本Repo实现了从原理公式上直接使用来自OpenCV鱼眼畸变模型的4个系数
$k_1 ,k_2 ,k_3 ,k_4$ 和内参$K$ 对图像进行去畸变以及来自厂商提供的镜头畸变表与OpenCV鱼眼模型参数的估计互相转换。另外对OpenCV鱼眼模型的成像原理过程(透视投影像高vs畸变像高)进行了绘图分析,便于从视觉上直观感受,从而加深对OpenCV鱼眼镜头模型投影成像的理解。关于pin-hole透视镜头成像标定过程可以参阅我之前的Repo,C++代码请参阅我这个Repo。
- Overview of Distortion Table
- Overview of OpenCV fisheye Camera Model
- 直接根据畸变表对图像去畸变
- 畸变表拟合系数对图像去畸变
- 畸变系数推算畸变表
- References
来自鱼眼镜头厂商的畸变表一般为下述形式表格,其描述了光线通过透镜在相机传感器平面成像的高度信息,一般至少含有3列数据,比如下面表格有“Angle”(degrees),"Real Height"(mm),"Ref Height"(mm)等。其分别表示光线入射角(光线与摄像机光轴的夹角),实际成像高度,参考成像高度(透视投影),这些信息足以表征此镜头的畸变扭曲程度。另外还会提供一些常量,如每个像素长度为0.003mm,图像尺寸1920×1080,畸变中心位于图像中心,进一步地,结合畸变表,可以推算相机内参矩阵
上述表格中第1列和第3列通常满足
本Repo中所使用的畸变表格数据和此镜头录制的图像畸变数据在当前“data”文件夹下的“distortionTableFromFactory.xlsx”,“distortionImageN.png”。
关于Fish-Eye其实有多种投影模型,具体参考文献6,典型有equidistance,equisolid angle,orthogonal projection等,根据OpenCV实现,其依据的论文是一种通用模型,不依赖某个具体的类型,取9阶系数就足以满足绝大多数镜头畸变模型。在此,也不再叙述过程,本文重点在下述原理理解和代码实践上!
根据此处OpenCV官方文档此处链接,导航到“Detailed Description”部分,要完全弄清楚其原理,其描述过程仍然令人有些费解,没有像MATLAB官方文档描述的清楚,一目了然。即使结合第三方大量博客(CSDN,知乎等,见文后References),也未必能阐述清楚。故结合OpenCV源码和论文“a generic camera model and calibration method for conventional-wide-angle and fisheye lenses”,再经过本Repo实践,我画出下面的成像原理图,符号和公式严格表达准确,代码运行可靠!
简单阐述下上述我绘制的图中的主要符号,坐标系
点
畸变像高:
同时,
注意上述式子中的
又因
则
为了得到点
设点
如果考虑错切因子
注意上述步骤其实是图像去畸变的工作过程,先一一找到无畸变点对应的畸变点坐标映射,合适时候再通过插值找到对应的像素点。
如果是某个点的去畸变,则需要逆向求解上述过程,其中有已知
-
$r_d$ ,$r$ 的计算分析均指在归一化平面$\pi_1$ 上进行的,而不是实际成像平面$\pi_2$ 。OpenCV文档中写的是$\theta_d =\theta \left(1+{k_1 \theta }^2 +k_2 \theta^4 +k_3 \theta^6 +{k_4 \theta }^8 \right)$ 不准确的,并非上述公式中的$\theta_d$ ,这是因为OpenCV源码变量中把$r_d$ 中间临时变量写成了$\theta_d$ ,而文档是根据代码自动生成的,这就导致了描述不够准确,但内部计算逻辑是正确的,$\theta$ 和$\theta_d$ 单位为弧度,非度数。 - 参考文献4描述“畸变与焦距无关”是不完全正确的,这在归一化成像平面
$\pi_1$ 上成立,因为有$r_d =1*\tan \left(\theta_d \right)$ ,但在实际成像平面上$\pi_2$ 上不成立,因为$\left|O_3 p\right|=f*\tan \left(\theta_d \right)$ ,$\theta_d$ 一定的情况下,与焦距$f$ 成正比的。 - 参考文献4把平面
$\pi_1$ 和平面$\pi_2$ 混为一团,后果是牵强认为$r_d =1*\tan \left(\theta_d \right)=\theta_d$ ,为了说服其成立,认为“$\theta_d$ 趋于0,$r_d$ 就等于$\theta_d$ ,但这里根本就没有趋向于0的说法。
- 归一化平面
$\pi_1$ 存在的目的是为了求取尺度scale,然后根据三角形相似原理转嫁到实际成像平面$\pi_2$ 做去畸变计算。 - 焦距不会影响畸变形状(或外观),影响的是尺度变化,但尺度变化百分比保持不变。
- 4个畸变系数
$k_1 ,k_2 ,k_3 ,k_4$ 影响畸变形状(或外观),也会影响尺度大小。 - 内参矩阵
$K$ 是相机物理坐标与像平面像素坐标互相转换的“过渡矩阵”,决定着畸变中心位置坐标和坐标系转换的功能。
为了利用畸变表提供的数据对畸变图像进行去畸变,通常有下面2种方式:
---
title: 利用畸变表对图像去畸变流程
---
flowchart LR
A[畸变表]-- 直接利用像高比例 ----->C[去畸变图]
A-- "OpenCV鱼眼模型"-->D["拟合畸变系数(k1~k4)"]--->C
下面对上述2种方式分别进行实现。
主要利用畸变表中像高比例进行查表(一维插值)进行畸变量计算,算法步骤为:
- 根据畸变表估算内参矩阵
$K$ 和人为指定无畸变图大小; - 利用内参矩阵
$K$ 对某个无畸变图像素坐标$\left(u,v\right)$ 转为像平面$\pi_2$ 的物理坐标$\left(x,y\right)$ ; - 计算物理坐标
$\left(x,y\right)$ 离原点的距离为RefH; - 计算入射角
$\theta$ ,然后查表得到畸变像高距离$r_d$ ,直接根据比例计算物理畸变点坐标$\left(x_d ,y_d \right)$ ; - 再次利用内参矩阵
