-
Notifications
You must be signed in to change notification settings - Fork 74
/
stats.rs
1309 lines (1207 loc) · 49 KB
/
stats.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
static USAGE: &str = r#"
Compute summary statistics & infers data types for each column in a CSV.
Summary statistics includes sum, min/max/range, min/max length, mean, stddev, variance,
nullcount, sparsity, quartiles, interquartile range (IQR), lower/upper fences, skewness, median,
cardinality, mode/s & antimode/s, and median absolute deviation (MAD). Note that some
statistics requires loading the entire file into memory, so they must be enabled explicitly.
By default, the following statistics are reported for *every* column in the CSV data:
sum, min/max/range values, min/max length, mean, stddev, variance, nullcount & sparsity.
The default set of statistics corresponds to statistics that can be computed efficiently
on a stream of data (i.e., constant memory) and can work with arbitrarily large CSV files.
The following additional statistics require loading the entire file into memory:
cardinality, mode/antimode, median, MAD, quartiles and its related measures (IQR,
lower/upper fences & skewness). As Rust doesn't have an integrated Out-Of-Memory (OOM)
handler yet, care must be taken when computing these additional statistics on very large
CSV files, as qsv will panic if it runs out of memory.
"Antimode" is the least frequently occurring non-zero value and is the opposite of mode.
It returns "*ALL" if all the values are unique, and only returns a preview of the first
10 antimodes.
If you need all the antimode values of a column, run the `frequency` command with --limit set
to zero. The resulting frequency table will have all the antimode values.
Summary statistics for dates are also computed when --infer-dates is enabled, with DateTime
results in rfc3339 format and Date results in "yyyy-mm-dd" format in the UTC timezone.
Date range, stddev, MAD & IQR are returned in days, not timestamp milliseconds. Date variance
is currently not computed as the current streaming variance algorithm is not well suited to
unix epoch timestamp values.
Each column's data type is also inferred (NULL, Integer, String, Float, Date & DateTime).
Unlike the sniff command, stats' data type inferences are GUARANTEED, as the entire file
is scanned, and not just sampled.
Note that the Date and DateTime data types are only inferred with the --infer-dates option
as its an expensive operation to match a date candidate against 19 possible date formats,
with each format, having several variants.
The date formats recognized and its sub-variants along with examples can be found at
https://github.com/jqnatividad/belt/tree/main/dateparser#accepted-date-formats.
Computing statistics on a large file can be made much faster if you create an index for it
first with 'qsv index' to enable multithreading.
For examples, see the "boston311" test files in https://github.com/jqnatividad/qsv/tree/master/resources/test
and https://github.com/jqnatividad/qsv/blob/f7f9c4297fb3dea685b5d0f631932b6b2ca4a99a/tests/test_stats.rs#L544.
Usage:
qsv stats [options] [<input>]
qsv stats --help
stats options:
-s, --select <arg> Select a subset of columns to compute stats for.
See 'qsv select --help' for the format details.
This is provided here because piping 'qsv select'
into 'qsv stats' will disable the use of indexing.
--everything Show all statistics available.
--typesonly Infer data types only and do not compute statistics.
Note that if you want to infer dates, you'll still need to use
the --infer-dates and --dates-whitelist options.
--mode Show the mode/s & antimode/s. Multimodal-aware.
This requires loading all CSV data in memory.
--cardinality Show the cardinality.
This requires loading all CSV data in memory.
--median Show the median.
This requires loading all CSV data in memory.
--mad Shows the median absolute deviation (MAD).
This requires loading all CSV data in memory.
--quartiles Show the quartiles, the IQR, the lower/upper inner/outer
fences and skewness.
This requires loading all CSV data in memory.
--round <decimal_places> Round statistics to <decimal_places>. Rounding is done following
Midpoint Nearest Even (aka "Bankers Rounding") rule.
For dates - range, stddev & IQR are always at least 5 decimal places as
they are reported in days, and 5 places gives us millisecond precision.
[default: 4]
--nulls Include NULLs in the population size for computing
mean and standard deviation.
