-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
602 lines (512 loc) · 26.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Based on: https://github.com/wolny/pytorch-3dunet/blob/master/pytorch3dunet/unet3d/model.py
import torch
torch.manual_seed(0)
import torch.nn as nn
from torch.nn import functional as F
def conv3d(in_channels, out_channels, kernel_size, bias, padding=1):
return nn.Conv3d(in_channels, out_channels, kernel_size, padding=padding, bias=bias)
def create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=1):
"""
Create a list of modules with together constitute a single conv layer with non-linearity
and optional batchnorm/groupnorm.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
order (string): order of things, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int): add zero-padding to the input
Return:
list of tuple (name, module)
"""
assert 'c' in order, "Conv layer MUST be present"
assert order[0] not in 'rle', 'Non-linearity cannot be the first operation in the layer'
modules = []
for i, char in enumerate(order):
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1, inplace=True)))
elif char == 'e':
modules.append(('ELU', nn.ELU(inplace=True)))
elif char == 'c':
# add learnable bias only in the absence of gatchnorm/groupnorm
bias = not ('g' in order or 'b' in order)
modules.append(('conv', conv3d(in_channels, out_channels, kernel_size, bias, padding=padding)))
elif char == 'g':
is_before_conv = i < order.index('c')
assert not is_before_conv, 'GroupNorm MUST go after the Conv3d'
# number of groups must be less or equal the number of channels
if out_channels < num_groups:
num_groups = out_channels
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups, num_channels=out_channels)))
elif char == 'b':
is_before_conv = i < order.index('c')
if is_before_conv:
modules.append(('batchnorm', nn.BatchNorm3d(in_channels)))
else:
modules.append(('batchnorm', nn.BatchNorm3d(out_channels)))
else:
raise ValueError(f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']")
return modules
class ContBatchNorm3d(nn.modules.batchnorm._BatchNorm):
def forward(self, input):
return F.batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
True, self.momentum, self.eps)
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
of operations can be specified via the `order` parameter
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='crg', num_groups=8, padding=1):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels, kernel_size, order, num_groups, padding=padding):
self.add_module(name, module)
class DoubleConv(nn.Sequential):
"""
A module consisting of two consecutive convolution layers (e.g. BatchNorm3d+ReLU+Conv3d).
We use (Conv3d+ReLU+GroupNorm3d) by default.
This can be changed however by providing the 'order' argument, e.g. in order
to change to Conv3d+BatchNorm3d+ELU use order='cbe'.
Use padded convolutions to make sure that the output (H_out, W_out) is the same
as (H_in, W_in), so that you don't have to crop in the decoder path.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
encoder (bool): if True we're in the encoder path, otherwise we're in the decoder
kernel_size (int): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, encoder, kernel_size=3, order='crg', num_groups=8):
super(DoubleConv, self).__init__()
if encoder:
# we're in the encoder path
conv1_in_channels = in_channels
conv1_out_channels = out_channels // 2
if conv1_out_channels < in_channels:
conv1_out_channels = in_channels
conv2_in_channels, conv2_out_channels = conv1_out_channels, out_channels
else:
# we're in the decoder path, decrease the number of channels in the 1st convolution
conv1_in_channels, conv1_out_channels = in_channels, out_channels
conv2_in_channels, conv2_out_channels = out_channels, out_channels
# conv1
self.add_module('SingleConv1',
SingleConv(conv1_in_channels, conv1_out_channels, kernel_size, order, num_groups))
# conv2
self.add_module('SingleConv2',
SingleConv(conv2_in_channels, conv2_out_channels, kernel_size, order, num_groups))
class ExtResNetBlock(nn.Module):
"""
Basic UNet block consisting of a SingleConv followed by the residual block.
The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number
of output channels is compatible with the residual block that follows.
This block can be used instead of standard DoubleConv in the Encoder module.
Motivated by: https://arxiv.org/pdf/1706.00120.pdf
Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm.
