This repository has been archived by the owner on Nov 25, 2022. It is now read-only.
forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hexagon] Async DMA pipelining test suite (apache#13005)
* [Hexagon] Add tests to show how to properly utilize async dma pipelining on hexagon. * Formatting updates. * Update comments and reformatting. * Skip long tests in CI.
- Loading branch information
Showing
1 changed file
with
353 additions
and
0 deletions.
There are no files selected for viewing
353 changes: 353 additions & 0 deletions
353
tests/python/contrib/test_hexagon/test_async_dma_pipeline.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,353 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
""" Test different strategies for loading data into vtcm before running HVX workloads. """ | ||
|
||
import numpy as np | ||
import tvm | ||
import pytest | ||
|
||
from tvm.script import tir as T | ||
from numpy.random import default_rng | ||
|
||
from tvm.tir.function import TensorIntrin | ||
|
||
VRMPY_SIZE_B = 128 | ||
VRMPY_SIZE_INT32 = 32 | ||
|
||
|
||
def conv_approximation(size_a, size_w): | ||
a_shape = (size_a, VRMPY_SIZE_B) | ||
w_shape = (size_w, VRMPY_SIZE_B) | ||
out_shape = (size_a, VRMPY_SIZE_INT32) | ||
|
||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, a_shape, dtype="uint8") | ||
W = T.match_buffer(b, w_shape, dtype="uint8") | ||
C = T.match_buffer(c, out_shape, dtype="int32") | ||
for n, i in T.grid(size_a, size_w): | ||
with T.block("C"): | ||
vn, vi = T.axis.remap("SR", [n, i]) | ||
T.reads(A[vn, 0:VRMPY_SIZE_B], W[vi, 0:VRMPY_SIZE_B], C[vn, 0:VRMPY_SIZE_INT32]) | ||
T.writes(C[vn, 0:VRMPY_SIZE_INT32]) | ||
with T.init(): | ||
for x in T.serial(VRMPY_SIZE_INT32): | ||
C[vn, x] = 0 | ||
C[vn, T.ramp(0, 1, 32)] = T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.acc.128B"), | ||
T.uint32(3), | ||
C[vn, T.ramp(0, 1, 32)], | ||
T.reinterpret(A[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(W[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
# Currently async DMA lowering does not add any wait to the end of schedules so | ||
# for timing purposes we are manually adding a wait to ensure that all copies | ||
# are complete when the schedule exits. | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.dma_wait", | ||
0, # QueueId | ||
0, # Wait for 0 in flight | ||
dtype="int32", | ||
) | ||
) | ||
|
||
return tvm.tir.Schedule(operator) | ||
|
||
|
||
def evaluate(hexagon_session, sch, a, b, size_a, expected_output, use_async_copy=0): | ||
target_hexagon = tvm.target.hexagon("v68", link_params=True) | ||
with tvm.transform.PassContext(config={"tir.use_async_copy": use_async_copy}): | ||
func_tir = tvm.build( | ||
sch.mod["main"], target=tvm.target.Target(target_hexagon, host=target_hexagon) | ||
) | ||
module = hexagon_session.load_module(func_tir) | ||
|
||
a_hexagon = tvm.runtime.ndarray.array(a, device=hexagon_session.device) | ||
b_hexagon = tvm.runtime.ndarray.array(b, device=hexagon_session.device) | ||
c_hexagon = tvm.runtime.ndarray.array( | ||
np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32"), device=hexagon_session.device | ||
) | ||
|
||
if tvm.testing.utils.IS_IN_CI: | ||
# Run with reduced number and repeat for CI | ||
timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=1, repeat=1) | ||
else: | ||
timer = module.time_evaluator("__tvm_main__", hexagon_session.device, number=10, repeat=10) | ||
|
||
time = timer(a_hexagon, b_hexagon, c_hexagon) | ||
tvm.testing.assert_allclose(c_hexagon.asnumpy(), expected_output) | ||
return round(time.mean * 1000, 4) | ||
|
||
