-
Notifications
You must be signed in to change notification settings - Fork 19
/
esputil.c
1185 lines (1080 loc) · 38.8 KB
/
esputil.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) 2021-2022 Cesanta
// All rights reserved
//
// Use MSVC98 for _WIN32, thus ISO C90. MCVC98 links against un-versioned
// msvcrt.dll, therefore produced .exe works everywhere.
// Needed by MSVC
#define WIN32_LEAN_AND_MEAN
#define _CRT_SECURE_NO_WARNINGS
#define _WINSOCK_DEPRECATED_NO_WARNINGS
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#ifdef _WIN32 // Windows includes
#include <direct.h>
#include <io.h>
#include <windows.h>
#include <winsock2.h>
#define strcasecmp(x, y) _stricmp((x), (y))
#define mkdir(x, y) _mkdir(x)
#if defined(_MSC_VER) && _MSC_VER < 1700
#define snprintf _snprintf
#define inline __inline
typedef unsigned __int64 uint64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef enum { false = 0, true = 1 } bool;
#else
#include <stdbool.h>
#include <stdint.h>
#endif
#else // UNIX includes
#include <dirent.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <stdbool.h>
#include <stdint.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <termios.h>
#include <unistd.h>
#endif
enum { READY_STDIN = 1, READY_SERIAL = 2, READY_SOCK = 4 };
//#define ALIGN(a, b) (((a) + (b) -1) / (b) * (b))
// https://datatracker.ietf.org/doc/html/rfc1055
enum { END = 192, ESC = 219, ESC_END = 220, ESC_ESC = 221 };
// SLIP state machine
struct slip {
unsigned char *buf; // Buffer for the network mode
size_t size; // Buffer size
size_t len; // Number of currently buffered bytes
int mode; // Operation mode. 0 - serial, 1 - network
unsigned char prev; // Previously read character
};
struct chip {
uint32_t id; // Chip ID, stored in the ROM address 0x40001000
#define CHIP_ID_ESP32 0x00f01d83
#define CHIP_ID_ESP32_S2 0x000007c6
#define CHIP_ID_ESP32_C3_ECO_1_2 0x6921506f
#define CHIP_ID_ESP32_C3_ECO3 0x1b31506f
#define CHIP_ID_ESP8266 0xfff0c101
#define CHIP_ID_ESP32_S3_BETA2 0xeb004136
#define CHIP_ID_ESP32_S3_BETA3 0x9
#define CHIP_ID_ESP32_C6_BETA 0x0da1806f
const char *name; // Chpi name, e.g. "ESP32-S2"
uint32_t bla; // Bootloader flash offset
};
struct ctx {
struct slip slip; // SLIP state machine
const char *baud; // Baud rate, e.g. "115200"
const char *port; // Serial port, e.g. "/dev/ttyUSB0"
const char *fpar; // Flash params, e.g. "0x220"
const char *fspi; // Flash SPI pins: CLK,Q,D,HD,CS. E.g. "6,17,8,11,16"
bool verbose; // Hexdump serial comms
int fd; // Serial port file descriptor
int sock; // UDP socket for exchanging SLIP frames when monitor
struct sockaddr_in sin; // UDP sockaddr of the remote peer
struct chip chip; // Chip descriptor
};
static struct chip s_known_chips[] = {
{0, "Unknown", 0},
{CHIP_ID_ESP8266, "ESP8266", 0},
{CHIP_ID_ESP32, "ESP32", 4096},
{CHIP_ID_ESP32_C3_ECO_1_2, "ESP32-C3-ECO2", 0},
{CHIP_ID_ESP32_C3_ECO3, "ESP32-C3-ECO3", 0},
{CHIP_ID_ESP32_S2, "ESP32-S2", 4096},
{CHIP_ID_ESP32_S3_BETA2, "ESP32-S3-BETA2", 0},
{CHIP_ID_ESP32_S3_BETA3, "ESP32-S3-BETA3", 0},
{CHIP_ID_ESP32_C6_BETA, "ESP32-C6-BETA", 0},
};
static int s_signo;
static void slip_send(const void *buf, size_t len,
void (*fn)(unsigned char, void *), void *arg) {
const unsigned char *p = buf;
size_t i;
fn(END, arg);
for (i = 0; i < len; i++) {
if (p[i] == END) {
fn(ESC, arg);
fn(ESC_END, arg);
} else if (p[i] == ESC) {
fn(ESC, arg);
fn(ESC_ESC, arg);
} else {
fn(p[i], arg);
}
}
fn(END, arg);
}
// Process incoming byte `c`.
// In serial mode, do nothing, return 1.
// In network mode, append a byte to the `buf` and increment `len`.