--infer-dates Infer date/datetime datatypes. This is an expensive
option and should only be used when you know there
are date/datetime fields.
Also, if timezone is not specified in the data, it'll
be set to UTC.
--dates-whitelist <list> The case-insensitive patterns to look for when
shortlisting fields for date inferencing.
i.e. if the field's name has any of these patterns,
it is shortlisted for date inferencing.
Set to "all" to inspect ALL fields for
date/datetime types. Ignored if --infer-dates is false.
[default: date,time,due,open,close,created]
--prefer-dmy Parse dates in dmy format. Otherwise, use mdy format.
Ignored if --infer-dates is false.
-j, --jobs <arg> The number of jobs to run in parallel.
This works only when the given CSV has an index.
Note that a file handle is opened for each job.
When not set, the number of jobs is set to the
number of CPUs detected.
Common options:
-h, --help Display this message
-o, --output <file> Write output to <file> instead of stdout.
-n, --no-headers When set, the first row will NOT be interpreted
as column names. i.e., They will be included
in statistics.
-d, --delimiter <arg> The field delimiter for reading CSV data.
Must be a single character. (default: ,)
"#;
// DEVELOPER NOTE: stats is heavily optimized and makes extensive use of "unsafe" calls.
// It is a central command, that is used by `schema`/`validate`, `tojsonl` and Datapusher+.
//
// It was the primary reason I created the qsv fork as I needed to do GUARANTEED data type
// inferencing & to compile smart Data Dictionaries in the most performant way possible
// for Datapusher+ (https://github.com/dathere/datapusher-plus).
//
// It underpins the `schema` and `validate` commands - enabling the automatic creation of
// a JSONschema based on a CSV's summary statistics; and use the generated JSONschema to
// quickly validate complex CSVs (NYC's 311 data) at almost 300,000 records/sec.
//
// These "unsafe" calls primarily skip repetitive UTF-8 validation and unneeded bounds checking.
//
// To safeguard against undefined behavior, `stats` is the most extensively tested command,
// with ~470 tests.
use std::{
borrow::ToOwned,
default::Default,
fmt, fs, io,
iter::repeat,
str::{self, FromStr},
sync::atomic::{AtomicBool, Ordering},
};
use itertools::Itertools;
use once_cell::sync::OnceCell;
use qsv_dateparser::parse_with_preference;
use serde::Deserialize;
use stats::{merge_all, Commute, MinMax, OnlineStats, Unsorted};
use threadpool::ThreadPool;
use self::FieldType::{TDate, TDateTime, TFloat, TInteger, TNull, TString};
use crate::{
config::{Config, Delimiter},
index::Indexed,
select::{SelectColumns, Selection},
util, CliResult,
};
#[allow(clippy::unsafe_derive_deserialize)]
#[derive(Clone, Deserialize)]
pub struct Args {
pub arg_input: Option<String>,
pub flag_select: SelectColumns,
pub flag_everything: bool,
pub flag_typesonly: bool,
pub flag_mode: bool,
pub flag_cardinality: bool,
pub flag_median: bool,
pub flag_mad: bool,
pub flag_quartiles: bool,
pub flag_round: u32,
pub flag_nulls: bool,
pub flag_infer_dates: bool,
pub flag_dates_whitelist: String,
pub flag_prefer_dmy: bool,
pub flag_jobs: Option<usize>,
pub flag_output: Option<String>,
pub flag_no_headers: bool,
pub flag_delimiter: Option<Delimiter>,
}
static INFER_DATE_FLAGS: once_cell::sync::OnceCell<Vec<bool>> = OnceCell::new();
static DMY_PREFERENCE: AtomicBool = AtomicBool::new(false);
static RECORD_COUNT: once_cell::sync::OnceCell<u64> = OnceCell::new();
// number of milliseconds per day
const MS_IN_DAY: f64 = 86_400_000.0;
// number of decimal places when rounding days
