-
Notifications
You must be signed in to change notification settings - Fork 32
/
utils.py
105 lines (80 loc) · 3.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import numpy as np
from PIL import Image
from torchvision import transforms
def load_image(img_path, img_size=None):
image = Image.open(img_path)
if img_size is not None:
image = image.resize((img_size, img_size)) # change image size to (3, img_size, img_size)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), # this is from ImageNet dataset
])
image = transform(image)[:3, :, :].unsqueeze(0)
return image
def load_image2(img_path, img_height=None,img_width =None):
image = Image.open(img_path)
if img_width is not None:
image = image.resize((img_width, img_height)) # change image size to (3, img_size, img_size)
transform = transforms.Compose([
transforms.ToTensor(),
])
image = transform(image)[:3, :, :].unsqueeze(0)
return image
def im_convert(tensor):
image = tensor.to("cpu").clone().detach()
image = image.numpy().squeeze(0) # change size to (channel, height, width)
image = image.transpose(1,2,0)
image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406)) # change into unnormalized image
image = image.clip(0, 1) # in the previous steps, we change PIL image(0, 255) into tensor(0.0, 1.0), so convert it
return image
def im_convert2(tensor):
""" Display a tensor as an image. """
image = tensor.to("cpu").clone().detach()
image = image.numpy().squeeze(0) # change size to (channel, height, width)
image = image.transpose(1,2,0)
# change into unnormalized image
image = image.clip(0, 1) # in the previous steps, we change PIL image(0, 255) into tensor(0.0, 1.0), so convert it
return image
def get_features(image, model, layers=None):
if layers is None:
layers = {'0': 'conv1_1',
'5': 'conv2_1',
'10': 'conv3_1',
'19': 'conv4_1',
'21': 'conv4_2',
'28': 'conv5_1',
'31': 'conv5_2'
}
features = {}
x = image
for name, layer in model._modules.items():
x = layer(x)
if name in layers:
features[layers[name]] = x
return features
def rand_bbox(size, res):
W = size
H = size
cut_w = res
cut_h = res
tx = np.random.randint(0,W-cut_w)
ty = np.random.randint(0,H-cut_h)
bbx1 = tx
bby1 = ty
return bbx1, bby1
def rand_sampling(args,content_image):
bbxl=[]
bbyl=[]
bbx1, bby1 = rand_bbox(args.img_size, args.crop_size)
crop_img = content_image[:,:,bby1:bby1+args.crop_size,bbx1:bbx1+args.crop_size]
return crop_img
def rand_sampling_all(args):
bbxl=[]
bbyl=[]
out = []
for cc in range(50):
bbx1, bby1 = rand_bbox(args.img_size, args.crop_size)
bbxl.append(bbx1)
bbyl.append(bby1)
return bbxl,bbyl