// Return size of the buffered packet when switching to serial mode, or 0
static size_t slip_recv(unsigned char c, struct slip *slip) {
size_t res = 0;
if (slip->mode) {
if (slip->prev == ESC && c == ESC_END) {
slip->buf[slip->len++] = END;
} else if (slip->prev == ESC && c == ESC_ESC) {
slip->buf[slip->len++] = ESC;
} else if (c == END) {
res = slip->len;
} else if (c != ESC) {
slip->buf[slip->len++] = c;
}
if (slip->len >= slip->size) slip->len = 0; // Silent overflow
}
slip->prev = c;
// The "END" character flips the mode
if (c == END) slip->len = 0, slip->mode = !slip->mode;
return res;
}
void signal_handler(int signo) {
s_signo = signo;
}
static int fail(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
exit(EXIT_FAILURE);
}
static char *hexdump(const void *buf, size_t len, char *dst, size_t dlen) {
const unsigned char *p = (const unsigned char *) buf;
size_t i, idx, n = 0, ofs = 0;
char ascii[17] = "";
if (dst == NULL) return dst;
memset(dst, ' ', dlen);
for (i = 0; i < len; i++) {
idx = i % 16;
if (idx == 0) {
if (i > 0 && dlen > n)
n += (size_t) snprintf(dst + n, dlen - n, " %s\n", ascii);
if (dlen > n)
n += (size_t) snprintf(dst + n, dlen - n, "%04x ", (int) (i + ofs));
}
if (dlen < n) break;
n += (size_t) snprintf(dst + n, dlen - n, " %02x", p[i]);
ascii[idx] = (char) (p[i] < 0x20 || p[i] > 0x7e ? '.' : p[i]);
ascii[idx + 1] = '\0';
}
while (i++ % 16) {
if (n < dlen) n += (size_t) snprintf(dst + n, dlen - n, "%s", " ");
}
if (n < dlen) n += (size_t) snprintf(dst + n, dlen - n, " %s\n", ascii);
if (n > dlen - 1) n = dlen - 1;
dst[n] = '\0';
return dst;
}
static void dump(const char *label, const uint8_t *buf, size_t len) {
size_t n = len * 5 + 100; // Hexdump buffer len
char *tmp = malloc(n); // Hexdump buffer
printf("%s [%d bytes]\n%s\n", label, (int) len, hexdump(buf, len, tmp, n));
free(tmp);
}
static void uart_tx(unsigned char ch, void *arg) {
int fd = *(int *) arg;
if (write(fd, &ch, 1) != 1) fail("failed to write %d to fd %d\n", ch, fd);
}
static void usage(struct ctx *ctx) {
printf("Defaults: BAUD=%s, PORT=%s\n", ctx->baud, ctx->port);
printf("Usage:\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] info\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] [-udp PORT] monitor\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] readmem ADDR SIZE\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] readflash ADDR SIZE\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] [-fp FLASH_PARAMS] ");
printf("[-fspi FLASH_SPI] flash ADDrESS1 FILE1.bin ...\n");
printf(" esputil [-v] [-b BAUD] [-p PORT] [-fp FLASH_PARAMS] ");
printf("[-fspi FLASH_SPI] flash FILE.HEX\n");
printf(" esputil [-v] [-chip detect] mkbin FIRMWARE.ELF FIRMWARE.BIN\n");
printf(" esputil mkhex ADDRESS1 BINFILE1 ADDRESS2 BINFILE2 ...\n");
printf(" esputil [-tmp TMP_DIR] unhex HEXFILE\n");
exit(EXIT_FAILURE);
}
// clang-format off
static const char *ecode_to_str(int ecode) {
switch (ecode) {
case 5: return "Received message is invalid";
case 6: return "Failed to act on received message";
case 7: return "Invalid CRC in message";
case 8: return "Flash write error";
case 9: return "Flash read error" ;
case 10: return "Flash read length error";
case 11: return "Deflate error";
default: return "Unknown error";
}
}
static const char *cmdstr(int code) {
switch (code) {
case 2: return "FLASH_BEGIN";
case 3: return "FLASH_DATA";
case 4: return "FLASH_END";
case 5: return "MEM_BEGIN";
case 6: return "MEM_END" ;
case 7: return "MEM_DATA";
case 8: return "SYNC";
case 9: return "WRITE_REG";
case 10: return "READ_REG";
case 11: return "SPI_SET_PARAMS";
case 13: return "SPI_ATTACH";
case 14: return "READ_FLASH_SLOW";
case 15: return "CHANGE_BAUD_RATE";
default: return "CMD_UNKNOWN";
}
}
// clang-format on
static uint8_t checksum2(uint8_t v, const uint8_t *buf, size_t len) {
