrLQgSa0oqkUhEgoSS7fP747pGTiYzc859z8yZe+58no/Hedwz51zXua4zM/e5znWu61yXzAznnHMuTx0anQHnnHPLHi98nHPO5c4LH+ecc7nzwsc551zuvPBxzjmXOy98nHPO5W6ZKHwkrSNprqSOjc6Lcy4/kq6SdG7GsGMkHV+HPJwkaXo8B61W6/03q3ZZ+EiaJGmPwnsze9fMuprZwkbmqxxJy0u6TtK/Jc2R9KKkfYvCDJb0uqTPJD0iad3Ett3iuo8lTSqTxmmS3pH0qaTXJG1YIT/nS3pF0gJJw4u27S/pCUkfSXpf0jWSVq6wr4rhJa0l6W+SZkmaIunEuH6X+M86N+bZEu/nxguK70j6Z/xMxhSlu2Hc7wdx36MlbVQhn0MlLSxKY9e4LfX7qbDfn8e875FYd4ak8XFf70g6o0L8TSSNlTQ7Lg9K2qREuM7x9zElsW6douOZG/Py4xLx/xC3bZBYd4OkeUXxOya2j5D0hqRFkoZm+TzqKX6HTyTXmdmJZnZ+A/O0HPB/wF7xHPRhDfdd9pzQDNpl4dOEOgGTga8DqwDnAndI6gcgqSfwl7i+BzAWuD0R/1PgeqDkSUzhau44YH+gK/ANYGaF/EwEzgT+XmLbKsAFQB/gK0Bf4NIK+0oL/yfgHaBXzN8vJe1mZo/Hf9auwKYxbPfCOjN7F5gF/Bq4qES63YGRwEZx388Cf6uQT4CnEvvvamZj4vqK3085ktYHDgWmFW8CjgZWBfYBTpF0eJndTI376AH0jMd0W4lwZwAzkisSF12Fz3FzYBHw56J87gysXyb9S4o+k+QF3EvAycALZeK2e5I6pQTpBXQBJtQ43bRzQttnZu1qAW4i/IP9B5hLOIn2AwzoFMOMIZwQ/xnD3AOsBtwMfAI8B/RL7HNj4AHCye4N4Ds5HMfLwCHx9QnAPxPbVorHt3FRnD2ASUXrOhBOnINbkYc/AcNTwnwLeKUF+/wyPKEgNGD1xPYRwE1FcZb4/krs83hgTEq6PeI+ViuzfSjwRGu+nwph7gP2AyYBe1QIdznw2wxpdgK+D3xWtL4/8BqwLzClQvyfA4+U2OeLwBbx89kgse0G4IIM+XoCGNrC39ZZwHvAnPg/NTiuHw7cRTiRziEUbFsm4g0D/hW3vQp8M67/CvA5sDD+T39UfAyEwv5e4ANgdnzdN7HvMcDxKfkeCjwJXEY4H1wALA/8CngXmA5cBawAbEi4MLSYp4db8hml5CPTOaEtL+2u5mNmRxF+BAdYuFK7pEzQw4GjgLUIV31PAX8gnKReI/yjImklQsFzC7AGMAT4vaRNS+wTSb+Pt5hKLS9nOQZJvQg/3MLV0qaEq8zCMX5K+AcsmYcifeOymaTJ8TbPLyTV6rv/Gi27qkuGV9HfwuvNapCvUum+b/G2h6SdJX1UFGYrSTMlvSnp3HJXtSW+H+L3u3Pi/beBeWY2qlKmJAnYhZTPMOb1c+C3wC+LNv8W+Cnh5FPJ0cCNRet+CDxmZuV+myfH25bPSzokZf+ZxNufpwDbmtnKwN6EArrgIOBOwv/iLcBf4+0rCL/7XQg10F8Af5LU28xeA05kce21e4mkOxD+x9cF1iF8Xr9rxSFsD7xNOB9cCFxM+D0MBDYgnFN+ZmZvsmStffdSO6twvvhI0rAyeajmnNA2NLr0q8dC0ZUmpWs+5yS2/y9wX+L9AcC4+Pow4PGi/V8N/DxDPr5NOKksAgaVCbMRMC6xfEK4ErwaOJ9whf0h4dZUnxhnT8KV1GTgeWD3uL5Uzeer8djHE/5hjHBb7b8y5L9izSfmYzawYcbvZanwhKvm3xJuTWxNrF0WxVvi+yux34o1H0Lh+x4wpEKY9Qg1iA6E21OvAmeXCLcc8CBwdYV9dQXeAvqX+j0Whf0F4SSyfIbPbyXCba79E+u+CdwfX+9KmZoP4YQ9F+iaWLd2/C2sEt8X13y2JtwR6ESowc0Bdiqx7xbVfAgn6Bnx97pc0bbhwNOJ9x0Ity13KbOvccBB8fVQimqvVKi9EQqL2Yn3Y8hW83k38V6E2s36iXU7Au9k+e22dgGuAy4qWvdkS76HRi/trubTAtMTr/9T4n3X+HpdYPvk1QhwBLBmhjTGE24zPVYugJm9YWYDzWwgMIhwcnuPcGV4qZltQSgEpgA/i9FmEgqe04FjCLcayylcDV8G7A78G/gj4WSCpAmJxuRdMhwTMd4OhKvSQy1c4RV3EpiQFj46gnDSnwxcSbj1OYUakbQ68A/g92Z2a7lwZva2mb1jZovM7BXgPEJbS3JfHQif9TzC91POLwi3Dt9JydsphNrI/mb2RdqxWLi6vQr4o6Q1Yq38EuAHaXEJv5M/m9ncxLpfA+eZ2cdl0nvBzD40swUWanA3E37PVTGziYTf7nBghqTbJPVJBJmcCLuI8HvoAyDpaEnjEv+LmxHawlJJWlHS1QodRz4h/F92V8t7wU5OvF4dWBF4PpGn++P6epoLdCta141wgdAU2mvhU8uhuicDj5pZ98TS1cxOKhVYoWvnXElzCW1HzxOuOh8rPiEXxROhgX8e4WQ038w+iZsnEK5SC8f1JqFQnBCXLpKWj9u6SHpK0guS7iT8484D3jKzScXpmtmmtrgx+fEsH4ikrQgN398zs4cS+3o8sa9N08LHOP82s2+Y2epmtj3hSvvZLPnIkM9VCQXPSDO7sIXRjcTtwPj9XEdoQD7EzOZXiDsYOFWhd9/7hO/uDklnJfb3PUL7xWAza0lh24FwslsLGEC4sn48pvMXoHdMt18irRUItfDiW26DgUsT+QR4StJ3y6S9xGdSDTO7xcx2JvyOjXDrqmDtRN47EGquU2NvrmsIBf9qFm6tjU/kKe3//seEOw3bm1k3wq1YaPkxJdOZSbjA2zRxfljFQgePTLR0j8Tk8tMy0SYAWyb2sRKh+aCmHRvqqb0WPtMJt1Fq4V5gQ0lHSVouLttK+kqpwBa6diZ7B3UFHge+ljwhl3AlsBXwCzP78t69pAsJ7U9rA89K6kKoAb1sZq8DhxAajEU4cXcn9BrbgdAD5iRC4+2ZCl2cOxLauu4