-
Notifications
You must be signed in to change notification settings - Fork 0
/
template.txt
89 lines (68 loc) · 2.13 KB
/
template.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <bits/stdc++.h>
using namespace std;
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type,less<int>, rb_tree_tag,tree_order_statistics_node_update>
#define FS ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define ll long long int
#define ld long double
#define pb push_back
#define bp __builtin_popcount
#define sz size()
#define ff first
#define ss second
#define vll vector<ll>
#define vbool vector<bool>
#define vpll vector<pair<ll,ll>>
#define pll pair<ll,ll>
#define vllv vector<vector<ll>>
#define setpri(x) cout<<setprecision(x)<<fixed;
#define all(v) v.begin(),v.end()
#define allr(v) v.rbegin(),v.rend()
#define yesr {cout<<"YES"<<endl;return;}
#define nor {cout<<"NO"<<endl;return;}
#define ump {mp.reserve(1024); mp.max_load_factor(0.25);}
// getline (std::cin,name);
ll MOD=1e9+7;
ll ceil1(ll n,ll x){return (n-1)/x+(n>0);}
ll gcd(ll a,ll b){return __gcd(a,b);}
ll lcm(ll a,ll b){return (max(a,b)/gcd(a,b))*min(a,b);}
ll pow1(ll n,ll m ,ll mod=MOD );
ll pow2(ll n,ll k);
ll modinv(ll n,ll mod=MOD){ return pow1(n,mod-2,mod);}
bool func(pair<ll,ll> &a,pair<ll,ll> &b ){
if(a.ff != b.ff)return a.ff < b.ff;
return a.ss > b.ss;
}
ll const N=(ll)1e5+11;
ll const LG=(ll)log2(N)+1;
void solve() {
ll i,j,k,l,n,m,x,y,z,r;
}
int main(){
FS;
ll i,j,k,n,m,x,y,z,q;
q=1;
cin>>q;
for(ll tc=1;tc<=q;tc++){
// cout<<"Case #"<<tc<<": ";
solve();
}
return 0;
}
ll pow1(ll n,ll m,ll mod){
if(m==0)return 1;
if(m%2==0)return pow1((n*n)%mod,m/2,mod);
return (pow1((n*n)%mod,m/2,mod)*n)%mod;
}
ll pow2(ll n,ll k){
ll ans=1;
while(k>0){
if(k%2==1)ans=ans*n;
if(k>1)
n=n*n;
k/=2;
}
return ans;
}