while (len--) v ^= *buf++;
return v;
}
static uint8_t checksum(const uint8_t *buf, size_t len) {
return checksum2(0xef, buf, len);
}
#ifdef _WIN32 // Windows - specific routines
static void sleep_ms(int milliseconds) {
Sleep(milliseconds);
}
static void flushio(int fd) {
PurgeComm((HANDLE) _get_osfhandle(fd), PURGE_RXCLEAR | PURGE_TXCLEAR);
}
static void change_baud(int fd, int baud, bool verbose) {
DCB cfg = {sizeof(cfg)};
HANDLE h = (HANDLE) _get_osfhandle(fd);
if (GetCommState(h, &cfg)) {
cfg.ByteSize = 8;
cfg.Parity = NOPARITY;
cfg.StopBits = ONESTOPBIT;
cfg.fBinary = TRUE;
cfg.fParity = TRUE;
cfg.BaudRate = baud;
SetCommState(h, &cfg);
} else {
fail("GetCommState(%x): %d\n", h, GetLastError());
}
}
static int open_serial(const char *name, int baud, bool verbose) {
char path[100];
COMMTIMEOUTS ct = {1, 0, 1, 0, MAXDWORD}; // 1 ms read timeout
int fd;
// If serial port is specified as e.g. "COM3", prepend "\\.\" to it
snprintf(path, sizeof(path), "%s%s", name[0] == '\\' ? "" : "\\\\.\\", name);
fd = open(path, O_RDWR | O_BINARY);
if (fd < 0) fail("open(%s): %s\n", path, strerror(errno));
change_baud(fd, baud, verbose);
SetCommTimeouts((HANDLE) _get_osfhandle(fd), &ct);
return fd;
}
static bool is_ready(int fd) {
DWORD errors = 0;
COMSTAT cs = {0};
ClearCommError((HANDLE) _get_osfhandle(fd), &errors, &cs);
return cs.cbInQue > 0;
}
static int iowait(int fd, int sock, int ms) {
DWORD errors, flags = 0;
int i;
for (i = 0; i < ms && flags == 0; i++) {
if (is_ready(fd)) flags |= READY_SERIAL;
if (is_ready(0)) flags |= READY_STDIN;
if (flags == 0) sleep_ms(1);
}
return flags;
}
static void set_rts(int fd, bool value) {
EscapeCommFunction((HANDLE) _get_osfhandle(fd), value ? SETRTS : CLRRTS);
}
static void set_dtr(int fd, bool value) {
EscapeCommFunction((HANDLE) _get_osfhandle(fd), value ? SETDTR : CLRDTR);
}
#else // UNIX - specific routines
static void set_rts(int fd, bool value) {
int v = TIOCM_RTS;
ioctl(fd, value ? TIOCMBIS : TIOCMBIC, &v);
}
static void set_dtr(int fd, bool value) {
int v = TIOCM_DTR;
ioctl(fd, value ? TIOCMBIS : TIOCMBIC, &v);
}
static void flushio(int fd) {
tcflush(fd, TCIOFLUSH);
}
static void sleep_ms(int milliseconds) {
usleep(milliseconds * 1000);
}
// clang-format off
static speed_t termios_baud(int baud) {
switch (baud) {
case 9600: return B9600;
case 19200: return B19200;
case 38400: return B38400;
case 57600: return B57600;
case 115200: return B115200;
case 230400: return B230400;
#ifndef __APPLE__
case 460800: return B460800;
case 500000: return B500000;
case 576000: return B576000;
case 921600: return B921600;
case 1000000: return B1000000;
case 1152000: return B1152000;
case 1500000: return B1500000;
case 2000000: return B2000000;
case 2500000: return B2500000;
case 3000000: return B3000000;
case 3500000: return B3500000;
case 4000000: return B4000000;
#endif
default: return B0;
}
}
// clang-format on
static void change_baud(int fd, int baud, bool verbose) {
struct termios tio;
if (tcgetattr(fd, &tio) != 0)
fail("Can't set fd %d to baud %d: %d\n", fd, baud, errno);
cfsetospeed(&tio, termios_baud(baud));
cfsetispeed(&tio, termios_baud(baud));
tcsetattr(fd, TCSANOW, &tio);
if (verbose) printf("fd %d set to baud %d\n", fd, baud);
}
static int open_serial(const char *name, int baud, bool verbose) {
struct termios tio;
int fd = open(name, O_RDWR | O_NOCTTY | O_SYNC);
if (fd < 0) {
fail("open(%s): %d (%s)\n", name, fd, strerror(errno));
} else if (tcgetattr(fd, &tio) == 0) {
tio.c_iflag = 0; // input mode
tio.c_oflag = 0; // output mode
tio.c_lflag = 0; // local flags
tio.c_cflag = CLOCAL | CREAD | CS8; // control flags
// Order is important: setting speed must go after setting flags,
// becase (depending on implementation) speed flags could reside in flags
cfsetospeed(&tio, termios_baud(baud));