tl5F4jF0Iv49OkroUrg4lbUa4svuBmd1T6YPLEl7SVyStrNBV+EhgL0LX1FSSOsZ8dgI6xHwuF7d1A0YDT5pZufvmyX3tG9tykLQxoRdRsnfclYRG7QOS308ZgwlX5APjMhX4b+CKuP8jCO02e5rZ2yn52lPSVvFYuxE+m9mEdsnxhN9FIZ3jCb/9gSx5df5N4CPgkaLdb0g4gRXiQ7jlfHdM+1BJXSV1kLQXcCThIqKQt87x8xewXPz8O8Rtu0oqWRhI2kjS7vGC6XPCyTvZi24bSd9SaHM7HfgCeJpw29EIHQaQdCxLtg9OB/pK6lwqXWDlmNZHknoQ23WrEWtm1wCXSVoj5mstSXu3YB9dKyzF7XsFdxPacQ8pcU5oDo2+71ePhdBg+S7hH+4nlG7zOT4R/gLghsT7PYCJifcbEWolHxDaXx4GBsZtDxJOAsXLQYn4YyjT5hO3F67+jHD/eG5cjkiEuZbFV1lj4jFtSmhk/G4ifmGZS2i3uI5QHb+NUCVfQOiarAr5uaHE/obGbX8gtGHNTSwTKuyrYnjCyeWDeNxPlPqcir+/xPqhJfJ5Q9x2TInPcy6wTty+CzA3sa9fEU5enxLaxs4jtkckvp/Pi/aV/H7mUr5dYhJLtkG+A8wv2tdVie0TCvsm1Fhej2E+AEYBW5RJZ1dKtPkQCuHzM/zfFLf5PA58TGiHfAk4vCj8mBKf/65x21EkemMVxduCULudQ2jju5fF7ZnDWbK324vA1om4F8Y4MwkF8aPE/2WgM+H/dBYwM/FbLvR26xPzPJdw9+C/qXBeKJP3oSzdrtSFcDHxdvysXgNOrfTbrdF5bo/42/jynFDrNOq5KB6EqyOFByB/YmZjK4Q5CPi+me1VZvu6wN/NbLP4vi+hEDzWzJ6M6w4AvmtmQyqkM4lwgq/0nI9zVZF0LXCnmY1uYbzhhALwyLpkzLUZ7fW2WzMaAizRIC5pQOLtgYSrHCR1J1zhnV0oeKKngZ0Un1KPDaxlRzJwrl7M7PiWFjxu2eKFTx1J+qbCcCc7An+XNDqu7yNpVCLcioRuyH8p2sVFCsOwvExoCzktrj+F0F313NjzZ5ykNczsA8JtgVtjnKcJD8gi6dSYl77Ay/HK1DlXJNlpqGi5qtF5a0/8tptzzrncec3HOedc7tIGxXMVdFphJevcrUfd0+n4eX610w6fpj7rWDNfrNklt7Q6pXWOrpG115qRHqhGpv4rv9H5P189v+vUPit/lFtas94ufk6zfj75bNpMM6vq4dO9d1vJPpyVPjj/8y9/MdrM9qkmrXrzwqcKnbv1YIPv/qju6az6ZqXnGWtrhafeyi2tiacuNTNA3fR8aVEu6fzml60ZKqx1fnbo0NzSev3EFXJL67yvFTd91s+fvptpZoya+MfY4f+udh8fzlrIs6PXSQ3XsfdbmUZ9aCQvfJxzrkkYsIh8LqTqzQsf55xrEoYxv23OidliXvg451wT8ZqPc865XBnGwnbyeIwXPs4510QW1XTQ/sbxwsc555qEAQu98HHOOZc3r/k455zLlQHzvc3HOedcngzz227OOedyZrCwfZQ9Xvg451yzCCMctA9e+DjnXNMQC1GjM1ETXvg451yTMGCR33ZzzjmXJwPmtZNp2Lzwcc65JrLI/Labc865HIURDrzwcc45lyNDLPTbbs455/Lmt92cc87lyhDzrGOjs1ETXvg451yTCA+Z+m23Zd5ys+ex1l2T6p7Ov4/uV/c0CtaZ3Cu3tFaZmFtS3HLxr3JJ5+T9jsslHYDtbh6XW1o9Pl09t7SmzV81t7Q6TJqWW1q14h0OnHPO5cpMLDSv+TjnnMvZIq/5OOecy1N4zsdrPs4553JkiPnWPk7bDStCJfWQ9ICkt+Lfkq2MkvaR9IakiZKGpcWXtKek5yW9Ev/unohzmKSXJU2QdEli/fKSbo9pPCOpXx0P3TnnWm2hKXXJQlJ3SXdJel3Sa5J2zHperoVG1t+GAQ+Z2QDgofh+CZI6AlcA+wKbAEMkbZISfyZwgJltDhwD3BT3tRpwKTDYzDYFekkaHOMcB8w2sw2Ay4CLa32wzjlXrcIIB2lLRr8B7jezjYEtgdfIcF6ulUYWPgcBN8bXNwIHlwizHTDRzN42s3nAbTFe2fhm9qKZTY3rJwBdJC0PrAe8aWYfxG0PAoeU2NddwGBJ7aNVzznXriyyDqlLGkndgK8B1wGY2Twz+4hs5+WaaGTh08vMpgHEv2uUCLMWMDnxfkpclzX+IcCLZvYFMBHYWFI/SZ0IH+raxemY2QLgY2C11h+ac87VXqHDQYaaT09JYxPLCUW7Wg/4APiDpBclXStpJbKdV2uiri1Xkh4E1iyx6ZysuyixLtNUSpI2Jdw+2wvAzGZLOgm4nTAT7T8JX0CL0olf4gkAXTqunCUrzjlXE0bmNp2ZZjaowvZOwNbAD8zsGUm/oY632MploG7MbI9y2yRNl9TbzKZJ6g3MKBFsCotrJwB9gcIttbLxJfUF7gaONrN/JfJzD3BPDHMCsLAonSmxVrQKMKvMMY0ARgCs0rlXO5lT0DnXDMyoVW+3KcAUM3smvr+LUPhkOS/XRCNvu40kdAgg/v1biTDPAQMk9ZfUGTg8xisbX1J34O/A2Wb2ZHJnktaIf1cFTgauLbGvQ4GHzcwLFudcGyMWZVjSmNn7wGRJG8VVg4FXyXZerolGdhi/CLhD0nHAu8C3AST1Aa41s/3MbIGkU4DRQEfgejObUCk+cAqwAXCupHPjur3MbAbwG0lbxnXnmdmb8fV1wE2SJhJqPIfX6Zidc67VDGo5vM4PgJvjhf3bwLGECkmp82rNNazwMbMPCaVt8fqpwH6J96OAUS2IfwFwQZk0h5RZ/zl1/JCdc65WajXCgZmNA0q1Cy11Xq2H9vGorHPOLQMM+WRyzjnn8mXUrMNBw7WPo3DOuWWCfD4f55xz+TLINIJBM/DCxznnmojXfJxzzuXKTF7zcc45lz+fRtvxxRqdmXhyv7qns+azC9MD1Ujf66fkltaovnfkltZ695+eSzrfu+XJ9EA18tSea6cHqpFZe66