$K$ 将物理畸变点坐标$\left(x_d ,y_d \right)$ 转为像素坐标$\left(u_d ,v_d \right)$ ; - 对所有无畸变图上的点重复step2-5找到像素坐标映射关系
$\left(u,v\right)\to \left(u_d ,v_d \right)$ ,最后图像插值即可完成去畸变。
读取畸变视频/图像源
distortFrame = imread("data/distortionImage1.png");
figure;imshow(distortFrame);
title("distortion image")
distortionTablePath = "./data/distortionTable.xlsx";
sensorRatio = 0.003;% 由厂家提供,单位 mm/pixel
cameraData = readtable(distortionTablePath,Range="A4:D804",VariableNamingRule="preserve");
head(cameraData)% 预览前面若干行数据
Y Angle (deg) Real Height Ref. Height Distortion(f-tanθ)
_____________ ___________ ___________ ___________________
0.1 0.0050939 0.005103 -0.00011259
0.2 0.010188 0.010207 -0.00048478
0.3 0.015282 0.01531 -0.0011181
0.4 0.020376 0.020414 -0.0020122
0.5 0.025469 0.025518 -0.0031675
0.6 0.030563 0.030622 -0.0045836
0.7 0.035657 0.035726 -0.0062606
0.8 0.040751 0.04083 -0.0081985
第一列为入射角,第二列为实际畸变量长度,单位:mm,第三列为理想参考投影长度,单位:mm.
angleIn = cameraData{:,1};% 入射角
focal = mean(cameraData{:,3}./tand(angleIn));% 焦距,单位:mm
angleOut = atan2d(cameraData{:,2},focal);% 出射角
cameraDataIn = table(angleIn,angleOut,VariableNames = ["angle","angle_d"]);
[h,w,~] = size(distortFrame);
K = [focal/sensorRatio,0,w/2;
0,focal/sensorRatio,h/2;
0,0,1];
undistortImg = undistortFisheyeImgFromTable(distortFrame,K,cameraDataIn,OutputView="same");
figure;
imshow(undistortImg);
title("undistortion image from distortion table directly")
先对畸变表中的像高按照归一化平面
- 根据畸变表数据(实际焦距
$f$ 下的像高)换算为归一化平面$\pi_1$ 的像高; - 按照畸变公式进行系数拟合得到
$k_1 ~k_4$ ,同时估算内参矩阵$K$ 和人为指定无畸变图大小; - 利用内参矩阵
$K$ 对某个无畸变图像素坐标$\left(u,v\right)$ 转为像平面$\pi_1$ 的物理坐标$\left(x,y\right)$ ; - 计算物理坐标
$\left(x,y\right)$ 离原点的距离为RefH; - 计算入射角
$\theta$ ,然后根据畸变公式得到畸变像高距离$r_d$ ,随后根据比例计算物理畸变点坐标$\left(x_d ,y_d \right)$ ; - 再次利用内参矩阵
$K$ 将物理畸变点坐标$\left(x_d ,y_d \right)$ 转为像素坐标$\left(u_d ,v_d \right)$ ; - 对所有无畸变图上的点重复step2-5找到像素坐标映射关系
$\left(u,v\right)\to \left(u_d ,v_d \right)$ ,最后图像插值即可完成去畸变。
r_d = 1./focal*cameraData{:,2};% 求归一化平面上的r_d
thetaRadian = deg2rad(angleIn);% 度数转为弧度
由前面分析的畸变像高公式,对归一化平面
写为矩阵形式,为,
典型为
A = [thetaRadian.^3,thetaRadian.^5,thetaRadian.^7,thetaRadian.^9];
b = r_d-thetaRadian;
opencvCoeffs = A\b;
disp("最小二乘拟合OpenCV鱼眼模型畸变系数为(k1~k4):"+strjoin(string(opencvCoeffs'),","))
最小二乘拟合OpenCV鱼眼模型畸变系数为(k1~k4):-0.10493,0.015032,-0.013603,0.0030601
newCameraMatrixK = K;
newImageSize = size(distortFrame,[1,2]);% [height,width]
[mapX,mapY] = initUndistortRectifyMapOpenCV(K, opencvCoeffs,newCameraMatrixK,newImageSize);
mapX,mapY即为映射
undistortImg2 = images.internal.interp2d(distortFrame,mapX,mapY,"linear",255, false);
figure;
imshow(undistortImg2)
title("undistortion image from fit opencv fisheye model coefficient")
可以看出两种方法效果图一致,主要区别就是尺度scale计算方式不同,一个是直接查表得到scale,另一个是拟合公式求scale,没有明显的本质区别。
有时厂商提供了镜头畸变表,并且我们也通过OpenCV标定了该镜头得到内参矩阵
为实验方便,直接采用上节拟合的畸变系数
