-
Notifications
You must be signed in to change notification settings - Fork 0
/
fpga_osc.c
564 lines (508 loc) · 16.8 KB
/
fpga_osc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/**
* $Id: fpga_osc.c 881 2013-12-16 05:37:34Z rp_jmenart $
*
* @brief Red Pitaya Oscilloscope FPGA controller.
*
* @Author Jure Menart <juremenart@gmail.com>
*
* (c) Red Pitaya http://www.redpitaya.com
*
* This part of code is written in C programming language.
* Please visit http://en.wikipedia.org/wiki/C_(programming_language)
* for more details on the language used herein.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include "fpga_osc.h"
/**
* GENERAL DESCRIPTION:
*
* This module initializes and provides for other SW modules the access to the
* FPGA OSC module. The oscilloscope memory space is divided to three parts:
* - registers (control and status)
* - input signal buffer (Channel A)
* - input signal buffer (Channel B)
*
* This module maps physical address of the oscilloscope core to the logical
* address, which can be used in the GNU/Linux user-space. To achieve this,
* OSC_FPGA_BASE_ADDR from CPU memory space is translated automatically to
* logical address with the function mmap(). After all the initialization is done,
* other modules can use this module to controll oscilloscope FPGA core. Before
* any functions or functionality from this module can be used it needs to be
* initialized with osc_fpga_init() function. When this module is no longer
* needed osc_fpga_exit() must be called.
*
* FPGA oscilloscope state machine in various modes. Basic principle is that
* SW sets the machine, 'arm' the writting machine (FPGA writes from ADC to
* input buffer memory) and then set the triggers. FPGA machine is continue
* writting to the buffers until the trigger is detected plus the amount set
* in trigger delay register. For more detauled description see the FPGA OSC
* registers description.
*
* Nice example how to use this module can be seen in worker.c module.
*/
/* internal structures */
/** The FPGA register structure (defined in fpga_osc.h) */
osc_fpga_reg_mem_t *g_osc_fpga_reg_mem = NULL;
/** The FPGA input signal buffer pointer for channel A */
uint32_t *g_osc_fpga_cha_mem = NULL;
/** The FPGA input signal buffer pointer for channel B */
uint32_t *g_osc_fpga_chb_mem = NULL;
/** The memory file descriptor used to mmap() the FPGA space */
int g_osc_fpga_mem_fd = -1;
/* Constants */
/** ADC number of bits */
const int c_osc_fpga_adc_bits = 14;
/** @brief Max and min voltage on ADCs.
* Symetrical - Max Voltage = +14, Min voltage = -1 * c_osc_fpga_max_v
*/
const float c_osc_fpga_adc_max_v = +14;
/** Sampling frequency = 125Mspmpls (non-decimated) */
const float c_osc_fpga_smpl_freq = 125e6;
/** Sampling period (non-decimated) - 8 [ns] */
const float c_osc_fpga_smpl_period = (1. / 125e6);
/**
* @brief Internal function used to clean up memory.
*
* This function un-maps FPGA register and signal buffers, closes memory file
* descriptor and cleans all memory allocated by this module.
*
* @retval 0 Success
* @retval -1 Error happened during cleanup.
*/
int __osc_fpga_cleanup_mem(void)
{
/* If register structure is NULL we do not need to un-map and clean up */
if(g_osc_fpga_reg_mem) {
if(munmap(g_osc_fpga_reg_mem, OSC_FPGA_BASE_SIZE) < 0) {
fprintf(stderr, "munmap() failed: %s\n", strerror(errno));
return -1;
}
g_osc_fpga_reg_mem = NULL;
if(g_osc_fpga_cha_mem)
g_osc_fpga_cha_mem = NULL;
if(g_osc_fpga_chb_mem)
g_osc_fpga_chb_mem = NULL;
}
if(g_osc_fpga_mem_fd >= 0) {
close(g_osc_fpga_mem_fd);
g_osc_fpga_mem_fd = -1;
}
return 0;
}
/**
* @brief Maps FPGA memory space and prepares register and buffer variables.
*
* This function opens memory device (/dev/mem) and maps physical memory address
* OSC_FPGA_BASE_ADDR (of length OSC_FPGA_BASE_SIZE) to logical addresses. It
* initializes the pointers g_osc_fpga_reg_mem, g_osc_fpga_cha_mem and
* g_osc_fpga_chb_mem to point to FPGA OSC.
* If function failes FPGA variables must not be used.
*
* @retval 0 Success
* @retval -1 Failure, error is printed to standard error output.