|
||
@tvm.testing.fixture | ||
def input_a(size_a): | ||
return default_rng().integers(0, 8, (size_a, VRMPY_SIZE_B), dtype="uint8") | ||
|
||
|
||
@tvm.testing.fixture | ||
def input_w(size_w): | ||
return default_rng().integers(0, 8, (size_w, VRMPY_SIZE_B), dtype="uint8") | ||
|
||
|
||
@tvm.testing.fixture | ||
def expected_output(size_a, size_w, input_a, input_w): | ||
if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1): | ||
pytest.skip("Skipping test since it takes too long in CI.") | ||
expected_output = np.zeros((size_a, VRMPY_SIZE_INT32), dtype="int32") | ||
for n in range(size_a): | ||
for x in range(size_w): | ||
for i in range(VRMPY_SIZE_INT32): | ||
for r in range(4): | ||
expected_output[n, i] += np.uint32(input_a[n, i * 4 + r]) * np.uint32( | ||
input_w[x, i * 4 + r] | ||
) | ||
return expected_output | ||
|
||
|
||
def get_single_dma_schedule(size_a, size_w): | ||
a_shape = (size_a, VRMPY_SIZE_B) | ||
w_shape = (size_w, VRMPY_SIZE_B) | ||
out_shape = (size_a, VRMPY_SIZE_INT32) | ||
|
||
a_bytes = size_a * VRMPY_SIZE_B | ||
w_bytes = size_w * VRMPY_SIZE_B | ||
|
||
@T.prim_func | ||
def operator(a: T.handle, b: T.handle, c: T.handle) -> None: | ||
T.func_attr({"global_symbol": "main", "tir.noalias": True}) | ||
A = T.match_buffer(a, a_shape, dtype="uint8", mem_scope="global") | ||
W = T.match_buffer(b, w_shape, dtype="uint8", mem_scope="global") | ||
C = T.match_buffer(c, out_shape, dtype="int32", mem_scope="global") | ||
A_global_vtcm = T.alloc_buffer(a_shape, dtype="uint8", mem_scope="global.vtcm") | ||
W_global_vtcm = T.alloc_buffer(w_shape, dtype="uint8", mem_scope="global.vtcm") | ||
C_global_vtcm = T.alloc_buffer(out_shape, dtype="int32", mem_scope="global.vtcm") | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
A_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
A_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
A.data, | ||
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
A.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(a_bytes, dtype="int"), | ||
dtype="int32", | ||
) | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
W_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
W_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
W.data, | ||
T.tvm_stack_make_shape(size_w, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
W.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(w_bytes, dtype="int"), | ||
dtype="int32", | ||
) | ||
) | ||
for n, i in T.grid(size_a, size_w): | ||
with T.block("C"): | ||
vn, vi = T.axis.remap("SR", [n, i]) | ||
T.reads( | ||
A_global_vtcm[vn, 0:VRMPY_SIZE_B], | ||
W_global_vtcm[vi, 0:VRMPY_SIZE_B], | ||
C_global_vtcm[vn, 0:VRMPY_SIZE_INT32], | ||
) | ||
T.writes(C_global_vtcm[vn, 0:VRMPY_SIZE_INT32]) | ||
with T.init(): | ||
for x in T.serial(VRMPY_SIZE_INT32): | ||
C_global_vtcm[vn, x] = 0 | ||
C_global_vtcm[vn, T.ramp(0, 1, 32)] += T.call_llvm_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.hexagon.V6.vrmpyubv.128B"), | ||
T.uint32(2), | ||
T.reinterpret(A_global_vtcm[vn, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
T.reinterpret(W_global_vtcm[vi, T.ramp(0, 1, 128)], dtype="int32x32"), | ||
dtype="int32x32", | ||
) | ||
T.evaluate( | ||
T.tvm_call_packed( | ||
"device_api.hexagon.mem_copy_DLTensor", | ||
T.tvm_stack_make_array( | ||
C.data, | ||
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
C.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.tvm_stack_make_array( | ||
C_global_vtcm.data, | ||
T.tvm_stack_make_shape(size_a, VRMPY_SIZE_B, dtype="handle"), | ||
0, | ||
2, | ||
C_global_vtcm.dtype, | ||
0, | ||
