-
Notifications
You must be signed in to change notification settings - Fork 32
/
train_CLIPstyler.py
245 lines (189 loc) · 8.54 KB
/
train_CLIPstyler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
from PIL import Image
import numpy as np
import torch
import torch.nn
import torch.optim as optim
from torchvision import transforms, models
import StyleNet
import utils
import clip
import torch.nn.functional as F
from template import imagenet_templates
from PIL import Image
import PIL
from torchvision import utils as vutils
import argparse
from torchvision.transforms.functional import adjust_contrast
parser = argparse.ArgumentParser()
parser.add_argument('--content_path', type=str, default="./face.jpg",
help='Image resolution')
parser.add_argument('--content_name', type=str, default="face",
help='Image resolution')
parser.add_argument('--exp_name', type=str, default="exp1",
help='Image resolution')
parser.add_argument('--text', type=str, default="Fire",
help='Image resolution')
parser.add_argument('--lambda_tv', type=float, default=2e-3,
help='total variation loss parameter')
parser.add_argument('--lambda_patch', type=float, default=9000,
help='PatchCLIP loss parameter')
parser.add_argument('--lambda_dir', type=float, default=500,
help='directional loss parameter')
parser.add_argument('--lambda_c', type=float, default=150,
help='content loss parameter')
parser.add_argument('--crop_size', type=int, default=128,
help='cropped image size')
parser.add_argument('--num_crops', type=int, default=64,
help='number of patches')
parser.add_argument('--img_width', type=int, default=512,
help='size of images')
parser.add_argument('--img_height', type=int, default=512,
help='size of images')
parser.add_argument('--max_step', type=int, default=200,
help='Number of domains')
parser.add_argument('--lr', type=float, default=5e-4,
help='Number of domains')
parser.add_argument('--thresh', type=float, default=0.7,
help='Number of domains')
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
assert (args.img_width%8)==0, "width must be multiple of 8"
assert (args.img_height%8)==0, "height must be multiple of 8"
VGG = models.vgg19(pretrained=True).features
VGG.to(device)
for parameter in VGG.parameters():
parameter.requires_grad_(False)
def img_denormalize(image):
mean=torch.tensor([0.485, 0.456, 0.406]).to(device)
std=torch.tensor([0.229, 0.224, 0.225]).to(device)
mean = mean.view(1,-1,1,1)
std = std.view(1,-1,1,1)
image = image*std +mean
return image
def img_normalize(image):
mean=torch.tensor([0.485, 0.456, 0.406]).to(device)
std=torch.tensor([0.229, 0.224, 0.225]).to(device)
mean = mean.view(1,-1,1,1)
std = std.view(1,-1,1,1)
image = (image-mean)/std
return image
def clip_normalize(image,device):
image = F.interpolate(image,size=224,mode='bicubic')
mean=torch.tensor([0.48145466, 0.4578275, 0.40821073]).to(device)
std=torch.tensor([0.26862954, 0.26130258, 0.27577711]).to(device)
mean = mean.view(1,-1,1,1)
std = std.view(1,-1,1,1)
image = (image-mean)/std
return image
def get_image_prior_losses(inputs_jit):
diff1 = inputs_jit[:, :, :, :-1] - inputs_jit[:, :, :, 1:]
diff2 = inputs_jit[:, :, :-1, :] - inputs_jit[:, :, 1:, :]
diff3 = inputs_jit[:, :, 1:, :-1] - inputs_jit[:, :, :-1, 1:]
diff4 = inputs_jit[:, :, :-1, :-1] - inputs_jit[:, :, 1:, 1:]
loss_var_l2 = torch.norm(diff1) + torch.norm(diff2) + torch.norm(diff3) + torch.norm(diff4)
return loss_var_l2
def compose_text_with_templates(text: str, templates=imagenet_templates) -> list:
return [template.format(text) for template in templates]
content_path = args.content_path
content_image = utils.load_image2(content_path, img_height=args.img_height,img_width=args.img_width)
content = args.content_name
exp = args.exp_name
content_image = content_image.to(device)
content_features = utils.get_features(img_normalize(content_image), VGG)
target = content_image.clone().requires_grad_(True).to(device)