cfsetispeed(&tio, termios_baud(baud));
tcsetattr(fd, TCSANOW, &tio);
}
if (verbose) printf("Opened %s @ %d fd=%d\n", name, baud, fd);
return fd;
}
// Return true if port is readable (has data), false otherwise
static int iowait(int fd, int sock, int ms) {
int ready = 0;
struct timeval tv = {.tv_sec = ms / 1000, .tv_usec = (ms % 1000) * 1000};
fd_set rset;
FD_ZERO(&rset);
FD_SET(0, &rset); // Listen to stdin too
FD_SET(fd, &rset); // Listen to the UART fd
if (sock > 0) FD_SET(sock, &rset);
if (select((fd > sock ? fd : sock) + 1, &rset, 0, 0, &tv) < 0) FD_ZERO(&rset);
if (FD_ISSET(0, &rset)) ready |= READY_STDIN;
if (FD_ISSET(fd, &rset)) ready |= READY_SERIAL;
if (sock > 0 && FD_ISSET(sock, &rset)) ready |= READY_SOCK;
return ready;
}
#endif // End of UNIX-specific routines
static void hard_reset(int fd) {
set_dtr(fd, false); // IO0 -> HIGH
set_rts(fd, true); // EN -> LOW
sleep_ms(100); // Wait
set_rts(fd, false); // EN -> HIGH
}
static void reset_to_bootloader_usb_jtag_serial(int fd) {
set_rts(fd, false);
set_dtr(fd, false);
sleep_ms(100);
set_dtr(fd, true);
set_rts(fd, false);
sleep_ms(100);
set_rts(fd, true);
set_dtr(fd, false);
set_rts(fd, true);
sleep_ms(100);
set_dtr(fd, false);
set_rts(fd, false);
}
static void reset_to_bootloader(int fd) {
sleep_ms(100); // Wait
set_dtr(fd, false); // IO0 -> HIGH
set_rts(fd, true); // EN -> LOW
sleep_ms(100); // Wait
set_dtr(fd, true); // IO0 -> LOW
set_rts(fd, false); // EN -> HIGH
sleep_ms(50); // Wait
set_dtr(fd, false); // IO0 -> HIGH
}
// Execute serial command.
// Return 0 on sucess, or error code on failure
static int cmd(struct ctx *ctx, uint8_t op, void *buf, uint16_t len,
uint32_t cs, int timeout_ms) {
uint8_t tmp[8 + 16384]; // 8 is size of the header
memset(tmp, 0, 8); // Clear header
tmp[1] = op; // Operation
memcpy(&tmp[2], &len, 2); // Length
memcpy(&tmp[4], &cs, 4); // Checksum
memcpy(&tmp[8], buf, len); // Data
slip_send(tmp, 8 + len, uart_tx, &ctx->fd); // Send command
if (ctx->verbose) dump(cmdstr(op), tmp, 8 + len); // Hexdump if required
for (;;) {
int i, n, ready, eofs, ecode;
ready = iowait(ctx->fd, ctx->sock, timeout_ms); // Wait for data
if (!(ready & READY_SERIAL)) return 1; // Interrupted, fail
n = read(ctx->fd, tmp, sizeof(tmp)); // Read from a device
if (n <= 0) fail("Serial line closed\n"); // Doh. Unplugged maybe?
// if (ctx->verbose) dump("--RAW_RESPONSE:", tmp, n);
for (i = 0; i < n; i++) {
size_t r = slip_recv(tmp[i], &ctx->slip); // Pass to SLIP state machine
// if (r == 0 && ctx->slip.mode == 0) putchar(tmp[i]); // In serial mode
if (r == 0) continue;
if (ctx->verbose) dump("--SLIP_RESPONSE:", ctx->slip.buf, r);
if (r < 10 || ctx->slip.buf[0] != 1 || ctx->slip.buf[1] != op) continue;
// ESP8266's error indicator is in the 2 last bytes, ESP32's - last 4
eofs =
ctx->chip.id == 0 || ctx->chip.id == CHIP_ID_ESP8266 ? r - 2 : r - 4;
ecode = ctx->slip.buf[eofs] ? ctx->slip.buf[eofs + 1] : 0;
if (ecode) printf("error %d: %s\n", ecode, ecode_to_str(ecode));
return ecode;
}
}
return 42;
}
static int read32(struct ctx *ctx, uint32_t addr, uint32_t *value) {
int ok = cmd(ctx, 10, &addr, sizeof(addr), 0, 100);
if (ok == 0 && value != NULL) *value = *(uint32_t *) &ctx->slip.buf[4];
return ok;
}
// Read chip ID from ROM and setup ctx->chip pointer
static void chip_detect(struct ctx *ctx) {
size_t i, nchips;
uint32_t chipid;
if (read32(ctx, 0x40001000, &chipid)) fail("Error reading chip ID\n");
nchips = sizeof(s_known_chips) / sizeof(s_known_chips[0]);
for (i = 0; i < nchips; i++) {
if (s_known_chips[i].id == chipid) {
if (ctx->chip.id && ctx->chip.id != chipid) {
fail("Chip specified (%s) does not match chip detected (%s)\n",
ctx->chip.name, s_known_chips[i].name);
}
ctx->chip = s_known_chips[i];
return;
}
}
fail("Unknown chip ID: %08x\n", chipid);
}
// Assume chip is rebooted and is in download mode.