// 5 decimal places give us millisecond precision
const DAY_DECIMAL_PLACES: u32 = 5;
pub fn run(argv: &[&str]) -> CliResult<()> {
let mut args: Args = util::get_args(USAGE, argv)?;
if args.flag_typesonly {
args.flag_everything = false;
args.flag_mode = false;
args.flag_cardinality = false;
args.flag_median = false;
args.flag_quartiles = false;
args.flag_mad = false;
}
let mut wtr = Config::new(&args.flag_output).writer()?;
let fconfig = args.rconfig();
let record_count = RECORD_COUNT.get_or_init(|| util::count_rows(&fconfig).unwrap());
log::info!("scanning {record_count} records...");
let (headers, stats) = match fconfig.indexed()? {
None => args.sequential_stats(&args.flag_dates_whitelist),
Some(idx) => {
if let Some(num_jobs) = args.flag_jobs {
if num_jobs == 1 {
args.sequential_stats(&args.flag_dates_whitelist)
} else {
args.parallel_stats(&args.flag_dates_whitelist, &idx)
}
} else {
args.parallel_stats(&args.flag_dates_whitelist, &idx)
}
}
}?;
let stats = args.stats_to_records(stats);
wtr.write_record(&args.stat_headers())?;
let fields = headers.iter().zip(stats.into_iter());
for (i, (header, stat)) in fields.enumerate() {
let header = if args.flag_no_headers {
i.to_string().into_bytes()
} else {
header.to_vec()
};
let stat = stat.iter().map(str::as_bytes);
wtr.write_record(vec![&*header].into_iter().chain(stat))?;
}
wtr.flush()?;
Ok(())
}
impl Args {
pub fn sequential_stats(&self, whitelist: &str) -> CliResult<(csv::ByteRecord, Vec<Stats>)> {
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
init_date_inference(
self.flag_infer_dates,
self.flag_prefer_dmy,
&headers,
whitelist,
)?;
let stats = self.compute(&sel, rdr.byte_records());
Ok((headers, stats))
}
pub fn parallel_stats(
&self,
whitelist: &str,
idx: &Indexed<fs::File, fs::File>,
) -> CliResult<(csv::ByteRecord, Vec<Stats>)> {
// N.B. This method doesn't handle the case when the number of records
// is zero correctly. So we use `sequential_stats` instead.
if idx.count() == 0 {
return self.sequential_stats(whitelist);
}
let mut rdr = self.rconfig().reader()?;
let (headers, sel) = self.sel_headers(&mut rdr)?;
init_date_inference(
self.flag_infer_dates,
self.flag_prefer_dmy,
&headers,
whitelist,
)?;
let chunk_size = util::chunk_size(idx.count() as usize, util::njobs(self.flag_jobs));
let nchunks = util::num_of_chunks(idx.count() as usize, chunk_size);
let pool = ThreadPool::new(util::njobs(self.flag_jobs));
let (send, recv) = channel::bounded(0);
for i in 0..nchunks {
let (send, args, sel) = (send.clone(), self.clone(), sel.clone());
pool.execute(move || unsafe {
let mut idx = args
.rconfig()
.indexed()
.unwrap_unchecked()
.unwrap_unchecked();
idx.seek((i * chunk_size) as u64).unwrap_unchecked();
let it = idx.byte_records().take(chunk_size);
send.send(args.compute(&sel, it)).unwrap_unchecked();
});
}
drop(send);
Ok((headers, merge_all(recv.iter()).unwrap_or_default()))
}
pub fn stats_to_records(&self, stats: Vec<Stats>) -> Vec<csv::StringRecord> {
let round_places = self.flag_round;
let mut records = Vec::with_capacity(stats.len());
records.extend(repeat(csv::StringRecord::new()).take(stats.len()));
let pool = ThreadPool::new(util::njobs(self.flag_jobs));
let mut results = Vec::with_capacity(stats.len());
for mut stat in stats {
let (send, recv) = channel::bounded(0);
results.push(recv);
pool.execute(move || {
unsafe { send.send(stat.to_record(round_places)).unwrap_unchecked() };
});
}
for (i, recv) in results.into_iter().enumerate() {
records[i] = unsafe { recv.recv().unwrap_unchecked() };
}
records
}
#[inline]
fn compute<I>(&self, sel: &Selection, it: I) -> Vec<Stats>