fW1ofPZffmL7TD6nbuJlLu7r6XYTJ5DpWv6M2wAsf55xrEqHDgbf5OOecy1mtRjhoNC98nHOuSfgIB8455xpikdd8nHPO5cmMrJPJtXle+DjnXJMwxIJF3tvNOedczpaJEQ4kjay0PZplZkNrkx3nnHPlLEtdrb8CHF9hu4Arapcd55xz5S07w+ucY2aPVgog6Rc1zI9zzrkKFi0Lt93MLHX8kyxhnHPOVc8M5i9LHQ4kbQicAaybjGNmu9cpX84554osiw+Z3glcBVwD5DfKpXPOuSUsE7fdEhaY2ZV1zYlzzrmKlpnebpJ6xJf3SDoZuBv4orDdzGbVMW/OOeeKLCu93Z4nFLaFovaMxDYD1qtHppxzzpVgtWvzkTQJmENoSllgZoNiheN2oB8wCfiOmc2uSYJF0nq79Y+Z7GJmnye3SepSjww555wrzYAFta357GZmMxPvhwEPmdlFkobF92fVMsGCrEfxz4zrnHPO1UmhzSdtqcJBwI3x9Y3AwVVmuay0Np81gbWAFSRtxeLbb92AFeuVKeecc6VlLFx6ShqbeD/CzEYUhTHgH5IMuDpu72Vm0wDMbJqkus0zntbmszcwFOgL/C+LC59PgJ/WK1POOeeW1oLnfGaa2aCUMDuZ2dRYwDwg6fXqc5hdWpvPjZJuAoaY2c055ck551wZtXrOx8ymxr8zJN0NbAdMl9Q71np6AzNqklgJqc/5mNkiSf8NeOFTZPlp/2H9i16pezqTfrR53dMo+GjqurmlteecHumBaqTHM51zSeeWSbvlkg7A58Pze9777F3/lltaf50+MLe0Tut9Z25pDb26Bjux2jznI2kloIOZzYmv9wLOA0YCxwAXxb91++KzPmT6gKSfELrgfVpY6c/5OOdcfgxYsKgmvd16AXdLglAO3GJm90t6DrhD0nHAu8C3a5FYKVkLn+/Fv99PrKvqOZ+s/ckl7QP8BugIXGtmF1WKL2lPQqndGZgHnGFmD8c4hwHnxH393czOjOuHApcC78Vkf2dm17b22Jxzrh5qNbabmb0NbFli/YfA4KoTyCBTEWpm/Uss1T5gWuhPPgB4KL5fgqSOhPmC9gU2AYZI2iQl/kzgADPbnFBtvCnuazVCATPYzDYFeklKfsi3m9nAuHjB45xrk8yUujSDTIWPpOUknSrprricImm5KtPO0p98O2Cimb1tZvOA22K8svHN7MVCQxowAegiaXlCLe1NM/sgbnsQOKTKY3DOuVwtQqlLM8h68/BKYBvg93HZJq6rxhL9yYFS/cnXAiYn3k+J67LGPwR40cy+ACYCG0vqJ6kTobBaOxlW0suxcF27xL4AkHSCpLGSxs5bctAH55yrK7O6P2Sam6xtPtuaWfL+4MOSXkqLJOlBYM0Sm87JmG6pT9EyRZQ2BS4m9OIgtgedRGgnWkQYoaFw6/Ae4FYz+0LSiYSaVMm5iuKDWCMAVunYM1NenHOuNsTC2nQ4aLishc9CSeub2b8AJK1Hhnl9zGyPctskZelPPoUlayd9gcIttbLxJfUljMB9dCHPMT/3EAoaJJ1QOIbYyFZwDaHQcs65NqdZ2nTSZC1CzwAekTRG0qPAw8CPq0y70J8cyvcnfw4YIKm/pM7A4TFe2fiSugN/B842syeTOysMFSFpVeBk4Nr4vnci2IHAa9UcmHPO1UMOY7vlJlPNx8wekjQA2IhwK+z12I5SjYso0Z9cUh9Cl+r9zGyBpFOA0YTu0deb2YRK8YFTgA2AcyWdG9ftZWYzgN9IKtw+PM/M3oyvT5V0ILAAmEUYUsg559oWC+0+7UHW224QOhn0i3G2lISZ/bG1CZfrTx57qu2XeD8KGNWC+BcAF5RJc0iZ9WcDZ2fNu3PONUqz9GZLk6nwieO7rQ+MY3FbjwGtLnycc861jNF+2nyy1nwGAZuYtZcKn3PONSOxcFH7KHyydjgYT+ku084553LUXkY4yFrz6Qm8KulZ4MuOBmZ2YF1y5Zxzbilmy95tt+H1zIRzzrlsmqUrdZqsXa0frbRd0lNmtmNtsuScc66c9tLy3pKu1pV0qdF+nHPOlWGIRcvY8Dpp2klZ7JxzbVujT7aSvpUh2OfxGc2yalX4OOecq7e20eHgGsJwZpUy8jVKDA6QVKvCp+GfhnPOLRMaXfWB+8zse5UCSPpT2k6yTia3kqQO8fWGkg4smkzuqCz7cc45V51GP+djZkfWIkzWms9jwC5xNOiHgLHAYcARMaHxGffTrny+dhdeP+crdU9n843frnsaBT9b957c0vrer0/LLa2f/ST1Qqwmzrzvu7mkA7DRVXNyS+t/Vtw3t7T69p6VW1oXvpTfccFTNdlLo3u7Sfpape1m9liW/WQtfGRmn8URpH9rZpdIejFjXOecczVgBtb43m5nlFhnwJaEOdc6ZtlJ5sJH0o6Ems5xLYzrnHOuRhpd8zGzA5LvJe1MmJ16GmFKm0yyFiCnE6YcuNvMJsSZTB/JmohzzrkaaXyHAwAkDQbOJeTol2b2QEvit2SEg0clrRTfvw2c2sK8Ouecq0ptOxRI6khow3/PzL4hqQdwO2HutknAd8xsdlGc/Qk1nY+Bc4pnjM4qa2+3HSW9SpxeWtKWkn7fmgSdc85VwTIs2Z1GPK9Hw4CHzGwAoXPZsBJx7iG07SwAzpI0MrlkTTjrbbdfA3sDIwHM7KW0Hg/OOedqrIYPmUrqC+wPXAj8KK4+CNg1vr4RGAOcVRR1t1qkn7nTgJlNlpY46IXlwjrnnKuTbIVPT0ljE+9HmNmIojC/Bs4EVk6s62Vm0wDMbJqkNZZKPjHQtKTV47oPsmV+sayFz2RJXwVMUmdCe89rKXGcc87VWrbbajPNbFC5jZK+Acwws+cl7dqS5BVqIT8n9GwT0EHSAsJjOOdl3U/WDuMnAt8H1gKmAAPje+ecc3mqTZvPTsCBkiYBtwG7xyFxpkvqDRD/zigR9/QYf1szW83MVgW2B3aS9MOsh5Gp8DGzmWZ2hJn1MrM1zOxIM/swayLOOedqwAi33dKWtN2YnW1mfc2sH3A48HAcEmckcEwMdgxhANFiRwNDzOydxP7eBo6M2zLJ2tttQ0kPSRof328h6f9lTcQ551xthKm0Ky9VuAjYU9JbwJ7xfbHlzGzm0vmyD4DlSoQvKettt2sID5nOj4m8TCgtnXPO5WmR0pcWMLMxZvaN+PpDMxtsZgPi31ID7c2rsLtK25aQtcPBimb2bFFvtwVZE3HOOVcbavwIB1tK+qTEetGCWa2zFj4zJa1PbMqSdChhHB/nnHN5aflDpLXPglmmgUPTZC18vg+MADaW9B7wDnE6Beecc3nJ1qGgGaQWPnHsn5PMbI84tlsHM8tvIhHnnHOLNX4+nxfMbOtqw6QWPma2UNI28fWnLcumc865mmp8m89XJL1cYbuAVdJ2kvW224txwLg7gS8LIDP7S8b4zjnnqmW0uDdbHWycIUzq8GtZu1r3AD4EdgcOiMs3MsYtSVIPSQ9Ieiv+XbVMuH0kvSFpoqRhafElbSdpXFxekvTNRJxtJL0S93V5HCYCSctLuj2uf0ZSv2qOzTnn6kWWvtSTmf07wzIlbT9ZRzg4tsTyvSqPIXXo7tjedAWwL7AJMETSJinxxwODzGwgsA9wtaRCDe9K4ARgQFz2ieuPA2ab2QbAZcDFVR6bc87VR22nVGiYTLfdJF1eYvXHwFgzKzX8QhZZhu7eDpgYh25A0m0x3qvl4pvZZ4n4XVjcPbw30M3Mnorv/wgcDNwX9zU8xrkL+J0kmTV6wlrnnGufsrb5dCHc57szvj8EmAAcJ2k3Mzu9FWmnDt1NGMh0cuL9FMIAdhXjS9oeuB5YFzjKzBZIKgyKmtzXWsXpxLAfA6sBSw0hIekEQu2J5bt0p/+di1p21K0wp0PfuqdRcORXT8strS71/+i+dN3WW+aT0AX5JAMw73/n5pbWSnPya2fo+p3Z6YFqRF8vddqpj7dqtJ828JBpTWQtfDYAdjezBQCSrgT+QRj755VykSQ9CKxZYtM5GdMt9YtP/ejN7BlgU0lfAW6UdF/KvjKnE+fEGAGwcre+7eRn4JxrGm3kOR9J3yI0UaxBOIcKMDPrliV+1sJnLWAlwq024us+sRv2F+UimdkeFTI+XVLvWGspN3T3FGDtxPu+wNT4OjW+mb0m6VNgs7ivZBUiua9COlNi+9AqQKkxjZxzrnEMyPGOQYpLgAPMrFVzu2Xt7XYJME7SHyTdALwI/Co+dPpgaxIm29DdzwEDJPWPk9gdHuOVjR/Ddoqv1wU2AibFW3RzJO0Qe7kdnUgzua9DCcOLe63GOdfmNLq3W8L01hY8kLHmY2bXSRpF6AAg4KdmVqg1nNHKtC8C7pB0HPAu8G0ASX2Aa81sv9j+cgowGugIXG9mEyrFB3YGhkmaT7hGODkx/PdJwA3ACoSOBvfF9dcBN0maSKjx+Ijdzrm2qe1cFo+VdDvwV+DLO2BZn//M2ttNwGBgPTM7T9I6krYzs2dbkeFCBj+M+yxePxXYL/F+FDCqBfFvAm4qk+ZYwi244vWfs7jwcs65tqvtFD7dgM+AvRLrDKhd4QP8nlCL2B04D5gD/BnYNnM2nXPOVSXn22oVmdmx1cTP2uazvZl9H/g8Jjob6FxNws4551qhxpPJtVa1M1xnLXzmx9EGCg9srk5b6nPhnHPLiDbU4aCqGa6zFj6XA3cDa0i6EHgC+GXL8umcc65qbWd4nRVLtPtnnuE6a2+3myU9T2jgF3BwNV3snHPOtUIbavOhyhmuKxY+knok3s4Abk1uMzN/ENM55/LUdgqfUjNcH5k1clrN53nCoQpYB5gdX3cnPFvTv+X5dc4512ptpPCJAz63eobrim0+ZtbfzNYjPOR5gJn1NLPVCHP5+ERyzjmXs7bS4UBSL0nXAXeZ2RxJm8SH/jPJ2uFg2/iwJwBmdh/w9Rbm1TnnXLVq0OFAUhdJz8YJNydI+kVcn2mSz+gGQsWkT3z/JnB61sPIWvjMlPT/JPWTtK6kcwgzmzrnnMtLhlpPxprPF4SZCrYEBgL7SNqBDJN8JvQ0szuIj93EWQ9Sp88uyFr4DAFWJ3S3vju+HpI1EeecczVSg5qPBYUJoZaLixEm1rwxrr+RMOFmOZ9KWo3Fvd12YPHMB6mydrWeBeQ3y5hzzrnSstVsekoam3g/Is5F9qU4cMDzhPnarjCzZyRlmeSz4EeEGQHWl/QkoVJyaNbDSOtqPdzMhlcbxjnnXPVE5ttqM81sUKUAZrYQGCipO3C3pKUGXS6bj1BwfT0uG8WsvWFm87PuI63mc7ykTyrlgTCcwvCsCTrnnGslA9V4YDMz+0jSGGAfMkzSGeMslHSQmV0GTCgVJk1am881wMoVlq4xjHPOuTzUprfb6rHGg6QVgD2A18k2yWfBk5J+J2kXSVsXlqyHUbHmY2a/yLqjZdGq63zCIZePrns6fzp//7qnUfCHY36bW1o7LJ91Ro/q7X35lrmks8L7WfvwVO+9j/umB6qRhSvm92SjVvsst7SmDM5nBGggTLlWC7X5KnoDN8bbZx2AO8zsXklPUXqSzlK+Gv+eV5S73bNkIL//fuecc1WrxUOkcQTqrUqsLzlJZ5l97FZNHrzwcc65ZtJGhteR9KMSqz8GnjezcWnx87tH4Jxzrjqxw0HakpNBwInAWnE5AdgVuEbSmWmRMxU+1c5Y55xzrkbaznw+qwFbm9mPzezHhMJodeBrwNC0yFlrPlXNWOecc6422srAooSZDuYl3s8H1jWz/xCG76koa5vPimb2rLREz5DMM9Y555yrkTbS5gPcAjwtqdAd+wDg1jjFwqtpkbMWPlXNWOecc64G8r2tVpGZnS9pFLAzYcCBE82sMKTPEWnxsxY+Vc1Y55xzrnqKS1thZs8TxodrsawDi1Y1Y51zzrnayLE3W12lDSxaqh83hbYfM/u/OuTJOedcOW3ktlu10mo+K8e/GwHbEsb9gdCw9Fi9MuWcc66MZaHwKYztJukfhP7cc+L74cCddc+dc865xfLtSl1XWTscFPfnngf0q3lunHPOVbaMFT43Ac9Kuptw6N8E/li3XDnnnCupvXQ4yDTCgZldCBwLzAY+Ao41s19Wk7CkHpIekPRW/LtqmXD7SHpD