// Send SYNC commands until success, and detect chip ID
static bool chip_connect(struct ctx *ctx) {
int i, j;
for (j = 0; j < 6; j++) {
// Alternate different reset methods
if (j & 1) {
reset_to_bootloader_usb_jtag_serial(ctx->fd);
} else {
reset_to_bootloader(ctx->fd);
}
flushio(ctx->fd);
for (i = 0; i < 2 + j; i++) {
uint8_t data[36] = {7, 7, 0x12, 0x20}; // SYNC command
memset(data + 4, 0x55, sizeof(data) - 4); // Fill with 0x55
if (cmd(ctx, 8, data, sizeof(data), 0, 100) == 0) {
sleep_ms(50);
flushio(ctx->fd); // Discard all data
chip_detect(ctx);
return true;
}
}
}
return false;
}
static void set_chip_id(struct ctx *ctx, const char *name) {
size_t i, nchips;
nchips = sizeof(s_known_chips) / sizeof(s_known_chips[0]);
for (i = 0; i < nchips; i++) {
if (strcasecmp(name, "detect") == 0) {
if (!chip_connect(ctx)) fail("Cannot detect chip\n");
return;
} else if (strcasecmp(s_known_chips[i].name, name) == 0) {
ctx->chip = s_known_chips[i];
return;
}
}
fail("Unknown chip type: %s\n", name);
}
static void monitor(struct ctx *ctx) {
int i, ready = iowait(ctx->fd, ctx->sock, 1000);
if (ready & READY_SERIAL) {
uint8_t buf[BUFSIZ];
int n = read(ctx->fd, buf, sizeof(buf)); // Read from a device
if (n <= 0) fail("Serial line closed\n"); // If serial is closed, exit
if (n > 0 && ctx->verbose) dump("READ", buf, n);
for (i = 0; i < n; i++) {
size_t len = slip_recv(buf[i], &ctx->slip); // Pass to SLIP
if (len == 0 && ctx->slip.mode == 0) putchar(buf[i]); // In serial mode
if (len <= 0) continue;
if (len > 0 && ctx->slip.mode && ctx->sock)
sendto(ctx->sock, ctx->slip.buf, ctx->slip.len, 0,
(struct sockaddr *) &ctx->sin, sizeof(ctx->sin));
if (ctx->verbose) dump("SR", ctx->slip.buf, len);
}
fflush(stdout);
}
if (ready & READY_STDIN) { // Forward stdin to a device
uint8_t buf[BUFSIZ];
int n = read(0, buf, sizeof(buf));
if (n > 0 && ctx->verbose) dump("WRITE", buf, n);
for (i = 0; i < n; i++) uart_tx(buf[i], &ctx->fd);
}
if (ready & READY_SOCK) { // Something in the UDP socket
uint8_t buf[2048];
unsigned sl = sizeof(ctx->sin);
int n = recvfrom(ctx->sock, buf, sizeof(buf), 0,
(struct sockaddr *) &ctx->sin, &sl);
// printf("GOT %d\n", n);
if (n > 0) {
if (ctx->verbose) dump("RSOCK", buf, n);
slip_send(buf, n, uart_tx, &ctx->fd); // Inject frame
}
}
}
static void info(struct ctx *ctx) {
if (!chip_connect(ctx)) fail("Error connecting\n");
printf("Chip ID: 0x%x (%s)\n", ctx->chip.id, ctx->chip.name);
if (ctx->chip.id == CHIP_ID_ESP32_C3_ECO3) {
uint32_t efuse_base = 0x60008800, mac0, mac1;
read32(ctx, efuse_base + 0x44, &mac0);
read32(ctx, efuse_base + 0x48, &mac1);
printf("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", (mac1 >> 8) & 255,
mac1 & 255, (mac0 >> 24) & 255, (mac0 >> 16) & 255,
(mac0 >> 8) & 255, mac0 & 255);
}
}
static void readmem(struct ctx *ctx, const char **args) {
if (!chip_connect(ctx)) {
fail("Error connecting\n");
} else if (args[0] == NULL || args[1] == NULL) {
usage(ctx);
} else {
uint32_t i, value, base = strtoul(args[0], NULL, 0),
size = strtoul(args[1], NULL, 0);
for (i = 0; i < size; i += 4) {
if (read32(ctx, base + i, &value) == 0) {
fwrite(&value, 1, sizeof(value), stdout);
} else {
fprintf(stderr, "Error: mem read @ addr %#x\n", base + i);
break;
}
}
}
}
static void spiattach(struct ctx *ctx) {
uint32_t d3[] = {0, 0};
uint32_t d4[] = {0, 4 * 1024 * 1024, 65536, 4096, 256, 0xffff};
if (ctx->fspi != NULL) {
// 6,17,8,11,16 -> 0xb408446, like esptool does
unsigned a = 0, b = 0, c = 0, d = 0, e = 0;
sscanf(ctx->fspi, "%u,%u,%u,%u,%u", &a, &b, &c, &e, &d);
d3[0] = a | (b << 6) | (c << 12) | (d << 18) | (e << 24);
// printf("-----> %u,%u,%u,%u,%u -> %x\n", a, b, c, d, e, pins);
}
if (cmd(ctx, 13, d3, sizeof(d3), 0, 250)) fail("SPI_ATTACH failed\n");
// flash_id, flash size, block_size, sector_size, page_size, status_mask
if (cmd(ctx, 11, d4, sizeof(d4), 0, 250)) fail("SPI_SET_PARAMS failed\n");
}
static void readflash(struct ctx *ctx, const char **args) {
if (!chip_connect(ctx)) {
fail("Error connecting\n");
} else if (args[0] == NULL || args[1] == NULL) {
usage(ctx);
} else if (ctx->chip.id == CHIP_ID_ESP8266) {
fail("Can't do it on esp8266\n");
} else {
