The DataHive validation pipeline ensures data quality and reliability through a multi-layered verification process integrated with other pipeline components. This system works in conjunction with the indexing, curation, and processing modules to maintain data integrity across the network.
class ValidationProcessor:
def __init__(self):
self.source_validator = SourceValidator()
self.content_checker = ContentChecker()
self.format_validator = FormatValidator()
async def validate_entry(self, document):
source_valid = await self.source_validator.verify(document)
content_valid = self.content_checker.validate(document)
format_valid = self.format_validator.check(document)
return self.generate_validation_report(source_valid, content_valid, format_valid)
Pre-Processing Stage
- Document format verification
- Source authenticity checks
- Content completeness validation
- Duplicate detection
Processing Stage
- Content analysis validation
- Reference verification
- Metadata validation
- Structure verification
Post-Processing Stage
- Cross-reference validation
- Consistency checks
- Quality scoring
- Version control
- Initial format verification
- Structure validation
- Metadata extraction
- Content analysis
- Text validation
- Reference checking
- Consistency verification
- Completeness assessment
- Node distribution
- Peer validation
- Score aggregation
- Final approval
- Pre-indexing validation
- Format standardization
- Schema compliance
- Reference integrity
- Quality metrics tracking
- Content accuracy scoring
- Source reliability rating
- Processing success rate
- Version control validation
- Change history verification
- Integrity checks
- Redundancy validation
- Content accuracy score
- Source reliability rating
- Processing success rate
- Validation consensus level
- Minimum consensus requirements
- Quality score thresholds
- Performance benchmarks
- Time constraints
Note: This documentation is subject to updates as the validation system evolves.