-
Notifications
You must be signed in to change notification settings - Fork 2
/
backbone.py
278 lines (225 loc) · 10.6 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch.nn as nn
import torch
import torch.nn.functional as F
import pdb
import math
from utils import l2_norm
from torch.nn.utils.weight_norm import WeightNorm
from torch.distributions import Bernoulli
# This ResNet network was designed following the practice of the following papers:
# TADAM: Task dependent adaptive metric for improved few-shot learning (Oreshkin et al., in NIPS 2018) and
# A Simple Neural Attentive Meta-Learner (Mishra et al., in ICLR 2018).
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, drop_rate=0.0, drop_block=False, block_size=1):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.LeakyReLU(0.1)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv3x3(planes, planes)
self.bn3 = nn.BatchNorm2d(planes)
self.maxpool = nn.MaxPool2d(stride)
self.downsample = downsample
self.stride = stride
self.drop_rate = drop_rate
self.num_batches_tracked = 0
self.drop_block = drop_block
self.block_size = block_size
self.DropBlock = DropBlock(block_size=self.block_size)
def forward(self, x):
self.num_batches_tracked += 1
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
out = self.maxpool(out)
if self.drop_rate > 0:
if self.drop_block == True:
feat_size = out.size()[2]
keep_rate = max(1.0 - self.drop_rate / (20*2000) * (self.num_batches_tracked), 1.0 - self.drop_rate)
gamma = (1 - keep_rate) / self.block_size**2 * feat_size**2 / (feat_size - self.block_size + 1)**2
out = self.DropBlock(out, gamma=gamma)
else:
out = F.dropout(out, p=self.drop_rate, training=self.training, inplace=True)
return out
class DropBlock(nn.Module):
def __init__(self, block_size):
super(DropBlock, self).__init__()
self.block_size = block_size
#self.gamma = gamma
#self.bernouli = Bernoulli(gamma)
def forward(self, x, gamma):
# shape: (bsize, channels, height, width)
if self.training:
batch_size, channels, height, width = x.shape
bernoulli = Bernoulli(gamma)
mask = bernoulli.sample((batch_size, channels, height - (self.block_size - 1), width - (self.block_size - 1))).cuda()
#print((x.sample[-2], x.sample[-1]))
block_mask = self._compute_block_mask(mask)
#print (block_mask.size())
#print (x.size())
countM = block_mask.size()[0] * block_mask.size()[1] * block_mask.size()[2] * block_mask.size()[3]
count_ones = block_mask.sum()
return block_mask * x * (countM / count_ones)
else:
return x
def _compute_block_mask(self, mask):
left_padding = int((self.block_size-1) / 2)
right_padding = int(self.block_size / 2)
batch_size, channels, height, width = mask.shape
#print ("mask", mask[0][0])
non_zero_idxs = mask.nonzero()
nr_blocks = non_zero_idxs.shape[0]
offsets = torch.stack(
[
torch.arange(self.block_size).view(-1, 1).expand(self.block_size, self.block_size).reshape(-1), # - left_padding,
torch.arange(self.block_size).repeat(self.block_size), #- left_padding
]
).t().cuda()
offsets = torch.cat((torch.zeros(self.block_size**2, 2).cuda().long(), offsets.long()), 1)
if nr_blocks > 0:
non_zero_idxs = non_zero_idxs.repeat(self.block_size ** 2, 1)
offsets = offsets.repeat(nr_blocks, 1).view(-1, 4)
offsets = offsets.long()
block_idxs = non_zero_idxs + offsets
#block_idxs += left_padding
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
padded_mask[block_idxs[:, 0], block_idxs[:, 1], block_idxs[:, 2], block_idxs[:, 3]] = 1.