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='cge', num_groups=8, **kwargs):
super(ExtResNetBlock, self).__init__()
# first convolution
self.conv1 = SingleConv(in_channels, out_channels, kernel_size=kernel_size, order=order, num_groups=num_groups)
# residual block
self.conv2 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=order, num_groups=num_groups)
# remove non-linearity from the 3rd convolution since it's going to be applied after adding the residual
n_order = order
for c in 'rel':
n_order = n_order.replace(c, '')
self.conv3 = SingleConv(out_channels, out_channels, kernel_size=kernel_size, order=n_order,
num_groups=num_groups)
# create non-linearity separately
if 'l' in order:
self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True)
elif 'e' in order:
self.non_linearity = nn.ELU(inplace=True)
else:
self.non_linearity = nn.ReLU(inplace=True)
def forward(self, x):
# apply first convolution and save the output as a residual
out = self.conv1(x)
residual = out
# residual block
out = self.conv2(out)
out = self.conv3(out)
out += residual
out = self.non_linearity(out)
return out
class Encoder(nn.Module):
"""
A single module from the encoder path consisting of the optional max
pooling layer (one may specify the MaxPool kernel_size to be different
than the standard (2,2,2), e.g. if the volumetric data is anisotropic
(make sure to use complementary scale_factor in the decoder path) followed by
a DoubleConv module.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
conv_kernel_size (int): size of the convolving kernel
apply_pooling (bool): if True use MaxPool3d before DoubleConv
pool_kernel_size (tuple): the size of the window to take a max over
pool_type (str): pooling layer: 'max' or 'avg'
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, conv_kernel_size=3, apply_pooling=True,
pool_kernel_size=(2, 2, 2), pool_type='max', basic_module=DoubleConv, conv_layer_order='crg',
num_groups=8):
super(Encoder, self).__init__()
assert pool_type in ['max', 'avg']
if apply_pooling:
if pool_type == 'max':
self.pooling = nn.MaxPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = nn.AvgPool3d(kernel_size=pool_kernel_size)
else:
self.pooling = None
self.basic_module = basic_module(in_channels, out_channels,
encoder=True,
kernel_size=conv_kernel_size,
order=conv_layer_order,
num_groups=num_groups)
def forward(self, x):
if self.pooling is not None:
x = self.pooling(x)
x = self.basic_module(x)
return x
class Decoder(nn.Module):
"""
A single module for decoder path consisting of the upsample layer
(either learned ConvTranspose3d or interpolation) followed by a DoubleConv
module.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int): size of the convolving kernel
scale_factor (tuple): used as the multiplier for the image H/W/D in
case of nn.Upsample or as stride in case of ConvTranspose3d, must reverse the MaxPool3d operation
from the corresponding encoder
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, kernel_size=3,
scale_factor=(2, 2, 2), basic_module=DoubleConv, conv_layer_order='crg', num_groups=8):
super(Decoder, self).__init__()
if basic_module == DoubleConv:
# if DoubleConv is the basic_module use nearest neighbor interpolation for upsampling
self.upsample = None
else:
# otherwise use ConvTranspose3d (bear in mind your GPU memory)
# make sure that the output size reverses the MaxPool3d from the corresponding encoder
# (D_out = (D_in − 1) × stride[0] − 2 × padding[0] + kernel_size[0] + output_padding[0])
# also scale the number of channels from in_channels to out_channels so that summation joining
# works correctly
self.upsample = nn.ConvTranspose3d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=scale_factor,
padding=1,
output_padding=1)
# adapt the number of in_channels for the ExtResNetBlock
in_channels = out_channels
self.basic_module = basic_module(in_channels, out_channels,
encoder=False,
kernel_size=kernel_size,
order=conv_layer_order,
num_groups=num_groups)
def forward(self, encoder_features, x):
if self.upsample is None:
# use nearest neighbor interpolation and concatenation joining
output_size = encoder_features.size()[2:]
x = F.interpolate(x, size=output_size, mode='nearest')
# concatenate encoder_features (encoder path) with the upsampled input across channel dimension
x = torch.cat((encoder_features, x), dim=1)
else:
# use ConvTranspose3d and summation joining
x = self.upsample(x)
x += encoder_features
x = self.basic_module(x)
return x
class FinalConv(nn.Sequential):
"""
A module consisting of a convolution layer (e.g. Conv3d+ReLU+GroupNorm3d) and the final 1x1 convolution
which reduces the number of channels to 'out_channels'.
with the number of output channels 'out_channels // 2' and 'out_channels' respectively.
We use (Conv3d+ReLU+GroupNorm3d) by default.
