-
Notifications
You must be signed in to change notification settings - Fork 835
/
ir_Transcold.cpp
500 lines (458 loc) · 16.4 KB
/
ir_Transcold.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Copyright 2020 Chandrashekar Shetty (iamDshetty)
// Copyright 2020 crankyoldgit
// Copyright 2021 siriuslzx
/// @file
/// @brief Support for Transcold A/C protocols.
/// @see https://github.com/crankyoldgit/IRremoteESP8266/issues/1256
#include "ir_Transcold.h"
#include <algorithm>
#ifndef ARDUINO
#include <string>
#endif
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
// Constants
const uint16_t kTranscoldHdrMark = 5944; ///< uSeconds.
const uint16_t kTranscoldBitMark = 555; ///< uSeconds.
const uint16_t kTranscoldHdrSpace = 7563; ///< uSeconds.
const uint16_t kTranscoldOneSpace = 3556; ///< uSeconds.
const uint16_t kTranscoldZeroSpace = 1526; ///< uSeconds.
using irutils::addBoolToString;
using irutils::addIntToString;
using irutils::addLabeledString;
using irutils::addModeToString;
using irutils::addTempToString;
using irutils::addToggleToString;
#if SEND_TRANSCOLD
/// Send a Transcold message
/// Status: STABLE / Confirmed Working.
/// @param[in] data The message to be sent.
/// @param[in] nbits The number of bits of message to be sent.
/// @param[in] repeat The number of times the command is to be repeated.
void IRsend::sendTranscold(uint64_t data, uint16_t nbits, uint16_t repeat) {
if (nbits % 8 != 0) return; // nbits is required to be a multiple of 8.
// Set IR carrier frequency
enableIROut(38);
for (uint16_t r = 0; r <= repeat; r++) {
// Header
mark(kTranscoldHdrMark);
space(kTranscoldHdrSpace);
// Data
// Break data into byte segments, starting at the Most Significant
// Byte. Each byte then being sent normal, then followed inverted.
for (uint16_t i = 8; i <= nbits; i += 8) {
// Grab a bytes worth of data.
// uint8_t segment = (data >> (nbits - i)) & 0xFF;
uint8_t segment = GETBITS64(data, nbits - i, 8);
// Normal + Inverted
uint16_t both = (segment << 8) | (~segment & 0xFF);
sendData(kTranscoldBitMark, kTranscoldOneSpace, kTranscoldBitMark,
kTranscoldZeroSpace, both, 16, true);
}
// Footer
mark(kTranscoldBitMark);
space(kTranscoldHdrSpace);
mark(kTranscoldBitMark);
space(kDefaultMessageGap);
}
}
#endif // SEND_TRANSCOLD
/// Class constructor.
/// @param[in] pin GPIO to be used when sending.
/// @param[in] inverted Is the output signal to be inverted?
/// @param[in] use_modulation Is frequency modulation to be used?
IRTranscoldAc::IRTranscoldAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { stateReset(); }
/// Reset the internal state to a fixed known good state.
void IRTranscoldAc::stateReset(void) {
setRaw(kTranscoldKnownGoodState);
special_state = kTranscoldOff;
swingFlag = false;
swingHFlag = false;
swingVFlag = false;
}
/// Set up hardware to be able to send a message.
void IRTranscoldAc::begin(void) { _irsend.begin(); }
#if SEND_TRANSCOLD
/// Send the current internal state as an IR message.
/// @param[in] repeat Nr. of times the message will be repeated.
void IRTranscoldAc::send(uint16_t repeat) {
_irsend.sendTranscold(getRaw(), kTranscoldBits, repeat);
if (isSpecialState()) {
// make sure to remove special state from special_state
// after command has being transmitted.
special_state = kTranscoldKnownGoodState;
}
}
#endif // SEND_TRANSCOLD
/// Get a copy of the internal state as a valid code for this protocol.
/// @return A valid code for this protocol based on the current internal state.
uint32_t IRTranscoldAc::getRaw(void) const {
if (isSpecialState()) {
return special_state;
}
return _.raw;
}
/// Set the internal state from a valid code for this protocol.