0kRJw9LiS9pO0ri4vCTpm4k420h6Je7rcsWeE5KGSvogEe/4ao7NOefqpQ2NcFCVrGO7rQPMBO6Oy4dxXTWGAQ+Z2QDgofi+ON2OwBXAvsAmwBBJm6TEHw8MMrOBhJn5rpZUqOFdSRj8bkBc9kkkd7uZDYzLtVUem3PO1V6Wcd3aU+ED/B24Ny4PAW8D91WZ9kHAjfH1jcDBJcJsB0w0s7fNbB5wW4xXNr6ZfWZmhaF/urB4VIbeQDcze8rMjHDbsFSazjnXdi1LhY+ZbW5mW8RlAKFQeKLKtHuZ2bS4/2nAGiXCrAVMTryfEtdVjC9pe0kTgFcIQz4siPGmlNkXwCGSXpZ0l6S1y2Va0gmSxkoaO3f2vHLBnHOu5sQydtutmJm9QHjupyJJD0oaX2I5KC1uYRelks+Qv2fMbNOYx7MldUnZ1z1APzPbAniQxTWqUvseYWaDzGxQ11U7px6Ac87VVDup+WTq7VY00kEHYGvgg7R4ZrZHhX1Ol9TbzKbFW2IzSgSbAiRrIX2BqfF1anwze03Sp8BmcV/JSe+/3FecOrbgGuDitGNzzrncGWhRk5QuKbLWfFZOLMsT2oCy1l7KGQkcE18fA/ytRJjngAGS+kvqTJhDaGSl+DFsp/h6XcLoDJPirbk5knaIvdyOTsTpnUjzQOC1Ko/NOefqor3cdsv6nM+rZrbEiAaSvk11oxxcBNwh6TjgXeDbcb99gGvNbD8zWyDpFGA00BG43swmVIpPGN57mKT5wCLgZDObGbedBNwArEDoMFHoNHGqpAMJcxTNIsMsfADTP16F/7vvG6059ha59sKr655Gwfk77JtbWgs/nJ1bWjdNHpNLOme91y2XdACm/rB/bmn98tb8OoCe/bcTcktroytn5ZbWpFrtqEkKlzRZC5+zWbqgKbUus3ira3CJ9VOB/RLvRwGjWhD/JsJDsaXSHEu4BVe8/mzC8TjnXJvWLDWbNGmjWu9LKAjWknR5YlM3fCZT55zLXzspfNLafKYCY4HPCRMGFZaRwN71zZpzzrklZGjvyVIzkrS2pEckvSZpgqTT4vpMI8/UQtqo1i8BL0m6OfHgpnPOuQYQNRvbbQHwYzN7QdLKwPOSHiC0dz9kZhfF4cyGAWfVJMUiabfd7jCz7wAvSkuXp/G5GOecc3mx6u+7xd6/hYf050h6jfDQ/UHArjHYjcAYGlH4AKfFv/Xv0uWccy5Vxg4HPSWNTbwfYWYjSu5P6gdsBTxD0cgxkkqNPFMTabfdpsWXJ5vZEqWfpIupU4nonHOuhOwjGMw0s0FpgSR1Bf4MnG5mn8SB/nOR9SHTPUusy++BEOecc0Bo80lbMu1HWo5Q8NxsZn+Jq6cXHrqvMPJMTVQsfCSdJOkVYKM46GZheQd4uV6Zcs45V1otCp84yst1wGtm9n+JTVlGnqmJtDafWwijAPwPS863M8fM8ns02DnnXLztVpMHfXYCjgJekTQurvsp5UeOqbm0Np+PgY+BIQCx8akL0FVSVzN7t14Zc845t7RajHBgZk9QeqR/KDFyTD1kncn0AElvAe8AjxKGKap2MjnnnHMt1U6mVMja4eACYAfgTTPrTygZn6xbrpxzzi1lWZxMbn4cyLODpA5m9ggwsH7Zcs45txSzbEsTyDqq9UexP/hjwM2SZuADizrnXO5qNLxOw2Wt+RwE/Af4IXA/8C/ggHplyjnnXGnt5bZbppqPmX2aeHtjnfLinHOuEgPayTTaaQOLzqF03wkBZmb5TdvonHOuaXqzpUl7zmflvDLinHMuXbPcVkuTtcOBc865tqBJerOl8cLHOeeahbWf3m5e+FSh8xxj7YcX1j2d0yefWPc0CuZc+nluafX5a//c0pq16NFc0hl/7Wa5pAOwziUTc0vr/QX5Ne9O3mOF3NJaaUp+afFq9bsID5l6zcc551zevObjnHMub17zcc45l68mGjg0jRc+zjnXNAwtCw+ZOueca2P8tptzzrlceVdr55xzDeE1H+ecc7lrH2WPFz7OOddM2ktX66zz+dScpB6SHpD0Vvy7aplw+0h6Q9JEScPS4kvaTtK4uLwk6ZuJOBdKmixpblEay0u6PabxjKR+dTps55xrPQMWWvrSBBpW+ADDgIfMbADwUHy/BEkdgSuAfYFNgCGSNkmJPx4YZGYDgX2AqyUVanj3ANuVyMtxwGwz2wC4DLi4+sNzzrnaEoYsfWkGjSx8DmLxxHQ3AgeXCLMdMNHM3jazecBtMV7Z+Gb2mZkVpvjuQuIOqZk9bWbTUvJyFzBYklpxTM45V19m6UsTaGTh06tQEMS/a5QIsxYwOfF+SlxXMb6k7SVNAF4BTkwURuV8mU4M+zGwWouPyDnn6q1GhY+k6yXNkDQ+sS5Tc0gt1LXwkfSgpPElloPSY4ddlFiX+sma2TNmtimwLXC2pC61SkfSCZLGSho7f96npYI451x9GGFg0bQlmxsITRNJqc0htVLX3m5mtke5bZKmS+ptZtMk9QZmlAg2BVg78b4vMDW+To1vZq9J+hTYDBhbIauFdKbE9qFVgFlljmkEMAJg5e59m6N+65xrN2rVpmNmj5XoXHUQsGt8fSMwBjirJgkWaeRtt5HAMfH1McDfSoR5Dhggqb+kzsDhMV7Z+DFsp/h6XWAjYFIL8nIo8LBZk9w4dc4tQwwWLUpfoGfhDk1cTsiYQJbmkJpo5HM+FwF3SDoOeBf4NoCkPsC1ZrafmS2QdAowGugIXG9mEyrFB3YGhkmaT6iAnmxmM+O+LwG+C6woaUpMZzhwHXCTpImEGs/hdT5255xrOSNrm85MMxtU59xUpWGFj5l9CAwusX4qsF/i/ShgVAvi3wTcVCbNM4EzS6z/nMWFl3POtV31HdstS3NITTTytptzzrkWqvNzPlmaQ2rCCx/nnGsmtetqfSvwFLCRpCmxCeMiYE9JbwF7xvd14WO7OedcszCDhbW572ZmQ8psWqo5ox688KnCgp6LmPVfc9MDVqn79V3rnkbBJ5t3zC2tGYPyS+vX08v2+q+p7kMmpweqkbln9s4trfM2HJpbWp1zfLx7xZkL80usVtpJR1wvfJxzrpl44eOccy5XBizywsc551yuDKx9zKPthY9zzjUTv+3mnHMuV0bNers1mhc+zjnXTLzm45xzLl/NM1lcGi98nHOuWRiFUaubnhc+zjnXTLzm45xzLnde+DjnnMuVGbawCYcEKsELH+ecayY+woFzzrnc+W0355xzuTLz3m7OOecawGs+zjnn8uUdDpxzzuXNp1RwzjnXED6lgnPOuTwZYF7zcc45lyvzyeScc841QHup+cjaSbe9RpD0AfDvKnfTE5hZg+w0UrMfg+e/8Zr9GLLkf10zW72aRCTdH9NKM9PM9qkmrXrzwqfBJI01s0GNzkc1mv0YPP+N1+zH0Oz5b4QOjc6Ac865ZY8XPs4553LnhU/jjWh0Bmqg2Y/B8994zX4MzZ7/3Hmbj3POudx5zcc551zuvPBxzjmXOy98qiCph6QHJL0V/65aJtw+kt6QNFHSsCzxJZ0dw78hae8S+xwpaXzi/VBJH0gaF5fjm/AYlpd0e4zzjKR+bTH/ku6X9JKkCZKuktQxrm+a76DCMbT570DSipL+Lun1mP+LEuFb/B20sfy3+PNvWmbmSysX4BJgWHw9DLi4RJiOwL+A9YDOwEvAJpXiA5vEcMsD/WP8jol9fgu4BRifWDcU+F2TH8PJwFXx9eHA7W0x/0C3+FfAn4HDm+07qHAMbf47AFYEdothOgOPA/u29jtoY/lv8effrEvDM9DMC/AG0Du+7g28USLMjsDoxPuzgbMrxU+Gie9HAzvG112BJ+IPuxaFT1s6hmSYToQnxtXW8p9YtxxwD3BYs30HFY6hqb6DuP43wH+19jtoY/lv8effrIvfdqtOLzObBhD/rlEizFrA5MT7KXFdpfiV4pwP/C/wWYm0DpH0sqS7JK3dhMfwZRwzWwB8DKzWBvOPpNHADGAOcFciXLN8B+WOoWm+g3gM3YEDgIcSq1v6HbSl/Lfm829KPrBoCkkPAmuW2HRO1l2UWJfWv71kHEkDgQ3M7Icl7gXfA9xqZl9IOhG4EdgdmuoYysVpM/n/8oXZ3pK6ADcTPucHaJLv4MsXpY+hab4DSZ2AW4HLzeztuLrkd9BE+W9NOk3JC58UZrZHuW2SpkvqbWbTJPUmXEUWmwIkr776AlPj63Lxy8XZEdhG0iTCd7eGpDFmtquZfZgIfw1wcbMdQyLOlPiPuQowq43l/0tm9rmkkcBBwANN9B2UPQaa6zsYAbxlZr9OHE/J76BZ8k+Zz79c3puZ33arzkjgmPj6GOBvJcI8BwyQ1F9SZ0Ij4siU+COBw2PPl/7AAOBZM7vSzPqYWT9gZ+DNeNIm/ugLDgRea7ZjKNrXocDDFm9+t5X8S+pa+KzjyWE/4PX4vim+g0rHQBN8BzHfFxBOzKcnE2nld9Bm8k/rPv/m1OhGp2ZeCPdiHwLein97xPV9gFGJcPsBbxJ6u5yTFj9uOyeGf4PYE6Yo7X4s2Vj/P8AEQu+aR4CNm/AYugB3AhMJ/6TrtbX8A70IJ6KX4+f9W6BTM30HKcfQDN9BX8KtqNeAcXE5vrXfQRvLf4s//2ZdfHgd55xzufPbbs4553LnhY9zzrnceeHjnHMud174OOecy50XPs65piBpuKT3tHjQ0P3KhLte0gwlBq2N68+PIx+Mk/QPSX3i+tUkPSJprqTfJcKvnEhrnKSZkn6dkseNJT0l6QtJP6nBYbdb3tvNOdcUJA0H5prZr1LCfQ2YC/zRzDZLrO9mZp/E16cSBgY9UdJKwFbAZsBmZnZKmf0+D/zQzB6rkPYawLrAwcDstLwuy7zm4+pG0tw67PNAxeHsJR0saZNW7GOMpEEtDP+GpANLbOtXfIXdnkn6aeL1CrFGME9Sz0bmKykWDkuNClAoeKKViMPWmNmnZvYE8Hm5fUoaQBiz7fH4fnVJf5b0XFx2ivuaYWbPAfNrdkDtlBc+rqmY2UgzK8x/cjBhZOw8HGFmI9ODtZ7inDpt3JeFj5n9x8wGUjRkT52dEm+dXa8y8+5UIulCSZOBI4CftSDqEML0BoVbRb8BLjOzbYFDgGtbmpdlnRc+ru4UXCppvKRXJB0W1+8aaxV3KUysdbMkxW37xXVPSLpc0r1x/VBJv5P0VcLwKZfGq+/1kzUaST0Vxo8rXKHfFk9atwMrJPK2V7xH/4KkOyV1zXA82yhMxPYU8P3E+o7xOJ+Laf13XN9B0u8VJg67V9IoSYfGbZMk/UzSE8C3y+UnpvmopOcljdbi4XFOlfRqTO+2CnleKZ6wn5P0oqSD4vp+kh6P6b0QP1ck9Zb0WPxsx0vaRWHSs0Jt5+ZMX34LSXowple8HARcCawPDASmEUZGbxEzO8fM1iYMplry9loZhxMGAS3YA/idpHGEIXG6SVq5pflZpjV6iAVf2u9CuD8P4crwAcJEWr2AdwnznuxKGDK+L+FC6CnCeG9dCMPK94/xbwXuja+HEudrAW4ADk2kNwYYFF/3BCbF1z8Cro+vtwAWAINimMeAleK2s4CflTiOL/cb378MfD2+vpQ4RBBwAvD/4uvlgbGEScQOBUbFY1wTmF3INzAJODOR56XyQ5hz55/A6nH9YYnjmQosH193r/Bd/BI4shCOMEzMSoSJzbrE9QOAsfH1j4lDyMTvbeXkd1q070lAz5x/W/1IDM3Uiu3rFm+nzFxAwJaEMQiT62YCK1TY/3DgJ43+H2zLi49q7fKwM2GY+4WEEYAfBbYFPiEMNjoFIF5F9iM0Fr9tZu/E+LcSTuyt9TXgcgAze1nSy3H9DoTbdk/GCldnQgFYlqRVCCf5R+Oqm4B94+u9gC0KtRrCwJEDCMd/p5ktAt6X9EjRbm9Pyc9GhMbwB+L6joQrfwgF4c2S/gr8tULW9wIO1OIeWF2AdQiF1+8UprpYCGwYtz8HXC9pOeCvZjauwr5zoThydHz7TaBFbW2SBpjZW/HtgSweTDXNEJas9QD8g1BzujTue2Bb+IyaiRc+Lg+l5igp+CLxeiHhN1kpfCULWHwruUvRtlLdOkWYCmFIC9JQmX0Vtv3AzEYvsVLaP2Wfn1bKj6TNgQlmtmOJuPsTCtcDgXMlbWphErJSeTvEzN4o2vdwYDrh6r4DsdHdzB5T6DW2P3CTpEvN7I8px1Fvl8RC0gi1rcJtzT7AtWa2X3x/K6FW3VPSFODnZnYdcJGkjYBFwL+BEws7jrdouwGdJR0M7GVmr8bN3yEMKpp0KnBFvJDpRKixnihpTUKNtxuwSNLphF51n+CW4G0+Lg+PAYfFNpHVCSfLZyuEfx1YT4snmzusTLg5QPI++yRgm/j60MT6xwgNzEjajHDrDeBpYCdJG8RtK0rakArM7CPgY0k7x1VHJDaPBk6KtQUkbajQjfcJwuyaHST1IpwYSymXnzeA1SXtGNcvJ2lTSR2Atc3sEeBMwu20cm1Wo4EfSF+2qW0V168CTIu1sqMItSokrQvMMLNrgOuArWP4+YXjy5uZHWVmm5vZFmZ2oC2ePXRqoeCJ74eYWW8zW87M+saCBzM7xMw2i/EPMLP3EnH6mVkPM+sa47ya2Laemb1elJeZZnZY3NcmZnZiXP9+jN/NzLrH117wlOCFj8vD3YTbQy8BDxPaON4vF9jM/gOcDNwfG+KnE9qGit0GnBEb0NcHfkU4+f+T0H5ScCXQNV6lnkks+MzsA8J9/lvjtqeBjTMcz7GEq96ngP8k1l8LvAq8oND9+mrCVfGfCZOEFdY9U+p4yuXHzOYRCtOLJb1EGIL/q4SC4k+SXgFeJPS++qhMns8ntB29HPN2flz/e+AYSU8TbrkVamG7AuMkvUhos/tNXD8i7qMuHQ7cssMfMnVtkqSuZjY3XqlfQZjx8bIG5WUMofF4bBX7KBzPaoTCb6dKBXAzibesBpnZzEbnxTUPr/m4tuq/YgeECYRbQ1c3MC+zgBtU4iHTFrg3Hs/jwPntoeBRfMiUUKNa1ODsuCbjNR/n2hFJxwKnFa1+0sy+Xyq8c43ihY9zzrnc+W0355xzufPCxznnXO688HHOOZc7L3ycc87l7v8DDpTxnl5Z9HAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -179,6 +1067,38 @@ "source": [ "xds_lonlat.green.where(xds_lonlat.green!=xds_lonlat.green.rio.nodata).isel(time=1).plot()" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reproject to UTM\n", + "\n", + "API Reference:\n", + "\n", + "- [rio.estimate_utm_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.estimate_utm_crs)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "CRS.from_epsg(32722)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xds_utm = xds.rio.reproject(xds.rio.estimate_utm_crs())\n", + "xds_utm.rio.crs" + ] } ], "metadata": { @@ -197,7 +1117,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.8.6" } }, "nbformat": 4, diff --git a/docs/getting_started/crs_management.ipynb b/docs/getting_started/crs_management.ipynb index d1d64d1d..a684a23a 100644 --- a/docs/getting_started/crs_management.ipynb +++ b/docs/getting_started/crs_management.ipynb @@ -35,7 +35,8 @@ "#### API Documentation\n", "\n", "- [rio.write_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.write_crs)\n", - "- [rio.crs](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.crs)\n" + "- [rio.crs](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.crs)\n", + "- [rio.estimate_utm_crs()](../rioxarray.rst#rioxarray.rioxarray.XRasterBase.estimate_utm_crs)" ] }, { @@ -327,7 +328,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.8.6" } }, "nbformat": 4, diff --git a/docs/history.rst b/docs/history.rst index 45c12fe7..b1f3d60f 100644 --- a/docs/history.rst +++ b/docs/history.rst @@ -3,7 +3,7 @@ History Latest ------ - +- ENH: Added `rio.estimate_utm_crs` (issue #181) 0.1.1 ------ diff --git a/rioxarray/rioxarray.py b/rioxarray/rioxarray.py index 648fc6ff..2b395727 100644 --- a/rioxarray/rioxarray.py +++ b/rioxarray/rioxarray.py @@ -496,6 +496,54 @@ def write_crs(self, input_crs=None, grid_mapping_name=None, inplace=False): grid_mapping_name=grid_mapping_name, inplace=True ) + def estimate_utm_crs(self, datum_name="WGS 84"): + """Returns the estimated UTM CRS based on the bounds of the dataset. + + .. versionadded:: 