This can be change however by providing the 'order' argument, e.g. in order
to change to Conv3d+BatchNorm3d+ReLU use order='cbr'.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order='crg', num_groups=8):
super(FinalConv, self).__init__()
# conv1
self.add_module('SingleConv', SingleConv(in_channels, in_channels, kernel_size, order, num_groups))
# in the last layer a 1×1 convolution reduces the number of output channels to out_channels
final_conv = nn.Conv3d(in_channels, out_channels, 1)
self.add_module('final_conv', final_conv)
class Attention(nn.Module):
def __init__(self, F_g, F_l, F_int, device):
super(Attention, self).__init__()
self.W_g = nn.Sequential(
nn.Conv3d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(F_int)
).to(device)
self.W_x = nn.Sequential(
nn.Conv3d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(F_int)
).to(device)
self.psi = nn.Sequential(
nn.Conv3d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True),
nn.BatchNorm3d(1),
nn.Sigmoid()
).to(device)
self.relu = nn.ReLU(inplace=True).to(device)
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
out = x * psi
return out
class DecoderAttention(nn.Module):
"""
A single module for decoder path consisting of the upsample layer
(either learned ConvTranspose3d or interpolation) followed by a DoubleConv
module.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int): size of the convolving kernel
scale_factor (tuple): used as the multiplier for the image H/W/D in
case of nn.Upsample or as stride in case of ConvTranspose3d, must reverse the MaxPool3d operation
from the corresponding encoder
basic_module(nn.Module): either ResNetBlock or DoubleConv
conv_layer_order (string): determines the order of layers
in `DoubleConv` module. See `DoubleConv` for more info.
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, inter_feature_num,
kernel_size=3, scale_factor=(2, 2, 2), basic_module=DoubleConv, conv_layer_order='crg', num_groups=8, device=0):
super(DecoderAttention, self).__init__()
self.inter_feature_num = inter_feature_num
self.device = device
if basic_module == DoubleConv:
# if DoubleConv is the basic_module use nearest neighbor interpolation for upsampling
self.upsample = None
else:
# otherwise use ConvTranspose3d (bear in mind your GPU memory)
# make sure that the output size reverses the MaxPool3d from the corresponding encoder
# (D_out = (D_in − 1) × stride[0] − 2 × padding[0] + kernel_size[0] + output_padding[0])
# also scale the number of channels from in_channels to out_channels so that summation joining
# works correctly
self.upsample = nn.ConvTranspose3d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=scale_factor,
padding=1,
output_padding=1)
# adapt the number of in_channels for the ExtResNetBlock
in_channels = out_channels
self.basic_module = basic_module(in_channels, out_channels,
encoder=False,
kernel_size=kernel_size,
order=conv_layer_order,
num_groups=num_groups)
f_g = self.inter_feature_num*2
f_x = f_g*2
self.attention = Attention(f_g, f_x, self.inter_feature_num, self.device)
def forward(self, encoder_features, x):
if self.upsample is None:
# use nearest neighbor interpolation and concatenation joining
output_size = encoder_features.size()[2:]
x = F.interpolate(x, size=output_size, mode='nearest')
f_g = x.size()[1]//2
f_x = x.size()[1]
inter_size = f_g//2
x_attention = self.attention(x, encoder_features)
# concatenate encoder_features (encoder path) with the upsampled input across channel dimension
x = torch.cat((x_attention, x), dim=1)
else:
# use ConvTranspose3d and summation joining
x = self.upsample(x)
x += encoder_features
x = self.basic_module(x)
return x
class UNet3D(nn.Module):
"""
3DUnet model from
`"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation"
<https://arxiv.org/pdf/1606.06650.pdf>`.
Args:
in_channels (int): number of input channels
out_channels (int): number of output segmentation masks;
Note that that the of out_channels might correspond to either
different semantic classes or to different binary segmentation mask.
It's up to the user of the class to interpret the out_channels and
use the proper loss criterion during training (i.e. CrossEntropyLoss (multi-class)
or BCEWithLogitsLoss (two-class) respectively)
f_maps (int, tuple): number of feature maps at each level of the encoder; if it's an integer the number
of feature maps is given by the geometric progression: f_maps ^ k, k=1,2,3,4
final_sigmoid (bool): if True apply element-wise nn.Sigmoid after the
final 1x1 convolution, otherwise apply nn.Softmax. MUST be True if nn.BCELoss (two-class) is used
to train the model. MUST be False if nn.CrossEntropyLoss (multi-class) is used to train the model.
layer_order (string): determines the order of layers
in `SingleConv` module. e.g. 'crg' stands for Conv3d+ReLU+GroupNorm3d.
