forked from NVlabs/MUNIT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_batch.py
106 lines (94 loc) · 4.67 KB
/
test_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
from utils import get_config, get_data_loader_folder
from trainer import MUNIT_Trainer, UNIT_Trainer
import argparse
from torch.autograd import Variable
from data import ImageFolder
import torchvision.utils as vutils
try:
from itertools import izip as zip
except ImportError: # will be 3.x series
pass
import sys
import torch
import os
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/edges2handbags_folder', help='Path to the config file.')
parser.add_argument('--input_folder', type=str, help="input image folder")
parser.add_argument('--output_folder', type=str, help="output image folder")
parser.add_argument('--checkpoint', type=str, help="checkpoint of autoencoders")
parser.add_argument('--a2b', type=int, help="1 for a2b and others for b2a", default=1)
parser.add_argument('--seed', type=int, default=1, help="random seed")
parser.add_argument('--num_style',type=int, default=10, help="number of styles to sample")
parser.add_argument('--synchronized', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_only', action='store_true', help="whether use synchronized style code or not")
parser.add_argument('--output_path', type=str, default='.', help="path for logs, checkpoints, and VGG model weight")
parser.add_argument('--trainer', type=str, default='MUNIT', help="MUNIT|UNIT")
opts = parser.parse_args()
torch.manual_seed(opts.seed)
torch.cuda.manual_seed(opts.seed)
# Load experiment setting
config = get_config(opts.config)
input_dim = config['input_dim_a'] if opts.a2b else config['input_dim_b']
# Setup model and data loader
image_names = ImageFolder(opts.input_folder, transform=None, return_paths=True)
data_loader = get_data_loader_folder(opts.input_folder, 1, False, new_size=config['new_size_a'], crop=False)
config['vgg_model_path'] = opts.output_path
if opts.trainer == 'MUNIT':
style_dim = config['gen']['style_dim']
trainer = MUNIT_Trainer(config)
elif opts.trainer == 'UNIT':
trainer = UNIT_Trainer(config)
else:
sys.exit("Only support MUNIT|UNIT")
state_dict = torch.load(opts.checkpoint)
trainer.gen_a.load_state_dict(state_dict['a'])
trainer.gen_b.load_state_dict(state_dict['b'])
trainer.cuda()
trainer.eval()
encode = trainer.gen_a.encode if opts.a2b else trainer.gen_b.encode # encode function
decode = trainer.gen_b.decode if opts.a2b else trainer.gen_a.decode # decode function
if opts.trainer == 'MUNIT':
# Start testing
style_fixed = Variable(torch.randn(opts.num_style, style_dim, 1, 1).cuda(), volatile=True)
for i, (images, names) in enumerate(zip(data_loader,image_names)):
print(names[1])
images = Variable(images.cuda(), volatile=True)
content, _ = encode(images)
style = style_fixed if opts.synchronized else Variable(torch.randn(opts.num_style, style_dim, 1, 1).cuda(), volatile=True)
for j in range(opts.num_style):
s = style[j].unsqueeze(0)
outputs = decode(content, s)
outputs = (outputs + 1) / 2.
# path = os.path.join(opts.output_folder, 'input{:03d}_output{:03d}.jpg'.format(i, j))
basename = os.path.basename(names[1])
path = os.path.join(opts.output_folder+"_%02d"%j,basename)
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
vutils.save_image(outputs.data, path, padding=0, normalize=True)
if not opts.output_only:
# also save input images
vutils.save_image(images.data, os.path.join(opts.output_folder, 'input{:03d}.jpg'.format(i)), padding=0, normalize=True)
elif opts.trainer == 'UNIT':
# Start testing
for i, (images, names) in enumerate(zip(data_loader,image_names)):
print(names[1])
images = Variable(images.cuda(), volatile=True)
content, _ = encode(images)
outputs = decode(content)
outputs = (outputs + 1) / 2.
# path = os.path.join(opts.output_folder, 'input{:03d}_output{:03d}.jpg'.format(i, j))
basename = os.path.basename(names[1])
path = os.path.join(opts.output_folder,basename)
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
vutils.save_image(outputs.data, path, padding=0, normalize=True)
if not opts.output_only:
# also save input images
vutils.save_image(images.data, os.path.join(opts.output_folder, 'input{:03d}.jpg'.format(i)), padding=0, normalize=True)
else:
pass