where
I: Iterator<Item = csv::Result<csv::ByteRecord>>,
{
let mut stats = self.new_stats(sel.len());
// amortize allocation
#[allow(unused_assignments)]
let mut record = csv::ByteRecord::with_capacity(1000, sel.len());
it.for_each(|row| {
record = unsafe { row.unwrap_unchecked() };
sel.select(&record).enumerate().for_each(|(i, field)| {
unsafe {
// we use unchecked here so we skip unnecessary bounds checking
stats
.get_unchecked_mut(i)
.add(field, *INFER_DATE_FLAGS.get_unchecked().get_unchecked(i));
}
});
});
stats
}
fn sel_headers<R: io::Read>(
&self,
rdr: &mut csv::Reader<R>,
) -> CliResult<(csv::ByteRecord, Selection)> {
let headers = rdr.byte_headers()?.clone();
let sel = self.rconfig().selection(&headers)?;
Ok((sel.select(&headers).collect(), sel))
}
pub fn rconfig(&self) -> Config {
Config::new(&self.arg_input)
.delimiter(self.flag_delimiter)
.no_headers(self.flag_no_headers)
.select(self.flag_select.clone())
}
#[inline]
fn new_stats(&self, record_len: usize) -> Vec<Stats> {
let mut stats: Vec<Stats> = Vec::with_capacity(record_len);
stats.extend(
repeat(Stats::new(WhichStats {
include_nulls: self.flag_nulls,
sum: !self.flag_typesonly,
range: !self.flag_typesonly,
dist: !self.flag_typesonly,
cardinality: self.flag_everything || self.flag_cardinality,
median: !self.flag_everything && self.flag_median && !self.flag_quartiles,
mad: self.flag_everything || self.flag_mad,
quartiles: self.flag_everything || self.flag_quartiles,
mode: self.flag_everything || self.flag_mode,
typesonly: self.flag_typesonly,
}))
.take(record_len),
);
stats
}
pub fn stat_headers(&self) -> csv::StringRecord {
if self.flag_typesonly {
return csv::StringRecord::from(vec!["field", "type"]);
}
// with --everything, we have 30 columns at most
let mut fields = Vec::with_capacity(30);
fields.extend_from_slice(&[
"field",
"type",
"sum",
"min",
"max",
"range",
"min_length",
"max_length",
"mean",
"stddev",
"variance",
"nullcount",
"sparsity",
]);
let all = self.flag_everything;
if self.flag_median && !self.flag_quartiles && !all {
fields.push("median");
}
if self.flag_mad || all {
fields.push("mad");
}
if self.flag_quartiles || all {
fields.extend_from_slice(&[
"lower_outer_fence",
"lower_inner_fence",
"q1",
"q2_median",
"q3",
"iqr",
"upper_inner_fence",
"upper_outer_fence",
"skewness",
]);
}
if self.flag_cardinality || all {
fields.push("cardinality");
}
if self.flag_mode || all {
fields.push("mode");
fields.push("mode_count");
fields.push("mode_occurrences");
fields.push("antimode");
fields.push("antimode_count");
fields.push("antimode_occurrences");
}
csv::StringRecord::from(fields)
}
}
#[inline]
fn init_date_inference(
infer_dates: bool,
prefer_dmy: bool,
headers: &csv::ByteRecord,
flag_whitelist: &str,
) -> Result<(), String> {
if infer_dates {
let dmy_preferred = prefer_dmy || std::env::var("QSV_PREFER_DMY").is_ok();
DMY_PREFERENCE.store(dmy_preferred, Ordering::Relaxed);
let whitelist_lower = flag_whitelist.to_lowercase();
log::info!("inferring dates with date-whitelist: {whitelist_lower}");
if whitelist_lower == "all" {
log::info!("inferring dates for ALL fields with DMY preference: {dmy_preferred}");
if let Err(e) = INFER_DATE_FLAGS.set(vec![true; headers.len()]) {
return fail_format!("Cannot init date inference flags for ALL fields: {e:?}");
};
} else {
let whitelist = whitelist_lower
.split(',')
.map(|s| s.trim().to_string())
.collect_vec();
let mut infer_date_flags: Vec<bool> = Vec::with_capacity(headers.len());
for header in headers {
let header_str = from_bytes::<String>(header).to_lowercase();
let mut date_found = false;