*/
int osc_fpga_init(void)
{
/* Page variables used to calculate correct mapping addresses */
void *page_ptr;
long page_addr, page_off, page_size = sysconf(_SC_PAGESIZE);
/* If module was already initialized once, clean all internals. */
if(__osc_fpga_cleanup_mem() < 0)
return -1;
/* Open /dev/mem to access directly system memory */
g_osc_fpga_mem_fd = open("/dev/mem", O_RDWR | O_SYNC);
if(g_osc_fpga_mem_fd < 0) {
fprintf(stderr, "open(/dev/mem) failed: %s\n", strerror(errno));
return -1;
}
/* Calculate correct page address and offset from OSC_FPGA_BASE_ADDR and
* OSC_FPGA_BASE_SIZE
*/
page_addr = OSC_FPGA_BASE_ADDR & (~(page_size-1));
page_off = OSC_FPGA_BASE_ADDR - page_addr;
/* Map FPGA memory space to page_ptr. */
page_ptr = mmap(NULL, OSC_FPGA_BASE_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, g_osc_fpga_mem_fd, page_addr);
if((void *)page_ptr == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %s\n", strerror(errno));
__osc_fpga_cleanup_mem();
return -1;
}
/* Set FPGA OSC module pointers to correct values. */
g_osc_fpga_reg_mem = page_ptr + page_off;
g_osc_fpga_cha_mem = (uint32_t *)g_osc_fpga_reg_mem +
(OSC_FPGA_CHA_OFFSET / sizeof(uint32_t));
g_osc_fpga_chb_mem = (uint32_t *)g_osc_fpga_reg_mem +
(OSC_FPGA_CHB_OFFSET / sizeof(uint32_t));
return 0;
}
/**
* @brief Cleans up FPGA OSC module internals.
*
* This function closes the memory file descriptor, unmap the FPGA memory space
* and cleans also all other internal things from FPGA OSC module.
* @retval 0 Sucess
* @retval -1 Failure
*/
int osc_fpga_exit(void)
{
return __osc_fpga_cleanup_mem();
}
// TODO: Move to a shared folder and share with scope & spectrum.
/**
* @brief Provides equalization & shaping filter coefficients.
*
*
* This function provides equalization & shaping filter coefficients, based on
* the type of use and gain settings.
*
* @param [in] equal Enable(1)/disable(0) equalization filter.
* @param [in] shaping Enable(1)/disable(0) shaping filter.
* @param [in] gain Gain setting (0 = LV, 1 = HV).
* @param [out] filt Filter coefficients.
*/
void get_equ_shape_filter(ecu_shape_filter_t *filt, uint32_t equal,
uint32_t shaping, uint32_t gain)
{
/* Equalization filter */
if (equal) {
if (gain == 0) {
/* High gain = LV */
filt->aa = 0x7D93;
filt->bb = 0x437C7;
} else {
/* Low gain = HV */
filt->aa = 0x4C5F;
filt->bb = 0x2F38B;
}
} else {
filt->aa = 0;
filt->bb = 0;
}
/* Shaping filter */
if (shaping) {
filt->pp = 0x2666;
filt->kk = 0xd9999a;
} else {
filt->pp = 0;
filt->kk = 0xffffff;
}
}
/**
* @brief Updates triggering parameters in FPGA registers.
*
* This function updates trigger related parameters in FPGA registers.
*
* @param [in] trig_imm Trigger immediately - if set to 1, FPGA state machine
* will trigger immediately and other trigger parameters
* will be ignored.
* @param [in] trig_source Trigger source, as defined in rp_main_params.
* @param [in] trig_edge Trigger edge, as defined in rp_main_params.
* @param [in] trig_delay Trigger delay in [s].
* @param [in] trig_level Trigger level in [V].
* @param [in] time_range Time range, as defined in rp_main_params.
* @param [in] equal Enable(1)/disable(0) equalization filter.
* @param [in] shaping Enable(1)/disable(0) shaping filter.
* @param [in] gain1 Gain setting for Channel1 (0 = LV, 1 = HV).
* @param [in] gain2 Gain setting for Channel2 (0 = LV, 1 = HV).