/// @param[in] new_code A valid code for this protocol.
void IRTranscoldAc::setRaw(const uint32_t new_code) {
if (handleSpecialState(new_code)) {
special_state = new_code;
_.raw = kTranscoldKnownGoodState;
} else {
// must be a command changing Temp|Mode|Fan
// it is safe to just copy to remote var
_.raw = new_code;
special_state = kTranscoldKnownGoodState;
// it isn`t special so might affect Temp|mode|Fan
if (new_code == kTranscoldCmdFan) {
setMode(kTranscoldFan);
}
}
}
/// Is the current state is a special state?
/// @return true, if it is. false if it isn't.
bool IRTranscoldAc::isSpecialState(void) const {
switch (special_state) {
case kTranscoldOff:
case kTranscoldSwing: return true;
default: return false;
}
}
/// Adjust any internal settings based on the type of special state we are
/// supplied. Does nothing if it isn't a special state.
/// @param[in] data The state we need to act upon.
/// @note Special state means commands that are not affecting
/// Temperature/Mode/Fan
/// @return true, if it is a special state. false if it isn't.
bool IRTranscoldAc::handleSpecialState(const uint32_t data) {
switch (data) {
case kTranscoldOff:
break;
case kTranscoldSwing:
swingFlag = !swingFlag;
break;
default:
return false;
}
return true;
}
/// Set the temperature.
/// @param[in] desired The temperature in degrees celsius.
void IRTranscoldAc::setTemp(const uint8_t desired) {
// Range check.
uint8_t temp = std::min(desired, kTranscoldTempMax);
temp = std::max(temp, kTranscoldTempMin) - kTranscoldTempMin + 1;
_.Temp = reverseBits(invertBits(temp, kTranscoldTempSize),
kTranscoldTempSize);
}
/// Get the current temperature setting.
/// @return The current setting for temp. in degrees celsius.
uint8_t IRTranscoldAc::getTemp(void) const {
return reverseBits(invertBits(_.Temp, kTranscoldTempSize),
kTranscoldTempSize) + kTranscoldTempMin - 1;
}
/// Get the value of the current power setting.
/// @return true, the setting is on. false, the setting is off.
bool IRTranscoldAc::getPower(void) const {
// There is only an off state. Everything else is "on".
return special_state != kTranscoldOff;
}
/// Change the power setting.
/// @param[in] on true, the setting is on. false, the setting is off.
void IRTranscoldAc::setPower(const bool on) {
if (!on) {
special_state = kTranscoldOff;
} else {
special_state = kTranscoldKnownGoodState;
}
}
/// Change the power setting to On.
void IRTranscoldAc::on(void) { setPower(true); }
/// Change the power setting to Off.
void IRTranscoldAc::off(void) { setPower(false); }
/// Get the Swing setting of the A/C.
/// @return true, the setting is on. false, the setting is off.
bool IRTranscoldAc::getSwing(void) const { return swingFlag; }
/// Toggle the Swing mode of the A/C.
void IRTranscoldAc::setSwing(void) {
// Assumes that repeated sending "swing" toggles the action on the device.
// if not, the variable "swingFlag" can be removed.
special_state = kTranscoldSwing;
swingFlag = !swingFlag;
}
/// Set the operating mode of the A/C.
/// @param[in] mode The desired operating mode.
void IRTranscoldAc::setMode(const uint8_t mode) {
uint32_t actualmode = mode;
switch (actualmode) {
case kTranscoldAuto:
case kTranscoldDry:
_.Fan = kTranscoldFanAuto0;
break;
case kTranscoldCool:
case kTranscoldHeat:
case kTranscoldFan:
_.Fan = kTranscoldFanAuto;
break;
default: // Anything else, go with Auto mode.
actualmode = kTranscoldAuto;
_.Fan = kTranscoldFanAuto0;
}
setTemp(getTemp());
// Fan mode is a special case of Dry.
if (actualmode == kTranscoldFan) {
actualmode = kTranscoldDry;
_.Temp = kTranscoldFanTempCode;
}
_.Mode = actualmode;
}
/// Get the operating mode setting of the A/C.
/// @return The current operating mode setting.
uint8_t IRTranscoldAc::getMode(void) const {
uint8_t mode = _.Mode;
if (mode == kTranscoldDry)
if (_.Temp == kTranscoldFanTempCode) return kTranscoldFan;
return mode;
}
/// Get the current fan speed setting.