uint32_t i = 0, base = strtoul(args[0], NULL, 0),
size = strtoul(args[1], NULL, 0);
spiattach(ctx);
while (i < size) {
uint32_t bs = size - i > 64 ? 64 : size - i;
uint32_t d[] = {base + i, bs};
if (cmd(ctx, 14, d, sizeof(d), 0, 500) != 0) {
printf("Error: flash read @ addr %#x\n", base + i);
break;
} else {
fwrite(&ctx->slip.buf[8], 1, bs, stdout);
i += bs;
}
}
}
}
static inline unsigned long hex_to_ul(const char *s, int len) {
unsigned long i = 0, v = 0;
for (i = 0; i < (unsigned long) len; i++) {
int c = s[i];
if (i > 0) v <<= 4;
v |= (c >= '0' && c <= '9') ? c - '0'
: (c >= 'A' && c <= 'F') ? c - '7'
: c - 'W';
}
return v;
}
static int rmrf(const char *dirname) {
#ifdef _WIN32
char tmp[MAX_PATH], path[MAX_PATH];
WIN32_FIND_DATA data;
HANDLE hFind;
snprintf(tmp, sizeof(tmp), "%s\\*", dirname);
hFind = FindFirstFile(tmp, &data);
if (hFind != INVALID_HANDLE_VALUE) {
do {
struct _stat st;
snprintf(path, sizeof(path), "%s/%s", dirname, data.cFileName);
if (data.cFileName[0] == '.') continue;
if (_stat(path, &st) == 0 && (st.st_mode & S_IFDIR)) rmrf(path);
remove(path);
} while (FindNextFile(hFind, &data));
FindClose(hFind);
}
RemoveDirectory(dirname);
return _access(dirname, 0) != 0;
#else
DIR *dp = opendir(dirname);
if (dp != NULL) {
struct dirent *de;
while ((de = readdir(dp)) != NULL) {
struct stat st;
char path[PATH_MAX];
if (de->d_name[0] == '.') continue;
snprintf(path, sizeof(path), "%s/%s", dirname, de->d_name);
if (stat(path, &st) == 0 && S_ISDIR(st.st_mode)) rmrf(path);
remove(path);
}
closedir(dp);
}
(void) rmdir(dirname);
return access(dirname, 0) != 0;
#endif
}
// Unpack hex file into a given directory, as a collection of OFFSET.bin files
// If buf is not null, append all created file names to it.
static int unhex(const char *hexfile, const char *dir, char *buf, size_t bl) {
char tmp[600];
int c, n = 0, line = 0;
FILE *in = fopen(hexfile, "rb"), *out = NULL;
unsigned long upper = 0, next = 0;
if (in == NULL) return fail("ERROR: cannot open %s\n", hexfile);
if (rmrf(dir) == 0) return fail("Cannot delete dir %s\n", dir);
mkdir(dir, 0755);
buf[0] = '\0';
while ((c = fgetc(in)) != EOF) {
if (!isspace(c)) tmp[n++] = c;
if (n >= (int) sizeof(tmp) || c == '\n') {
int i, len = hex_to_ul(tmp + 1, 2);
unsigned long lower = hex_to_ul(tmp + 3, 4);
int type = hex_to_ul(tmp + 7, 2);
unsigned long addr = upper | lower;
if (tmp[0] != ':') return fail("line %d: no colon\n", line);
if (n != 1 + 2 + 4 + 2 + len * 2 + 2)
return fail("line %d: len %d, expected %d\n", n,
1 + 2 + 4 + 2 + len * 2 + 2);
if (type == 0) {
if (out == NULL || next != addr) {
char path[200];
snprintf(path, sizeof(path), "%s/%#lx.bin", dir, addr);
if (out != NULL) fclose(out);
out = fopen(path, "wb");
if (out == NULL) return fail("Cannot open %s", path);
// Append created filename to the list of created files
snprintf(buf + strlen(buf), bl - strlen(buf), "%s%s",
buf[0] == '\0' ? "" : " ", path);
}
for (i = 0; i < len; i++) {
int byte = hex_to_ul(tmp + 9 + i * 2, 2);
fputc(byte, out);
}
next = addr + len;
} else if (type == 1) {
if (out != NULL) fclose(out);
out = NULL;
} else if (type == 4) {
upper = hex_to_ul(tmp + 9, 4) << 16;
}
n = 0;
}
}
fclose(in);
if (out != NULL) fclose(out);
return EXIT_SUCCESS;
}
static int has_suffix(const char *word, const char *suffix) {
size_t word_len = strlen(word), suffix_len = strlen(suffix);
return word_len > suffix_len &&
strcasecmp(&word[word_len - suffix_len], suffix) == 0;
}
static void flashbin(struct ctx *ctx, uint16_t flash_params,
uint32_t flash_offset, const char *path) {
FILE *fp = fopen(path, "rb");
int i, n, size, seq = 0;
uint32_t block_size = 4096, hs = 16, encrypted = 0, cs, tmp;
uint8_t buf[16 + 4096]; // First 16 bytes are for serial cmd
if (fp == NULL) fail("Cannot open %s: %s\n", path, strerror(errno));
fseek(fp, 0, SEEK_END);
size = ftell(fp);
rewind(fp);
memset(buf, 0, hs); // Clear them
printf("Erasing %d bytes @ %#x", size, flash_offset);
fflush(stdout);
{
uint32_t num_blocks = (size + block_size - 1) / block_size;
uint32_t d1[] = {size, num_blocks, block_size, flash_offset, encrypted};
uint16_t d1size = sizeof(d1) - 4;
// Flash begin. S2, S3, C3 chips have an extra 5th parameter.