disp("标定内参矩阵K:");
标定内参矩阵K:
disp(newCameraMatrixK);
974.6782 0 960.0000
0 974.6782 540.0000
0 0 1.0000
disp("标定的畸变系数为(k1~k4):"+strjoin(string(opencvCoeffs'),","))
标定的畸变系数为(k1~k4):-0.10493,0.015032,-0.013603,0.0030601
% 入射角是从0.1°逐渐变化到90°,转为弧度制
theta = deg2rad(angleIn);
RefX = tan(theta);
RefX = filloutliers(RefX,"nearest","mean");% 过滤填充异常点,tan90接近无限大
RefY = 0;
RefH = abs(RefX).*sign(tan(theta)); % 单位:mm
% 再计算拟合像高
r_d = theta.*(1+opencvCoeffs(1)*theta.^2+opencvCoeffs(2)*theta.^4+...
opencvCoeffs(3)*theta.^6+opencvCoeffs(4)*theta.^8);
scale = r_d./RefH;
RealX = RefX.*scale;
RealY = RefY.*scale;
r_d = sqrt(RealX.^2+RealY.^2);
% 绘制参考像高vs实际像高vs百分比误差
figure;
plot(rad2deg(theta),RefH,...
rad2deg(theta),r_d,...
rad2deg(theta),(r_d-RefH)./RefH*100,...
LineWidth=2)
hold on;grid on;
plot(cameraData{:,1},cameraData{:,3},"--",... % Ref height
cameraData{:,1},cameraData{:,2},":",... % Real height
cameraData{:,1},(cameraData{:,2}-cameraData{:,3})./cameraData{:,3}*100,"-.",...
LineWidth=2)
f = mean([newCameraMatrixK(1,1),newCameraMatrixK(2,2)])*sensorRatio;
legend(["paraxial height(mm),f=1","real height(mm),f=1","DISTORTION(%),f=1",...
"factory paraxial height(mm),f="+string(f),"factory real height(mm),f="+string(f),...
"factory DISTORTION(%),f="+string(f)],Location="northwest");
ax = gca;
ax.YLim = [-50,50];
ax.XAxis.TickLabelFormat = '%g\x00B0';% 'degrees'
xlabel("入射角\theta");
ylabel("像高/百分比");
title("distortion curve(f=1 vs f="+string(mean(f))+")");
实线为推算的像高曲线与厂商提供畸变表像高曲线(虚线)不重合?
Oops!原来是在不同成像平面上像高差异导致的(就是最上面分析的平面(
% 转换到实际f的焦距成像平面上的像高
RefH = f.*RefH;
r_d = f.*r_d;
% 绘制厂商结果对比图
figure;
plot(rad2deg(theta),RefH,...
rad2deg(theta),r_d,...
rad2deg(theta),(r_d-RefH)./RefH*100,...
LineWidth=2)
hold on;grid on;
plot(cameraData{:,1},cameraData{:,3},"--",... % Ref height
cameraData{:,1},cameraData{:,2},":",... % Real height
cameraData{:,1},(cameraData{:,2}-cameraData{:,3})./cameraData{:,3}*100,"-.",...
LineWidth=2)
legend(["paraxial height(mm),f="+string(f),"real height(mm),f="+string(f),"DISTORTION(%),f="+string(f),...
"factory paraxial height(mm),f="+string(f),"factory real height(mm),f="+string(f),...
"factory DISTORTION(%),f="+string(f)],Location="northwest");
ax = gca;
ax.YLim = [-50,50];
ax.XAxis.TickLabelFormat = '%g\x00B0';% 'degrees'
xlabel("入射角\theta");
ylabel("像高/百分比");
title("distortion curve");
writematrix([rad2deg(theta),r_d,RefH],"backupDistortionTable.xlsx")
现在为实际焦距
- Fisheye camera model
- Juho Kannala and Sami Brandt. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE transactions on pattern analysis and machine intelligence, 28:1335–40, 09 2006.
- 常用相机投影及畸变模型(针孔|广角|鱼眼)
- 鱼眼镜头的成像原理到畸变矫正(完整版)
- What are the main references to the fish-eye camera model in OpenCV3.0.0dev?
- Fisheye Projection