/// @return The current fan speed.
uint8_t IRTranscoldAc::getFan(void) const {
return _.Fan;
}
/// Set the speed of the fan.
/// @param[in] speed The desired setting.
/// @param[in] modecheck Do we enforce any mode limitations before setting?
void IRTranscoldAc::setFan(const uint8_t speed, const bool modecheck) {
uint8_t newspeed = speed;
if (modecheck) {
switch (getMode()) {
case kTranscoldAuto:
case kTranscoldDry: // Dry & Auto mode can't have speed Auto.
if (speed == kTranscoldFanAuto)
newspeed = kTranscoldFanAuto0;
break;
default: // Only Dry & Auto mode can have speed Auto0.
if (speed == kTranscoldFanAuto0)
newspeed = kTranscoldFanAuto;
}
}
switch (speed) {
case kTranscoldFanAuto:
case kTranscoldFanAuto0:
case kTranscoldFanMin:
case kTranscoldFanMed:
case kTranscoldFanMax:
case kTranscoldFanZoneFollow:
case kTranscoldFanFixed:
break;
default: // Unknown speed requested.
newspeed = kTranscoldFanAuto;
break;
}
_.Fan = newspeed;
}
/// Convert a standard A/C mode into its native mode.
/// @param[in] mode A stdAc::opmode_t to be converted to it's native equivalent.
/// @return The corresponding native mode.
uint8_t IRTranscoldAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kTranscoldCool;
case stdAc::opmode_t::kHeat: return kTranscoldHeat;
case stdAc::opmode_t::kDry: return kTranscoldDry;
case stdAc::opmode_t::kFan: return kTranscoldFan;
default: return kTranscoldAuto;
}
}
/// Convert a stdAc::fanspeed_t enum into it's native speed.
/// @param[in] speed The enum to be converted.
/// @return The native equivalent of the enum.
uint8_t IRTranscoldAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kTranscoldFanMin;
case stdAc::fanspeed_t::kMedium: return kTranscoldFanMed;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kTranscoldFanMax;
default: return kTranscoldFanAuto;
}
}
/// Convert a native mode to it's common stdAc::opmode_t equivalent.
/// @param[in] mode A native operation mode to be converted.
/// @return The corresponding common stdAc::opmode_t mode.
stdAc::opmode_t IRTranscoldAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kTranscoldCool: return stdAc::opmode_t::kCool;
case kTranscoldHeat: return stdAc::opmode_t::kHeat;
case kTranscoldDry: return stdAc::opmode_t::kDry;
case kTranscoldFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
/// Convert a native fan speed into its stdAc equivalent.
/// @param[in] speed The native setting to be converted.
/// @return The stdAc equivalent of the native setting.
stdAc::fanspeed_t IRTranscoldAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kTranscoldFanMax: return stdAc::fanspeed_t::kMax;
case kTranscoldFanMed: return stdAc::fanspeed_t::kMedium;
case kTranscoldFanMin: return stdAc::fanspeed_t::kMin;
default: return stdAc::fanspeed_t::kAuto;
}
}
/// Convert the A/C state to it's common stdAc::state_t equivalent.
/// @param[in] prev Ptr to the previous state if required.
/// @return A stdAc::state_t state.
stdAc::state_t IRTranscoldAc::toCommon(const stdAc::state_t *prev) const {
stdAc::state_t result{};
// Start with the previous state if given it.
if (prev != NULL) {
result = *prev;
} else {
// Set defaults for non-zero values that are not implicitly set for when
// there is no previous state.
// e.g. Any setting that toggles should probably go here.
result.swingv = stdAc::swingv_t::kOff;
}
// Not supported.
result.model = -1; // No models used.
result.swingh = stdAc::swingh_t::kOff;
result.turbo = false;
result.clean = false;
result.light = false;
result.quiet = false;
result.econo = false;
result.filter = false;
result.beep = false;
result.clock = -1;
result.sleep = -1;
// Supported.
result.protocol = decode_type_t::TRANSCOLD;
result.celsius = true;
result.power = getPower();
// Power off state no other state info. Use the previous state if we have it.
if (!result.power) return result;
// Handle the special single command (Swing/Turbo/Light/Clean/Sleep) toggle
// messages. These have no other state info so use the rest of the previous
// state if we have it for them.
if (getSwing()) {
result.swingv = result.swingv != stdAc::swingv_t::kOff ?
stdAc::swingv_t::kOff : stdAc::swingv_t::kAuto; // Invert swing.
return result;
}
// Back to "normal" stateful messages.
result.mode = toCommonMode(getMode());
result.degrees = getTemp();
result.fanspeed = toCommonFanSpeed(_.Fan);
return result;
}
/// Convert the internal state into a human readable string.
