Skip to content

Latest commit

 

History

History
98 lines (77 loc) · 2.37 KB

VALIDATION.md

File metadata and controls

98 lines (77 loc) · 2.37 KB

Validation Pipeline

Overview

The DataHive validation pipeline ensures data quality and reliability through a multi-layered verification process integrated with other pipeline components. This system works in conjunction with the indexing, curation, and processing modules to maintain data integrity across the network.

Core Components

Initial Validation

class ValidationProcessor:
    def __init__(self):
        self.source_validator = SourceValidator()
        self.content_checker = ContentChecker()
        self.format_validator = FormatValidator()

    async def validate_entry(self, document):
        source_valid = await self.source_validator.verify(document)
        content_valid = self.content_checker.validate(document)
        format_valid = self.format_validator.check(document)
        return self.generate_validation_report(source_valid, content_valid, format_valid)

Pipeline Integration

Pre-Processing Stage

  • Document format verification
  • Source authenticity checks
  • Content completeness validation
  • Duplicate detection

Processing Stage

  • Content analysis validation
  • Reference verification
  • Metadata validation
  • Structure verification

Post-Processing Stage

  • Cross-reference validation
  • Consistency checks
  • Quality scoring
  • Version control

Validation Workflow

Document Intake

  • Initial format verification
  • Structure validation
  • Metadata extraction
  • Content analysis

Quality Assurance

  • Text validation
  • Reference checking
  • Consistency verification
  • Completeness assessment

Consensus Phase

  • Node distribution
  • Peer validation
  • Score aggregation
  • Final approval

Integration Points

Indexing Pipeline

  • Pre-indexing validation
  • Format standardization
  • Schema compliance
  • Reference integrity

Curation System

  • Quality metrics tracking
  • Content accuracy scoring
  • Source reliability rating
  • Processing success rate

Storage Layer

  • Version control validation
  • Change history verification
  • Integrity checks
  • Redundancy validation

Quality Metrics

Performance Indicators

  • Content accuracy score
  • Source reliability rating
  • Processing success rate
  • Validation consensus level

Validation Thresholds

  • Minimum consensus requirements
  • Quality score thresholds
  • Performance benchmarks
  • Time constraints

Note: This documentation is subject to updates as the validation system evolves.