style_net = StyleNet.UNet()
style_net.to(device)
style_weights = {'conv1_1': 0.1,
'conv2_1': 0.2,
'conv3_1': 0.4,
'conv4_1': 0.8,
'conv5_1': 1.6}
content_weight = args.lambda_c
show_every = 100
optimizer = optim.Adam(style_net.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
steps = args.max_step
content_loss_epoch = []
style_loss_epoch = []
total_loss_epoch = []
output_image = content_image
m_cont = torch.mean(content_image,dim=(2,3),keepdim=False).squeeze(0)
m_cont = [m_cont[0].item(),m_cont[1].item(),m_cont[2].item()]
cropper = transforms.Compose([
transforms.RandomCrop(args.crop_size)
])
augment = transforms.Compose([
transforms.RandomPerspective(fill=0, p=1,distortion_scale=0.5),
transforms.Resize(224)
])
device='cuda'
clip_model, preprocess = clip.load('ViT-B/32', device, jit=False)
prompt = args.text
source = "a Photo"
with torch.no_grad():
template_text = compose_text_with_templates(prompt, imagenet_templates)
tokens = clip.tokenize(template_text).to(device)
text_features = clip_model.encode_text(tokens).detach()
text_features = text_features.mean(axis=0, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
template_source = compose_text_with_templates(source, imagenet_templates)
tokens_source = clip.tokenize(template_source).to(device)
text_source = clip_model.encode_text(tokens_source).detach()
text_source = text_source.mean(axis=0, keepdim=True)
text_source /= text_source.norm(dim=-1, keepdim=True)
source_features = clip_model.encode_image(clip_normalize(content_image,device))
source_features /= (source_features.clone().norm(dim=-1, keepdim=True))
num_crops = args.num_crops
for epoch in range(0, steps+1):
scheduler.step()
target = style_net(content_image,use_sigmoid=True).to(device)
target.requires_grad_(True)
target_features = utils.get_features(img_normalize(target), VGG)
content_loss = 0
content_loss += torch.mean((target_features['conv4_2'] - content_features['conv4_2']) ** 2)
content_loss += torch.mean((target_features['conv5_2'] - content_features['conv5_2']) ** 2)
loss_patch=0
img_proc =[]
for n in range(num_crops):
target_crop = cropper(target)
target_crop = augment(target_crop)
img_proc.append(target_crop)
img_proc = torch.cat(img_proc,dim=0)
img_aug = img_proc
image_features = clip_model.encode_image(clip_normalize(img_aug,device))
image_features /= (image_features.clone().norm(dim=-1, keepdim=True))
img_direction = (image_features-source_features)
img_direction /= img_direction.clone().norm(dim=-1, keepdim=True)
text_direction = (text_features-text_source).repeat(image_features.size(0),1)
text_direction /= text_direction.norm(dim=-1, keepdim=True)
loss_temp = (1- torch.cosine_similarity(img_direction, text_direction, dim=1))
loss_temp[loss_temp<args.thresh] =0
loss_patch+=loss_temp.mean()
glob_features = clip_model.encode_image(clip_normalize(target,device))
glob_features /= (glob_features.clone().norm(dim=-1, keepdim=True))
glob_direction = (glob_features-source_features)
glob_direction /= glob_direction.clone().norm(dim=-1, keepdim=True)
loss_glob = (1- torch.cosine_similarity(glob_direction, text_direction, dim=1)).mean()
reg_tv = args.lambda_tv*get_image_prior_losses(target)
total_loss = args.lambda_patch*loss_patch + content_weight * content_loss+ reg_tv+ args.lambda_dir*loss_glob
total_loss_epoch.append(total_loss)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if epoch % 20 == 0:
print("After %d criterions:" % epoch)
print('Total loss: ', total_loss.item())
print('Content loss: ', content_loss.item())
print('patch loss: ', loss_patch.item())
print('dir loss: ', loss_glob.item())
print('TV loss: ', reg_tv.item())
if epoch %50 ==0:
out_path = './outputs/'+prompt+'_'+content+'_'+exp+'.jpg'
output_image = target.clone()
output_image = torch.clamp(output_image,0,1)
output_image = adjust_contrast(output_image,1.5)
vutils.save_image(
output_image,
out_path,
nrow=1,
normalize=True)