if (ctx->chip.id == CHIP_ID_ESP32_S2 ||
ctx->chip.id == CHIP_ID_ESP32_S3_BETA2 ||
ctx->chip.id == CHIP_ID_ESP32_S3_BETA3 ||
ctx->chip.id == CHIP_ID_ESP32_C6_BETA ||
ctx->chip.id == CHIP_ID_ESP32_C3_ECO_1_2 ||
ctx->chip.id == CHIP_ID_ESP32_C3_ECO3)
d1size += 4;
if (cmd(ctx, 2, d1, d1size, 0, 15000)) fail("\nerase failed\n");
}
// Read from file into a buffer, but skip initial 16 bytes
while ((n = fread(buf + hs, 1, block_size, fp)) > 0) {
int oft = ftell(fp);
for (i = 0; i < 100; i++) putchar('\b');
printf("Writing %s, %d/%d bytes @ 0x%x (%d%%)", path, n, size,
flash_offset + oft - n, oft * 100 / size);
fflush(stdout);
// Embed flash params into a bootloader image
if (seq == 0 && flash_offset == ctx->chip.bla) {
if (flash_params != 0) {
buf[hs + 2] = (uint8_t) ((flash_params >> 8) & 255);
buf[hs + 3] = (uint8_t) (flash_params & 255);
}
// Set chip type in the extended header at offset 4.
// Common header is 8, plus extended header offset 4 = 12
if (ctx->chip.id == CHIP_ID_ESP32_C3_ECO3) buf[hs + 12] = 5;
if (ctx->chip.id == CHIP_ID_ESP32_C3_ECO_1_2) buf[hs + 12] = 5;
if (ctx->chip.id == CHIP_ID_ESP32_S2) {
buf[hs + 8] = 0;
buf[hs + 12] = 2;
}
}
// Align buffer to block_size and pad with 0xff
// memset(buf + hs + n, 255, sizeof(buf) - hs - n);
// n = ALIGN(n, block_size);
// Flash write
tmp = n, memcpy(&buf[0], &tmp, 4); // Set buffer size
tmp = seq++, memcpy(&buf[4], &tmp, 4); // Set sequence number
cs = checksum(buf + hs, n);
if (cmd(ctx, 3, buf, (uint16_t) (hs + n), cs, 1500))
fail("flash_data failed\n");
}
for (i = 0; i < 100; i++) printf("\b \b");
printf("Written %s, %d bytes @ %#x\n", path, size, flash_offset);
fclose(fp);
}
static const char *download(const char *url) {
char cmd[2048];
const char *slash = strrchr(url, '/');
if (slash == NULL) fail("Invalid URL: %s\n", url);
snprintf(cmd, sizeof(cmd), "curl -sL %s -o %s", url, slash + 1);
printf("%s\n", cmd);
if (system(cmd) != 0) fail("Download failed\n");
return slash + 1;
}
static void flash(struct ctx *ctx, const char **args) {
uint16_t flash_params = 0;
if (!chip_connect(ctx)) fail("Error connecting\n");
if (ctx->fpar != NULL) flash_params = (uint16_t) strtoul(ctx->fpar, NULL, 0);
if (atoi(ctx->baud) > 115200) {
uint32_t data[] = {atoi(ctx->baud), 0};
if (cmd(ctx, 15, data, sizeof(data), 0, 50)) fail("SET_BAUD failed\n");
change_baud(ctx->fd, atoi(ctx->baud), ctx->verbose);
}
// For non-ESP8266, SPI attach is mandatory
if (ctx->chip.id != CHIP_ID_ESP8266) {
spiattach(ctx);
// Load first word from the bootloader - flash params are encoded there,
// in the last 2 bytes, see README.md in the repo root
if (ctx->fpar == NULL) {
uint32_t d5[] = {ctx->chip.bla, 16};
if (cmd(ctx, 14, d5, sizeof(d5), 0, 2000) != 0) {
printf("Error: can't read bootloader @ addr %#x\n", ctx->chip.bla);
} else if (ctx->slip.buf[8] != 0xe9) {
printf("Wrong magic for bootloader @ addr %#x\n", ctx->chip.bla);
} else {
flash_params = (ctx->slip.buf[10] << 8) | ctx->slip.buf[11];
}
}
}
printf("Using flash params %#hx\n", flash_params);
// Iterate over arguments: FLASH_OFFSET FILENAME ...