for whitelist_item in &whitelist {
if header_str.contains(whitelist_item) {
date_found = true;
log::info!(
"inferring dates for {header_str} with DMY preference: {dmy_preferred}"
);
break;
}
}
infer_date_flags.push(date_found);
}
if let Err(e) = INFER_DATE_FLAGS.set(infer_date_flags) {
return fail_format!("Cannot init date inference flags: {e:?}");
};
}
// we're not inferring dates, set INFER_DATE_FLAGS to all false
} else if let Err(e) = INFER_DATE_FLAGS.set(vec![false; headers.len()]) {
return fail_format!("Cannot init empty date inference flags: {e:?}");
}
Ok(())
}
#[derive(Clone, Debug, Eq, PartialEq)]
struct WhichStats {
include_nulls: bool,
sum: bool,
range: bool,
dist: bool,
cardinality: bool,
median: bool,
mad: bool,
quartiles: bool,
mode: bool,
typesonly: bool,
}
impl Commute for WhichStats {
#[inline]
fn merge(&mut self, other: WhichStats) {
assert_eq!(*self, other);
}
}
#[derive(Clone)]
pub struct Stats {
typ: FieldType,
sum: Option<TypedSum>,
minmax: Option<TypedMinMax>,
online: Option<OnlineStats>,
nullcount: u64,
modes: Option<Unsorted<Vec<u8>>>,
median: Option<Unsorted<f64>>,
mad: Option<Unsorted<f64>>,
quartiles: Option<Unsorted<f64>>,
which: WhichStats,
}
fn timestamp_ms_to_rfc3339(timestamp: i64, typ: FieldType) -> String {
use chrono::prelude::*;
let date_val = DateTime::<Utc>::from_utc(
NaiveDateTime::from_timestamp_millis(timestamp).unwrap_or_default(),
Utc,
)
.to_rfc3339();
// if type = Date, only return the date component
// do not return the time component
if typ == TDate {
return date_val[..10].to_string();
}
date_val
}
impl Stats {
fn new(which: WhichStats) -> Stats {
let (mut sum, mut minmax, mut online, mut modes, mut median, mut quartiles, mut mad) =
(None, None, None, None, None, None, None);
if which.sum {
sum = Some(TypedSum::default());
}
if which.range {
minmax = Some(TypedMinMax::default());
}
if which.dist {
online = Some(stats::OnlineStats::default());
}
if which.mode || which.cardinality {
modes = Some(stats::Unsorted::default());
}
if which.quartiles {
quartiles = Some(stats::Unsorted::default());
} else if which.median {
median = Some(stats::Unsorted::default());
}
if which.mad {
mad = Some(stats::Unsorted::default());
}
Stats {
typ: FieldType::default(),
sum,
minmax,
online,
nullcount: 0,
modes,
median,
mad,
quartiles,
which,
}
}
#[inline]
fn add(&mut self, sample: &[u8], infer_dates: bool) {
let (sample_type, timestamp_val) = FieldType::from_sample(infer_dates, sample, self.typ);
self.typ.merge(sample_type);
// we're inferring typesonly, don't add samples to compute statistics
if self.which.typesonly {
return;
}
let t = self.typ;
if let Some(v) = self.sum.as_mut() {
v.add(t, sample);
};
if let Some(v) = self.minmax.as_mut() {
if let Some(ts_val) = timestamp_val {
let mut buffer = itoa::Buffer::new();
v.add(t, buffer.format(ts_val).as_bytes());
} else {
v.add(t, sample);
}
};
if let Some(v) = self.modes.as_mut() {
v.add(sample.to_vec());
};
if sample_type == TNull {
self.nullcount += 1;
}
match t {
TNull => {
if self.which.include_nulls {
if let Some(v) = self.online.as_mut() {
v.add_null();
};
}
}
TFloat | TInteger => {
if sample_type == TNull {
if self.which.include_nulls {
if let Some(v) = self.online.as_mut() {
v.add_null();
};
}
} else {
let n = from_bytes::<f64>(sample);
if let Some(v) = self.median.as_mut() {
v.add(n);
}
if let Some(v) = self.mad.as_mut() {
v.add(n);
}
if let Some(v) = self.quartiles.as_mut() {
v.add(n);
}
if let Some(v) = self.online.as_mut() {
v.add(n);
}
}
}
TDateTime | TDate => {
if sample_type == TNull {
if self.which.include_nulls {