See `SingleConv` for more info
init_channel_number (int): number of feature maps in the first conv layer of the encoder; default: 64
num_groups (int): number of groups for the GroupNorm
"""
def __init__(self, in_channels, out_channels, final_sigmoid, f_maps=64, layer_order='crg', num_groups=8,
**kwargs):
super(UNet3D, self).__init__()
if isinstance(f_maps, int):
# use 4 levels in the encoder path as suggested in the paper
number_of_fmaps=4
f_maps = [f_maps * 2 ** k for k in range(number_of_fmaps)]
# create encoder path consisting of Encoder modules. The length of the encoder is equal to `len(f_maps)`
# uses DoubleConv as a basic_module for the Encoder
encoders = []
for i, out_feature_num in enumerate(f_maps):
if i == 0:
encoder = Encoder(in_channels, out_feature_num, apply_pooling=False, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups)
else:
encoder = Encoder(f_maps[i - 1], out_feature_num, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups)
encoders.append(encoder)
self.encoders = nn.ModuleList(encoders)
# create decoder path consisting of the Decoder modules. The length of the decoder is equal to `len(f_maps) - 1`
# uses DoubleConv as a basic_module for the Decoder
decoders = []
reversed_f_maps = list(reversed(f_maps))
for i in range(len(reversed_f_maps) - 1):
in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1]
out_feature_num = reversed_f_maps[i + 1]
decoder = Decoder(in_feature_num, out_feature_num, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups)
decoders.append(decoder)
self.decoders = nn.ModuleList(decoders)
# in the last layer a 1×1 convolution reduces the number of output
# channels to the number of labels
self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1)
if final_sigmoid:
self.final_activation = nn.Sigmoid()
else:
self.final_activation = nn.Softmax(dim=1)
# self.final_activation = nn.LogSoftmax(dim=1)
def forward(self, x):
# encoder part
encoders_features = []
for encoder in self.encoders:
x = encoder(x)
# reverse the encoder outputs to be aligned with the decoder
encoders_features.insert(0, x)
# remove the last encoder's output from the list
# !!remember: it's the 1st in the list
encoders_features = encoders_features[1:]
# decoder part
for decoder, encoder_features in zip(self.decoders, encoders_features):
# pass the output from the corresponding encoder and the output
# of the previous decoder
x = decoder(encoder_features, x)
x = self.final_conv(x)
# apply final_activation (i.e. Sigmoid or Softmax) only for prediction. During training the network outputs
# logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric
if not self.training:
x = self.final_activation(x)
return x
class UNet3D_attention(nn.Module):
def __init__(self, in_channels, out_channels, final_sigmoid, f_maps=64, layer_order='crg', num_groups=8, device=0,
**kwargs):
super(UNet3D_attention, self).__init__()
self.device = device
if isinstance(f_maps, int):
# use 4 levels in the encoder path as suggested in the paper
number_of_fmaps=4
f_maps = [f_maps * 2 ** k for k in range(number_of_fmaps)]
# create encoder path consisting of Encoder modules. The length of the encoder is equal to `len(f_maps)`
# uses DoubleConv as a basic_module for the Encoder
encoders = []
for i, out_feature_num in enumerate(f_maps):
if i == 0:
encoder = Encoder(in_channels, out_feature_num, apply_pooling=False, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups)
else:
encoder = Encoder(f_maps[i - 1], out_feature_num, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups)
encoders.append(encoder)
self.encoders = nn.ModuleList(encoders)
# create decoder path consisting of the Decoder modules. The length of the decoder is equal to `len(f_maps) - 1`
# uses DoubleConv as a basic_module for the Decoder
decoders = []
reversed_f_maps = list(reversed(f_maps))
for i in range(len(reversed_f_maps) - 1):
in_feature_num = reversed_f_maps[i] + reversed_f_maps[i + 1]
out_feature_num = reversed_f_maps[i + 1]
if i == len(reversed_f_maps) - 2:
inter_feature_num = reversed_f_maps[i + 1]//2
else:
inter_feature_num = reversed_f_maps[i + 2]
decoder = DecoderAttention(in_feature_num, out_feature_num, inter_feature_num, basic_module=DoubleConv,
conv_layer_order=layer_order, num_groups=num_groups,
device = self.device
)
decoders.append(decoder)
self.decoders = nn.ModuleList(decoders)
# in the last layer a 1×1 convolution reduces the number of output
# channels to the number of labels
self.final_conv = nn.Conv3d(f_maps[0], out_channels, 1)
if final_sigmoid:
self.final_activation = nn.Sigmoid()
else:
self.final_activation = nn.Softmax(dim=1)
def forward(self, x):
# encoder part
encoders_features = []
for encoder in self.encoders:
x = encoder(x)
# reverse the encoder outputs to be aligned with the decoder
encoders_features.insert(0, x)
# remove the last encoder's output from the list
# !!remember: it's the 1st in the list
encoders_features = encoders_features[1:]
# decoder part
for decoder, encoder_features in zip(self.decoders, encoders_features):
# pass the output from the corresponding encoder and the output
# of the previous decoder
x = decoder(encoder_features, x)
x = self.final_conv(x)
# apply final_activation (i.e. Sigmoid or Softmax) only for prediction. During training the network outputs
# logits and it's up to the user to normalize it before visualising with tensorboard or computing validation metric
if not self.training:
x = self.final_activation(x)
return x