else:
padded_mask = F.pad(mask, (left_padding, right_padding, left_padding, right_padding))
block_mask = 1 - padded_mask#[:height, :width]
return block_mask
class ResNet(nn.Module):
def __init__(self, block, keep_prob=1.0, avg_pool=False, drop_rate=0.0, dropblock_size=5, flatten=False):
self.inplanes = 3
super(ResNet, self).__init__()
self.final_feat_dim = 640
self.layer1 = self._make_layer(block, 64, stride=2, drop_rate=drop_rate)
self.layer2 = self._make_layer(block, 160, stride=2, drop_rate=drop_rate)
self.layer3 = self._make_layer(block, 320, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
self.layer4 = self._make_layer(block, 640, stride=2, drop_rate=drop_rate, drop_block=True, block_size=dropblock_size)
if avg_pool:
self.avgpool = nn.Sequential(
nn.AvgPool2d(5, stride=1),
Flatten()
)
self.keep_prob = keep_prob
self.flatten = flatten
self.keep_avg_pool = avg_pool
self.dropout = nn.Dropout(p=1 - self.keep_prob, inplace=False)
self.drop_rate = drop_rate
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, stride=1, drop_rate=0.0, drop_block=False, block_size=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, drop_rate, drop_block, block_size))
self.inplanes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
if self.keep_avg_pool:
x = self.avgpool(x)
return x
class ConvNet(nn.Module):
def __init__(self, depth, flatten = True):
super(ConvNet,self).__init__()
trunk = []
for i in range(depth):
indim = 3 if i == 0 else 64
outdim = 64
B = ConvBlock(indim, outdim, pool = ( i <4 ) ) #only pooling for fist 4 layers
trunk.append(B)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
self.final_feat_dim = 640
def forward(self,x):
out = self.trunk(x)
return out
def resnet12(keep_prob=1.0, avg_pool=False, flatten=True, **kwargs):
"""Constructs a ResNet-12 model.
"""
model = ResNet(BasicBlock, keep_prob=keep_prob, drop_rate=0.1, dropblock_size=2, avg_pool=avg_pool, flatten=flatten)
return model
def Conv4(avg_pool=True, flatten=True):
return ConvNet(4, flatten=flatten)
class distLinear(nn.Module):
def __init__(self, indim, outdim):
super(distLinear, self).__init__()
self.L = nn.Linear( indim, outdim, bias = False)
self.class_wise_learnable_norm = True #See the issue#4&8 in the github
if self.class_wise_learnable_norm:
WeightNorm.apply(self.L, 'weight', dim=0) #split the weight update component to direction and norm
if outdim <=200:
self.scale_factor = 2; #a fixed scale factor to scale the output of cos value into a reasonably large input for softmax, for to reproduce the result of CUB with ResNet10, use 4. see the issue#31 in the github
else:
self.scale_factor = 10; #in omniglot, a larger scale factor is required to handle >1000 output classes.
def forward(self, x, y=None):
x_norm = torch.norm(x, p=2, dim =1).unsqueeze(1).expand_as(x)
x_normalized = x.div(x_norm+ 0.00001)
if not self.class_wise_learnable_norm:
L_norm = torch.norm(self.L.weight.data, p=2, dim =1).unsqueeze(1).expand_as(self.L.weight.data)
self.L.weight.data = self.L.weight.data.div(L_norm + 0.00001)
cos_dist = self.L(x_normalized) #matrix product by forward function, but when using WeightNorm, this also multiply the cosine distance by a class-wise learnable norm, see the issue#4&8 in the github
scores = self.scale_factor* (cos_dist)
return scores
class NormLinear(nn.Module):
# implementation of additive margin softmax loss in https://arxiv.org/abs/1801.05599
def __init__(self, embedding_size=512, classnum=51332, radius=10, pretrained=None):
super(NormLinear, self).__init__()
self.classnum = classnum
self.s = radius
# initial kernel
self.weight = nn.Parameter(torch.Tensor(embedding_size, classnum))
self.reset_parameters()
def reset_parameters(self):
stdv = 1./math.sqrt(self.weight.size(0))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, embeddings, y=None):
# weights norm
nB = len(embeddings)
x_len, embeddings = l2_norm(embeddings)
kernel_len, kernel_norm = l2_norm(self.weight,axis=0)
# cos(theta+m)
cos_theta = torch.mm(embeddings,kernel_norm)
theta = embeddings.mm(kernel_norm.detach())
output = cos_theta * 1.0 # a little bit hacky way to prevent in_place operation on cos_theta
if self.s:
output*=self.s # scale up in order to make softmax work, first introduced in normface
else:
output*=x_len
return output