if let Some(v) = self.online.as_mut() {
v.add_null();
};
}
// if ts_val.is_some() then we successfully inferred a date from the sample
// and the timestamp value is not None
} else if let Some(ts_val) = timestamp_val {
// calculate date statistics by adding date samples as timestamps to
// millisecond precision.
#[allow(clippy::cast_precision_loss)]
let n = ts_val as f64;
if let Some(v) = self.median.as_mut() {
v.add(n);
}
if let Some(v) = self.mad.as_mut() {
v.add(n);
}
if let Some(v) = self.quartiles.as_mut() {
v.add(n);
}
if let Some(v) = self.online.as_mut() {
v.add(n);
}
}
}
// do nothing for String type
TString => {}
}
}
#[allow(clippy::wrong_self_convention)]
pub fn to_record(&mut self, round_places: u32) -> csv::StringRecord {
// we're doing typesonly
if self.which.typesonly {
return csv::StringRecord::from(vec![self.typ.to_string()]);
}
let typ = self.typ;
// prealloc memory for performance
// we have 30 columns at most with --everything
let mut pieces = Vec::with_capacity(30);
let empty = String::new;
// type
pieces.push(typ.to_string());
// sum
if let Some(sum) = self.sum.as_ref().and_then(|sum| sum.show(typ)) {
if typ == FieldType::TFloat {
if let Ok(f64_val) = sum.parse::<f64>() {
pieces.push(util::round_num(f64_val, round_places));
} else {
pieces.push(format!("ERROR: Cannot convert {sum} to a float."));
}
} else {
pieces.push(sum);
}
} else {
pieces.push(empty());
}
// min/max/range
if let Some(mm) = self
.minmax
.as_ref()
.and_then(|mm| mm.show(typ, round_places))
{
pieces.push(mm.0);
pieces.push(mm.1);
pieces.push(mm.2);
} else {
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
}
// min/max length
if typ == FieldType::TDate || typ == FieldType::TDateTime {
// returning min/max length for dates doesn't make sense
// especially since we convert the date stats to rfc3339 format
pieces.push(empty());
pieces.push(empty());
} else if let Some(mm) = self.minmax.as_ref().and_then(TypedMinMax::len_range) {
pieces.push(mm.0);
pieces.push(mm.1);
} else {
pieces.push(empty());
pieces.push(empty());
}
// mean, stddev & variance
if typ == TString || typ == TNull {
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
} else if let Some(ref v) = self.online {
if self.typ == TFloat || self.typ == TInteger {
pieces.push(util::round_num(v.mean(), round_places));
pieces.push(util::round_num(v.stddev(), round_places));
pieces.push(util::round_num(v.variance(), round_places));
} else {
pieces.push(timestamp_ms_to_rfc3339(v.mean() as i64, typ));
// instead of returning stdev in seconds, let's return it in
// days as it easier to handle
// Round to at least 5 decimal places, so we have millisecond precision
pieces.push(util::round_num(
v.stddev() / MS_IN_DAY,
u32::max(round_places, DAY_DECIMAL_PLACES),
));
// we don't know how to compute variance on timestamps
// it appears the current algorithm we use is not suited to the large timestamp
// values as the values we got during testing don't make sense, so
// leave it empty for now
// TODO: explore alternate algorithms for calculating variance
// see https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
pieces.push(empty());
}
} else {
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
}
// nullcount
let mut buffer = itoa::Buffer::new();
pieces.push(buffer.format(self.nullcount).to_owned());
// sparsity
// stats is also called by the `schema` and `tojsonl` commands to infer a schema,
// sparsity is not required by those cmds and we don't necessarily have the
// record_count when called by those cmds, so just set sparsity to nullcount
// (div by 1) so we don't panic.
