-
Notifications
You must be signed in to change notification settings - Fork 32
/
test_intp.py
128 lines (100 loc) · 3.76 KB
/
test_intp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import argparse
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils.data as data
from PIL import Image, ImageFile
from torchvision import transforms
from tqdm import tqdm
from template import imagenet_templates
import fast_stylenet
from sampler import InfiniteSamplerWrapper
import clip
from template import imagenet_templates
import torch.nn.functional as F
from torchvision.utils import save_image
from torchvision.transforms.functional import adjust_contrast
cudnn.benchmark = True
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
import time
def intp(model1, model2,model3, decay=0.999):
for p_out, p_in1, p_in2 in zip(model3.parameters(), model1.parameters(), model2.parameters()):
p_out.data = nn.Parameter(p_in1*(1-decay) +p_in2*(decay));
return model3
def test_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
def hr_transform():
transform_list = [
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
self.paths = list(Path(self.root).glob('*'))
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(str(path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
parser = argparse.ArgumentParser()
parser.add_argument('--test_dir', type=str, default ='./test_set')
parser.add_argument('--hr_dir', type=str)
parser.add_argument('--vgg', type=str, default='models/vgg_normalised.pth')
# training options
parser.add_argument('--n_threads', type=int, default=16)
parser.add_argument('--num_test', type=int, default=16)
parser.add_argument('--decoder_src', type=str, default='./model_fast/clip_decoder_stonewall.pth.tar')
parser.add_argument('--decoder_trg', type=str, default='./model_fast/clip_decoder_desert.pth.tar')
args = parser.parse_args()
device = torch.device('cuda')
decoder = fast_stylenet.decoder_cls()
decoder2 = fast_stylenet.decoder_cls()
decoder_out = fast_stylenet.decoder_cls()
vgg = fast_stylenet.vgg
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
decoder.decode.load_state_dict(torch.load(args.decoder_src))
decoder2.decode.load_state_dict(torch.load(args.decoder_trg))
vgg = vgg.to(device)
decoder = decoder.to(device)
decoder2 =decoder2.to(device)
decoder_out =decoder_out.to(device)
test_tf = test_transform()
test_dataset = FlatFolderDataset(args.test_dir, test_tf)
test_iter = iter(data.DataLoader(
test_dataset, batch_size=args.num_test,
num_workers=args.n_threads))
test_images1 = next(test_iter)
test_images1 = test_images1.cuda()
if args.hr_dir is not None:
hr_tf = hr_transform()
hr_dataset = FlatFolderDataset(args.hr_dir, hr_tf)
hr_iter = iter(data.DataLoader(
hr_dataset, batch_size=1,
num_workers=args.n_threads))
hr_images = next(hr_iter)
hr_images = hr_images.cuda()
with torch.no_grad():
outs = [test_images1]
for i in range(6):
decoder_intp = intp(decoder,decoder2,decoder_out,i*0.2)
enc_feat = vgg(test_images1)
test_out1 = decoder_intp(enc_feat)
test_out1 = adjust_contrast(test_out1,1.5)
outs.append(test_out1)
output_test = torch.cat(outs,dim=0)
output_name = './output_test/test_intp.png'
save_image(output_test, str(output_name),nrow=test_out1.size(0),normalize=True,scale_each=True)