*
*
* @retval 0 Success
* @retval -1 Failure
*
* @see rp_main_params
*/
int osc_fpga_update_params(int trig_imm, int trig_source, int trig_edge,
float trig_delay, float trig_level, int time_range,
int equal, int shaping, int gain1, int gain2)
{
int fpga_trig_source = osc_fpga_cnv_trig_source(trig_imm, trig_source,
trig_edge);
int fpga_dec_factor = osc_fpga_cnv_time_range_to_dec(time_range);
int fpga_delay;
float after_trigger; /* how much after trigger FPGA should write */
int fpga_trig_thr = osc_fpga_cnv_v_to_cnt(trig_level);
/* Equalization filter coefficients */
ecu_shape_filter_t cha_filt;
ecu_shape_filter_t chb_filt;
get_equ_shape_filter(&cha_filt, equal, shaping, gain1);
get_equ_shape_filter(&chb_filt, equal, shaping, gain2);
if((fpga_trig_source < 0) || (fpga_dec_factor < 0)) {
fprintf(stderr, "osc_fpga_update_params() failed\n");
return -1;
}
/* Pre-trigger - we need to limit after trigger acquisition so we can
* readout historic (pre-trigger) values */
if (trig_imm)
after_trigger=OSC_FPGA_SIG_LEN* c_osc_fpga_smpl_period * fpga_dec_factor;
else
after_trigger =
((OSC_FPGA_SIG_LEN-7) * c_osc_fpga_smpl_period * fpga_dec_factor) +
trig_delay;
if(after_trigger < 0)
after_trigger = 0;
fpga_delay = osc_fpga_cnv_time_to_smpls(after_trigger, fpga_dec_factor);
/* Trig source is written after ARM */
/* g_osc_fpga_reg_mem->trig_source = fpga_trig_source;*/
if(trig_source == 0)
g_osc_fpga_reg_mem->cha_thr = fpga_trig_thr;
else
g_osc_fpga_reg_mem->chb_thr = fpga_trig_thr;
g_osc_fpga_reg_mem->data_dec = fpga_dec_factor;
g_osc_fpga_reg_mem->trigger_delay = (uint32_t)fpga_delay;
/* Update equalization filter with desired coefficients. */
g_osc_fpga_reg_mem->cha_filt_aa = cha_filt.aa;
g_osc_fpga_reg_mem->cha_filt_bb = cha_filt.bb;
g_osc_fpga_reg_mem->cha_filt_pp = cha_filt.pp;
g_osc_fpga_reg_mem->cha_filt_kk = cha_filt.kk;
g_osc_fpga_reg_mem->chb_filt_aa = chb_filt.aa;
g_osc_fpga_reg_mem->chb_filt_bb = chb_filt.bb;
g_osc_fpga_reg_mem->chb_filt_pp = chb_filt.pp;
g_osc_fpga_reg_mem->chb_filt_kk = chb_filt.kk;
return 0;
}
/** @brief OSC FPGA reset
*
* Triggers internal oscilloscope FPGA state machine reset.
*
* @retval 0 Always returns 0.
*/
int osc_fpga_reset(void)
{
g_osc_fpga_reg_mem->conf |= OSC_FPGA_CONF_RST_BIT;
return 0;
}
/** @brief OSC FPGA ARM
*
* ARM internal oscilloscope FPGA state machine to start writting input buffers.
* @retval 0 Always returns 0.
*/
int osc_fpga_arm_trigger(void)
{
g_osc_fpga_reg_mem->conf |= OSC_FPGA_CONF_ARM_BIT;
return 0;
}
/** @brief Sets the trigger source in OSC FPGA register.
*
* Sets the trigger source in oscilloscope FPGA register.
*
* @param [in] trig_source Trigger source, as defined in FPGA register
* description.
*/
int osc_fpga_set_trigger(uint32_t trig_source)
{
g_osc_fpga_reg_mem->trig_source = trig_source;
return 0;
}
/** @brief Sets the trigger delay in OSC FPGA register.
*
* Sets the trigger delay in oscilloscope FPGA register.
*
* @param [in] trig_delay Trigger delay, as defined in FPGA register
* description.
*
* @retval 0 Always returns 0.
*/
int osc_fpga_set_trigger_delay(uint32_t trig_delay)
{
g_osc_fpga_reg_mem->trigger_delay = trig_delay;
return 0;
}
/** @brief Checks if FPGA detected trigger.
*
* This function checks if trigger was detected by the FPGA.
*
* @retval 0 Trigger not detected.
* @retval 1 Trigger detected.
*/
int osc_fpga_triggered(void)
{
return ((g_osc_fpga_reg_mem->trig_source & OSC_FPGA_TRIG_SRC_MASK)==0);
}
/** @brief Returns memory pointers for both input signal buffers.
*
* This function returns pointers for input signal buffers for both channels.
*
* @param [out] cha_signal Output pointer for Channel A buffer
* @param [out] cha_signal Output pointer for Channel B buffer
*
* @retval 0 Always returns 0.
*/
int osc_fpga_get_sig_ptr(int **cha_signal, int **chb_signal)
{
*cha_signal = (int *)g_osc_fpga_cha_mem;
*chb_signal = (int *)g_osc_fpga_chb_mem;
return 0;
}
/** @brief Returns values for current and trigger write FPGA pointers.
*
* This functions returns values for current and trigger write pointers. They
* are an address of the input signal buffer and are the same for both channels.