0.2 + + .. note:: Requires pyproj 3+ + + Parameters + ---------- + datum_name : str, optional + The name of the datum to use in the query. Default is WGS 84. + + Returns + ------- + rasterio.crs.CRS + """ + try: + from pyproj.aoi import AreaOfInterest + from pyproj.database import query_utm_crs_info + except ImportError: + raise RuntimeError("pyproj 3+ required for estimate_utm_crs.") + + if self.crs is None: + raise RuntimeError("crs must be set to estimate UTM CRS.") + + # ensure using geographic coordinates + if self.crs.is_geographic: + minx, miny, maxx, maxy = self.bounds(recalc=True) + else: + minx, miny, maxx, maxy = self.transform_bounds("EPSG:4326", recalc=True) + + x_center = np.mean([minx, maxx]) + y_center = np.mean([miny, maxy]) + + utm_crs_list = query_utm_crs_info( + datum_name=datum_name, + area_of_interest=AreaOfInterest( + west_lon_degree=x_center, + south_lat_degree=y_center, + east_lon_degree=x_center, + north_lat_degree=y_center, + ), + ) + try: + return CRS.from_epsg(utm_crs_list[0].code) + except IndexError: + raise RuntimeError("Unable to determine UTM CRS") + def _cached_transform(self): """ Get the transform from: diff --git a/test/integration/test_integration_rioxarray.py b/test/integration/test_integration_rioxarray.py index 8492b388..f3f3cc7c 100644 --- a/test/integration/test_integration_rioxarray.py +++ b/test/integration/test_integration_rioxarray.py @@ -5,6 +5,7 @@ from functools import partial import numpy +import pyproj import pytest import rasterio import scipy @@ -31,6 +32,8 @@ _assert_xarrays_equal, ) +PYPROJ_LT_3 = LooseVersion(pyproj.__version__) < LooseVersion("3") + @pytest.fixture(params=[xarray.open_dataset, xarray.open_dataarray]) def modis_reproject(request): @@ -2164,3 +2167,42 @@ def test_add_spatial_ref_warning(): def test_add_xy_grid_meta_warning(): with pytest.raises(RuntimeError): add_xy_grid_meta({}) + + +def test_estimate_utm_crs(): + xds = rioxarray.open_rasterio( + os.path.join(TEST_INPUT_DATA_DIR, "cog.tif"), + ) + if PYPROJ_LT_3: + with pytest.raises(RuntimeError, match=r"pyproj 3\+ required"): + xds.rio.estimate_utm_crs() + else: + assert xds.rio.estimate_utm_crs() == CRS.from_epsg(32618) + assert xds.rio.reproject("EPSG:4326").rio.estimate_utm_crs() == CRS.from_epsg( + 32618 + ) + assert xds.rio.estimate_utm_crs("NAD83") == CRS.from_epsg(26918) + + +@pytest.mark.skipif(PYPROJ_LT_3, reason="pyproj 3+ required") +def test_estimate_utm_crs__missing_crs(): + with pytest.raises(RuntimeError, match=r"crs must be set to estimate UTM CRS"): + xarray.Dataset().rio.estimate_utm_crs("NAD83") + + +def test_estimate_utm_crs__out_of_bounds(): + xds = xarray.DataArray( + numpy.zeros((2, 2)), + dims=("latitude", "longitude"), + coords={ + "latitude": [-90.0, -90.0], + "longitude": [-5.0, 5.0], + }, + ) + xds.rio.write_crs("EPSG:4326", inplace=True) + if PYPROJ_LT_3: + with pytest.raises(RuntimeError, match=r"pyproj 3\+ required"): + xds.rio.estimate_utm_crs() + else: + with pytest.raises(RuntimeError, match=r"Unable to determine UTM CRS"): + xds.rio.estimate_utm_crs()