-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
235 lines (203 loc) · 8.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from utils import Foo
from models import VPNModel
from datasets import OVMDataset
from opts import parser
from transform import *
import torchvision
import torch
from torch import nn
from torch import optim
import os
import time
import shutil
mean_rgb = [0.485, 0.456, 0.406]
std_rgb = [0.229, 0.224, 0.225]
def main():
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
network_config = Foo(
encoder=args.encoder,
decoder=args.decoder,
fc_dim=args.fc_dim,
output_size=args.label_resolution,
num_views=args.n_views,
num_class=args.num_class,
transform_type=args.transform_type,
)
train_dataset = OVMDataset(args.data_root, args.train_list,
transform=torchvision.transforms.Compose([
Stack(roll=True),
ToTorchFormatTensor(div=True),
GroupNormalize(mean_rgb, std_rgb)
]),
num_views=network_config.num_views, input_size=args.input_resolution,
label_size=args.label_resolution, use_mask=args.use_mask, use_depth=args.use_depth)
val_dataset = OVMDataset(args.data_root, args.eval_list,
transform=torchvision.transforms.Compose([
Stack(roll=True),
ToTorchFormatTensor(div=True),
GroupNormalize(mean_rgb, std_rgb)
]),
num_views=network_config.num_views, input_size=args.input_resolution,
label_size=args.label_resolution, use_mask=args.use_mask, use_depth=args.use_depth)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, shuffle=True,
pin_memory=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size,
num_workers=args.num_workers, shuffle=False,
pin_memory=True
)
mapper = VPNModel(network_config)
mapper = nn.DataParallel(mapper.cuda())
if args.resume:
if os.path.isfile(args.resume):
print(("=> loading checkpoint '{}'".format(args.resume)))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
mapper.load_state_dict(checkpoint['state_dict'])
print(("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch'])))
else:
print(("=> no checkpoint found at '{}'".format(args.resume)))
criterion = nn.NLLLoss(weight=None, size_average=True)
optimizer = optim.Adam(mapper.parameters(),
lr=args.start_lr, betas=(0.95, 0.999))
if not os.path.isdir(args.log_root):
os.mkdir(args.log_root)
log_train = open(os.path.join(args.log_root, '%s.csv' % args.store_name), 'w')
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args.lr_steps)
train(train_loader, mapper, criterion, optimizer, epoch, log_train)
if (epoch + 1) % args.ckpt_freq == 0 or epoch == args.epochs - 1:
prec1 = eval(val_loader, mapper, criterion, log_train, epoch)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': network_config.encoder,
'state_dict': mapper.state_dict(),
'best_prec1': best_prec1,
}, is_best)
def train(train_loader, mapper, criterion, optimizer, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mapper.train()
end = time.time()
for step, data in enumerate(train_loader):
rgb_stack, target = data
data_time.update(time.time() - end)
target_var = target.cuda()
input_rgb_var = torch.autograd.Variable(rgb_stack).cuda()
output = mapper(input_rgb_var)
target_var = target_var.view(-1)
output = output.view(-1, args.num_class)
loss = criterion(output, target_var)
losses.update(loss.data[0], input_rgb_var.size(0))
prec1, prec5 = accuracy(output.data, target_var.data, topk=(1, 5))
top1.update(prec1[0], rgb_stack.size(0))
top5.update(prec5[0], rgb_stack.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch + 1, step + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, lr=optimizer.param_groups[-1]['lr']))
print(output)
log.write(output + '\n')
log.flush()
def eval(val_loader, mapper, criterion, log, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
mapper.eval()
end = time.time()
for step, (rgb_stack, target) in enumerate(val_loader):
data_time.update(time.time() - end)
with torch.no_grad():
input_rgb_var = torch.autograd.Variable(rgb_stack).cuda()
output = mapper(input_rgb_var)
target_var = target.cuda()
target_var = target_var.view(-1)
output = output.view(-1, args.num_class)
loss = criterion(output, target_var)
losses.update(loss.data[0], input_rgb_var.size(0))
prec1, prec5 = accuracy(output.data, target_var.data, topk=(1, 5))
top1.update(prec1[0], rgb_stack.size(0))
top5.update(prec5[0], rgb_stack.size(0))
batch_time.update(time.time() - end)
end = time.time()
if step % args.print_freq == 0:
output = ('Test: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch + 1, step + 1, len(val_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
print(output)
log.write(output + '\n')
log.flush()
output = ('Testing Results: Prec@1 {top1.avg:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, loss=losses))
print(output)
output_best = '\nBest Prec@1: %.3f' % (best_prec1)
print(output_best)
log.write(output + ' ' + output_best + '\n')
log.flush()
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, '%s/%s_checkpoint.pth.tar' % (args.root_model, args.store_name))
if is_best:
shutil.copyfile('%s/%s_checkpoint.pth.tar' % (args.root_model, args.store_name), '%s/%s_best.pth.tar' % (args.root_model, args.store_name))
def adjust_learning_rate(optimizer, epoch, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.start_lr * decay
decay = args.weight_decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
param_group['weight_decay'] = decay
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__=='__main__':
main()