*
* @param [out] wr_ptr_curr Current FPGA input buffer address.
* @param [out] wr_ptr_trig Trigger FPGA input buffer address.
*
* @retval 0 Always returns 0.
*/
int osc_fpga_get_wr_ptr(int *wr_ptr_curr, int *wr_ptr_trig)
{
if(wr_ptr_curr)
*wr_ptr_curr = g_osc_fpga_reg_mem->wr_ptr_cur;
if(wr_ptr_trig)
*wr_ptr_trig = g_osc_fpga_reg_mem->wr_ptr_trigger;
return 0;
}
/** @brief Convert trigger parameters to FPGA trigger source value.
*
* This function takes as an argument trigger parameters and converts it to
* trigger source value used by the FPGA trigger source reigster.
*
* @param [in] trig_imm Trigger immediately, if set to 1 other trigger parameters
* are ignored.
* @param [in] trig_source Trigger source as defined in rp_main_params
* @param [in] trig_edge Trigger edge as defined in rp_main_params
*
* @retval -1 Error
* @retval otherwise Trigger source FPGA value
*/
int osc_fpga_cnv_trig_source(int trig_imm, int trig_source, int trig_edge)
{
int fpga_trig_source = 0;
/* Trigger immediately */
if(trig_imm)
return 1;
switch(trig_source) {
case 0: /* ChA*/
if(trig_edge == 0)
fpga_trig_source = 2;
else
fpga_trig_source = 3;
break;
case 1: /* ChB*/
if(trig_edge == 0)
fpga_trig_source = 4;
else
fpga_trig_source = 5;
break;
case 2: /* External */
if(trig_edge == 0)
fpga_trig_source = 6;
else
fpga_trig_source = 7;
break;
default:
/* Error */
return -1;
}
return fpga_trig_source;
}
/** @brief Converts time range to decimation value.
*
* This function converts time range value defined by rp_main_params to
* decimation factor value.
*
* @param [in] time_range Time range, integer between 0 and 5, as defined by
* rp_main_params.
*
* @retval -1 Error
*
* @retval otherwise Decimation factor.
*/
int osc_fpga_cnv_time_range_to_dec(int time_range)
{
/* Input: 0, 1, 2, 3, 4, 5 translates to:
* Output: 1x, 8x, 64x, 1kx, 8kx, 65kx */
switch(time_range) {
case 0:
return 1;
break;
case 1:
return 8;
break;
case 2:
return 64;
break;
case 3:
return 1024;
break;
case 4:
return 8*1024;
break;
case 5:
return 64*1024;
break;
default:
return -1;
}
return -1;
}
/** @brief Converts time to number of samples.
*
* This function converts time in [s], based on current decimation factor to
* number of samples at ADC sampling frequency.
*
* @param [in] time Time in [s]
* @param [in] dec_factor Decimation factor
*
* @retval Number of ADC samples define dby input parameters.
*/
int osc_fpga_cnv_time_to_smpls(float time, int dec_factor)
{
/* Calculate sampling period (including decimation) */
float smpl_p = (c_osc_fpga_smpl_period * dec_factor);
int fpga_smpls = (int)round(time / smpl_p);
return fpga_smpls;
}
/** @brief Converts voltage to ADC counts.
*
* This function converts voltage in [V] to ADC counts.
*
* @param [in] voltage Voltage in [V]
*
* @retval adc_cnts ADC counts
*/
int osc_fpga_cnv_v_to_cnt(float voltage)
{
int adc_cnts = 0;
if((voltage > c_osc_fpga_adc_max_v) || (voltage < -c_osc_fpga_adc_max_v))
return -1;
adc_cnts = (int)round(voltage * (float)((int)(1<<c_osc_fpga_adc_bits)) /
(2*c_osc_fpga_adc_max_v));
/* Clip highest value (+14 is calculated in int32_t to 0x2000, but we have
* only 14 bits
*/
if((voltage > 0) && (adc_cnts & (1<<(c_osc_fpga_adc_bits-1))))
adc_cnts = (1<<(c_osc_fpga_adc_bits-1))-1;
else
adc_cnts = adc_cnts & ((1<<(c_osc_fpga_adc_bits))-1);
return adc_cnts;
}
/** @brief Converts ADC counts to voltage
*
* This function converts ADC counts to voltage (in [V])
*
* @param [in] cnts ADC counts
*
* @retval voltage Voltage in [V]
*/
float osc_fpga_cnv_cnt_to_v(int cnts)
{
int m;
if(cnts & (1<<(c_osc_fpga_adc_bits-1))) {
/* negative number */
m = -1 *((cnts ^ ((1<<c_osc_fpga_adc_bits)-1)) + 1);
} else {
m = cnts;
/* positive number */
}
return m;
}