dtype="handle", | ||
), | ||
T.cast(a_bytes, dtype="int"), | ||
dtype="int32", | ||
) | ||
) | ||
|
||
sch = tvm.tir.Schedule(operator) | ||
|
||
return sch | ||
|
||
|
||
def get_fake_conv_vtcm_schedule(size_a, size_w, blocks=2): | ||
sch = conv_approximation(size_a, size_w) | ||
|
||
compute_block = sch.get_block("C") | ||
sch.cache_read(compute_block, 1, "global.vtcm") | ||
|
||
n = sch.get_loops(compute_block)[0] | ||
no, _ = sch.split(n, [blocks, None]) | ||
|
||
cache_read_block_a = sch.cache_read(compute_block, 0, "global.vtcm") | ||
sch.compute_at(cache_read_block_a, no) | ||
sch.fuse(*sch.get_loops(cache_read_block_a)[1:]) | ||
|
||
cache_read_block_c = sch.cache_write(compute_block, 0, "global.vtcm") | ||
sch.reverse_compute_at(cache_read_block_c, no) | ||
sch.fuse(*sch.get_loops(cache_read_block_c)[1:]) | ||
|
||
return sch | ||
|
||
|
||
def print_results(test_key, runtimes): | ||
print(test_key) | ||
for runtime in runtimes.items(): | ||
print("-{} took {} ms".format(runtime[0], runtime[1])) | ||
print() | ||
|
||
|
||
class TestAsyncDMAPipeline: | ||
# Removed most of these to speedup CI. | ||
size_a = tvm.testing.parameter( | ||
1024, | ||
64 * 64, | ||
128 * 128, | ||
) | ||
|
||
size_w = tvm.testing.parameter( | ||
1 * 1, | ||
3 * 3, | ||
7 * 7, | ||
9 * 9, | ||
) | ||
|
||
@tvm.testing.requires_hexagon | ||
def test_loading_vtcm_for_vrmpy( | ||
self, | ||
hexagon_session, | ||
size_a, | ||
size_w, | ||
input_a, | ||
input_w, | ||
expected_output, | ||
): | ||
|
||
if tvm.testing.utils.IS_IN_CI and (size_a > 1024 or size_w > 1): | ||
pytest.skip("Skipping test since it takes too long in CI.") | ||
|
||
sch = conv_approximation(size_a, size_w) | ||
base_runtime = evaluate(hexagon_session, sch, input_a, input_w, size_a, expected_output) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
base_vtcm_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [0]) | ||
async_input_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [0, 2]) | ||
async_input_output_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_fake_conv_vtcm_schedule(size_a, size_w) | ||
n = sch.get_loops(sch.get_block("C"))[0] | ||
sch.annotate(n, "software_pipeline_stage", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_order", [0, 1, 2]) | ||
sch.annotate(n, "software_pipeline_async_stages", [2]) | ||
async_output_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output, use_async_copy=1 | ||
) | ||
|
||
sch = get_single_dma_schedule(size_a, size_w) | ||
single_dma_runtime = evaluate( | ||
hexagon_session, sch, input_a, input_w, size_a, expected_output | ||
) | ||
|
||
# Total transfer size is equal to the size of A + W + C which is equal to 2 * size_a * 128 + size_w * 128 | ||
transfer_mb = round((2 * size_a * VRMPY_SIZE_B + size_w * VRMPY_SIZE_B) / 1e6, 2) | ||
|
||
# Total number of operations can be calculated given the total number of vrmpy calls (size_a * size_w) * operations per vrmpy accumulate (128 multiplies + 3 adds for reduction per lane + 1 add for accumulate per lane) | ||
complexity = round(size_a * size_w * (VRMPY_SIZE_B * 4) / 1e9, 3) | ||
print_results( | ||
f"Test with A.size: {size_a * VRMPY_SIZE_B}, W.size: {size_w * VRMPY_SIZE_B}, computational complexity of {complexity} GOPs, and total memory transfer of {transfer_mb} MB...", | ||
{ | ||
"without_vtcm": base_runtime, | ||
"synchronous_dma": single_dma_runtime, | ||
"base_vtcm": base_vtcm_runtime, | ||
"async_dma_input": async_input_runtime, | ||
"async_dma_output": async_output_runtime, | ||
"async_dma_input_output": async_input_output_runtime, | ||
}, | ||
) |