/// @return The current internal state expressed as a human readable String.
String IRTranscoldAc::toString(void) const {
String result = "";
result.reserve(100); // Reserve some heap for the string to reduce fragging.
result += addBoolToString(getPower(), kPowerStr, false);
if (!getPower()) return result; // If it's off, there is no other info.
// Special modes.
if (getSwing()) return result + addToggleToString(true, kSwingStr);
result += addModeToString(getMode(), kTranscoldAuto, kTranscoldCool,
kTranscoldHeat, kTranscoldDry, kTranscoldFan);
result += addIntToString(_.Fan, kFanStr);
result += kSpaceLBraceStr;
switch (_.Fan) {
case kTranscoldFanAuto:
result += kAutoStr;
break;
case kTranscoldFanAuto0:
result += kAutoStr;
result += '0';
break;
case kTranscoldFanMax:
result += kMaxStr;
break;
case kTranscoldFanMin:
result += kMinStr;
break;
case kTranscoldFanMed:
result += kMedStr;
break;
case kTranscoldFanZoneFollow:
result += kZoneFollowStr;
break;
case kTranscoldFanFixed:
result += kFixedStr;
break;
default:
result += kUnknownStr;
}
result += ')';
// Fan mode doesn't have a temperature.
if (getMode() != kTranscoldFan) result += addTempToString(getTemp());
return result;
}
#if DECODE_TRANSCOLD
/// Decode the supplied Transcold A/C message.
/// Status: STABLE / Known Working.
/// @param[in,out] results Ptr to the data to decode & where to store the decode
/// result.
/// @param[in] offset The starting index to use when attempting to decode the
/// raw data. Typically/Defaults to kStartOffset.
/// @param[in] nbits The number of data bits to expect.
/// @param[in] strict Flag indicating if we should perform strict matching.
/// @return A boolean. True if it can decode it, false if it can't.
bool IRrecv::decodeTranscold(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
// The protocol sends the data normal + inverted, alternating on
// each byte. Hence twice the number of expected data bits.
if (results->rawlen <= 2 * 2 * nbits + kHeader + kFooter - 1 + offset)
return false;
if (strict && nbits != kTranscoldBits) return false;
if (nbits % 8 != 0) return false;
uint64_t data = 0;
uint64_t inverted = 0;
if (nbits > sizeof(data) * 8)
return false; // We can't possibly capture a Transcold packet that big.
// Header
if (!matchMark(results->rawbuf[offset++], kTranscoldHdrMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTranscoldHdrSpace)) return false;
// Data
// Twice as many bits as there are normal plus inverted bits.
for (uint16_t i = 0; i < nbits * 2; i++, offset++) {
bool flip = (i / 8) % 2;
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark))
return false;
if (matchSpace(results->rawbuf[offset], kTranscoldOneSpace)) {
if (flip)
inverted = (inverted << 1) | 1;
else
data = (data << 1) | 1;
} else if (matchSpace(results->rawbuf[offset], kTranscoldZeroSpace)) {
if (flip)
inverted <<= 1;
else
data <<= 1;
} else {
return false;
}
}
// Footer
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark)) return false;
if (!matchSpace(results->rawbuf[offset++], kTranscoldHdrSpace)) return false;
if (!matchMark(results->rawbuf[offset++], kTranscoldBitMark)) return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kDefaultMessageGap))
return false;
// Compliance
if (strict && inverted != invertBits(data, nbits)) return false;
// Success
results->decode_type = decode_type_t::TRANSCOLD;
results->bits = nbits;
results->value = data;
results->address = 0;
results->command = 0;
return true;
}
#endif // DECODE_TRANSCOLD