#[allow(clippy::cast_precision_loss)]
let sparsity: f64 = self.nullcount as f64 / *RECORD_COUNT.get().unwrap_or(&1) as f64;
pieces.push(util::round_num(sparsity, round_places));
// median
let mut existing_median = None;
if let Some(v) = self.median.as_mut().and_then(|v| {
if let TNull | TString = typ {
None
} else {
existing_median = v.median();
existing_median
}
}) {
if typ == TDateTime || typ == TDate {
pieces.push(timestamp_ms_to_rfc3339(v as i64, typ));
} else {
pieces.push(util::round_num(v, round_places));
}
} else if self.which.median {
pieces.push(empty());
}
// median absolute deviation (MAD)
if let Some(v) = self.mad.as_mut().and_then(|v| {
if let TNull | TString = typ {
None
} else {
v.mad(existing_median)
}
}) {
if typ == TDateTime || typ == TDate {
// like stddev, return MAD in days
pieces.push(util::round_num(
v / MS_IN_DAY,
u32::max(round_places, DAY_DECIMAL_PLACES),
));
} else {
pieces.push(util::round_num(v, round_places));
}
} else if self.which.mad {
pieces.push(empty());
}
// quartiles
match self.quartiles.as_mut().and_then(|v| match typ {
TInteger | TFloat | TDate | TDateTime => v.quartiles(),
_ => None,
}) {
None => {
if self.which.quartiles {
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
}
}
Some((q1, q2, q3)) => {
let iqr = q3 - q1;
// use fused multiply add (mul_add) when possible
// fused mul_add is more accurate & may be more performant if the
// target architecture has a dedicated `fma` CPU instruction
// https://doc.rust-lang.org/std/primitive.f64.html#method.mul_add
// lower_outer_fence = "q1 - (3.0 * iqr)"
let lof = 3.0f64.mul_add(-iqr, q1);
// lower_inner_fence = "q1 - (1.5 * iqr)"
let lif = 1.5f64.mul_add(-iqr, q1);
// upper inner fence = "q3 + (1.5 * iqr)"
let uif = 1.5_f64.mul_add(iqr, q3);
// upper_outer_fence = "q3 + (3.0 * iqr)"
let uof = 3.0_f64.mul_add(iqr, q3);
// calculate skewness using Quantile-based measures
// https://en.wikipedia.org/wiki/Skewness#Quantile-based_measures
// https://blogs.sas.com/content/iml/2017/07/19/quantile-skewness.html
// quantile skewness = ((q3 - q2) - (q2 - q1)) / iqr;
// which is also (q3 - (2.0 * q2) + q1) / iqr
// which in turn, is the basis of the fused multiply add version below
let skewness = (2.0f64.mul_add(-q2, q3) + q1) / iqr;
if typ == TDateTime || typ == TDate {
// casting from f64 to i64 is OK, per
// https://doc.rust-lang.org/reference/expressions/operator-expr.html#numeric-cast
// as values larger/smaller than what i64 can handle will automatically
// saturate to i64 max/min values.