while (args[0]) {
if (has_suffix(args[0], ".hex")) {
// A .hex file is fed to us. Unhex it first into a temp dir
char file_list[8192], tmpdir[1024], *s = file_list;
size_t n;
bool is_url = (strncmp(args[0], "http", 4) == 0);
if (is_url) args[0] = download(args[0]);
snprintf(tmpdir, sizeof(tmpdir), "%s.tmp", args[0]);
unhex(args[0], tmpdir, file_list, sizeof(file_list));
// Now iterate over the unhexed files, and flash each
while ((n = strcspn(s, " ")) > 0) {
char *slash, *p = s + n;
while (*p == ' ') *p++ = '\0';
slash = strrchr(s, '/');
flashbin(ctx, flash_params, strtoul(slash ? slash + 1 : s, NULL, 0), s);
s = p;
}
if (is_url) remove(args[0]); // Remove downloaded file
rmrf(tmpdir); // Cleanup temp dir
args += 1; // Move to next file
} else if (args[1] != NULL) {
bool is_url = (strncmp(args[0], "http", 4) == 0);
if (is_url) args[1] = download(args[1]);
flashbin(ctx, flash_params, strtoul(args[0], NULL, 0), args[1]);
if (is_url) remove(args[0]); // Remove downloaded file
args += 2;
}
}
{
// Flash end
uint32_t d3[] = {0}; // 0: reboot, 1: run user code
if (cmd(ctx, 4, d3, sizeof(d3), 0, 250)) fail("flash_end failed\n");
}
hard_reset(ctx->fd);
}
static unsigned long align_to(unsigned long n, unsigned to) {
return ((n + to - 1) / to) * to;
}
////////////////////////////////// mkbin command - ELF related functionality
struct mem {
unsigned char *ptr;
int len;
};
struct Elf32_Ehdr {
unsigned char e_ident[16];
uint16_t e_type, e_machine;
uint32_t e_version, e_entry, e_phoff, e_shoff, e_flags;
uint16_t e_ehsize, e_phentsize, e_phnum, e_shentsize, e_shnum, e_shstrndx;
};
struct Elf32_Phdr {
uint32_t p_type, p_offset, p_vaddr, p_paddr;
uint32_t p_filesz, p_memsz, p_flags, p_align;
};
static struct mem read_entire_file(const char *path) {
struct mem mem;
FILE *fp = fopen(path, "rb");
if (fp == NULL) fail("Cannot open %s: %s\n", path, strerror(errno));
fseek(fp, 0, SEEK_END);
mem.len = ftell(fp);
rewind(fp);
mem.ptr = malloc(mem.len);
if (mem.ptr == NULL) fail("malloc(%d) failed\n", mem.len);
if (fread(mem.ptr, 1, mem.len, fp) != (size_t) mem.len) {
fail("fread(%s) failed: %s\n", path, strerror(errno));
}
fclose(fp);
return mem;
}
static int elf_get_num_segments(const struct mem *elf) {
struct Elf32_Ehdr *e = (struct Elf32_Ehdr *) elf->ptr;
return e->e_phnum;
}
static uint32_t elf_get_entry_point(const struct mem *elf) {
return ((struct Elf32_Ehdr *) elf->ptr)->e_entry;
}
static struct Elf32_Phdr elf_get_phdr(const struct mem *elf, int no) {
struct Elf32_Ehdr *e = (struct Elf32_Ehdr *) elf->ptr;
struct Elf32_Phdr *h = (struct Elf32_Phdr *) (elf->ptr + e->e_phoff);
if (h->p_filesz == 0) no++; // GCC-generated phdrs have empty 1st phdr
return h[no];
}
static int mkbin(const char *elf_path, const char *bin_path, struct ctx *ctx) {
struct mem elf = read_entire_file(elf_path);
FILE *bin_fp = fopen(bin_path, "w+b");
uint8_t common_hdr[] = {0xe9, 1, 0, 0};
uint8_t extended_hdr[] = {0xee, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t i, j, cs = 0xef, zero = 0, num_segments = elf_get_num_segments(&elf);
uint32_t entrypoint = elf_get_entry_point(&elf);
if (ctx->chip.id == CHIP_ID_ESP32_S2) {
extended_hdr[0] = 0x00;
extended_hdr[4] = 2;
}