pieces.push(timestamp_ms_to_rfc3339(lof as i64, typ));
pieces.push(timestamp_ms_to_rfc3339(lif as i64, typ));
pieces.push(timestamp_ms_to_rfc3339(q1 as i64, typ));
pieces.push(timestamp_ms_to_rfc3339(q2 as i64, typ)); // q2 = median
pieces.push(timestamp_ms_to_rfc3339(q3 as i64, typ));
// return iqr in days - there are 86,400,000 ms in a day
pieces.push(util::round_num(
(q3 - q1) / MS_IN_DAY,
u32::max(round_places, DAY_DECIMAL_PLACES),
));
pieces.push(timestamp_ms_to_rfc3339(uif as i64, typ));
pieces.push(timestamp_ms_to_rfc3339(uof as i64, typ));
} else {
pieces.push(util::round_num(lof, round_places));
pieces.push(util::round_num(lif, round_places));
pieces.push(util::round_num(q1, round_places));
pieces.push(util::round_num(q2, round_places)); // q2 = median
pieces.push(util::round_num(q3, round_places));
pieces.push(util::round_num(iqr, round_places));
pieces.push(util::round_num(uif, round_places));
pieces.push(util::round_num(uof, round_places));
}
pieces.push(util::round_num(skewness, round_places));
}
}
// mode/modes & cardinality
match self.modes.as_mut() {
None => {
if self.which.cardinality {
pieces.push(empty());
}
if self.which.mode {
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
pieces.push(empty());
}
}
Some(ref mut v) => {
if self.which.cardinality {
let mut buffer = itoa::Buffer::new();
pieces.push(buffer.format(v.cardinality()).to_owned());
}
if self.which.mode {
// mode/s
let (modes_result, modes_count, mode_occurrences) = v.modes();
let modes_list = modes_result
.iter()
.map(|c| String::from_utf8_lossy(c))
.join(",");
pieces.push(modes_list);
pieces.push(modes_count.to_string());
pieces.push(mode_occurrences.to_string());
// antimode/s
if mode_occurrences == 0 {
// all the values are unique
// so instead of returning everything, just say *ALL
pieces.push("*ALL".to_string());
pieces.push("0".to_string());
pieces.push("1".to_string());
} else {
let (antimodes_result, antimodes_count, antimode_occurrences) =
v.antimodes();
let mut antimodes_list = String::new();
// We only store the first 10 antimodes
// so if antimodes_count > 10, add the "*PREVIEW: " prefix
if antimodes_count > 10 {
antimodes_list.push_str("*PREVIEW: ");
}
let antimodes_vals = &antimodes_result
.iter()
.map(|c| String::from_utf8_lossy(c))
.join(",");
if antimodes_vals.starts_with(',') {
antimodes_list.push_str("NULL");
}
antimodes_list.push_str(antimodes_vals);
// and truncate at 100 characters with an ellipsis
if antimodes_list.len() > 100 {
antimodes_list.truncate(100);
antimodes_list.push_str("...");
}
pieces.push(antimodes_list);
pieces.push(antimodes_count.to_string());
pieces.push(antimode_occurrences.to_string());
}
}
}
}
csv::StringRecord::from(pieces)
}
}
impl Commute for Stats {
#[inline]
fn merge(&mut self, other: Stats) {
self.typ.merge(other.typ);
self.sum.merge(other.sum);
self.minmax.merge(other.minmax);
self.online.merge(other.online);
self.nullcount += other.nullcount;
self.modes.merge(other.modes);
self.median.merge(other.median);
self.quartiles.merge(other.quartiles);
self.which.merge(other.which);
}
}
#[allow(clippy::enum_variant_names)]
#[derive(Clone, Copy, PartialEq, Default)]
pub enum FieldType {
// The default - TNull, is the most specific type.
// Type inference proceeds by assuming the most specific type and then
// relaxing the type as counter-examples are found.
#[default]
TNull,
TString,
TFloat,
TInteger,
TDate,
TDateTime,
}
impl FieldType {
// infer data type
// infer_dates signals if date inference should be attempted
// from a given sample & current type inference
#[inline]
pub fn from_sample(
infer_dates: bool,
sample: &[u8],
current_type: FieldType,
) -> (FieldType, Option<i64>) {
if sample.is_empty() {
return (TNull, None);
}
// no need to do type checking if current_type is already a String