diff --git a/src/plugins/ImportTorch/nn.js b/src/plugins/ImportTorch/nn.js index 4c5cab8c7..c3d085ca6 100644 --- a/src/plugins/ImportTorch/nn.js +++ b/src/plugins/ImportTorch/nn.js @@ -145,6 +145,7 @@ define([ var CreateLayer = function(type) { var res = luajs.newContext()._G, attrs = [].slice.call(arguments, 1), + ltGet = luajs.types.LuaTable.prototype.get, node; if (LAYERS[type]) { @@ -165,6 +166,16 @@ define([ } } } + + // Override get + res.get = function noNilGet(value) { + var result = ltGet.call(this, value); + if (!result) { + throw Error(`"${value}" is not supported for ${type}`); + } + return result; + }; + return res; }; diff --git a/test/test-cases/code/googlenet-setters.lua b/test/test-cases/code/googlenet-setters.lua new file mode 100644 index 000000000..a8ede7ad8 --- /dev/null +++ b/test/test-cases/code/googlenet-setters.lua @@ -0,0 +1,83 @@ +-- Copy of googlenet.lua which uses setters (the other googlenet has them removed) +require 'nn' +nGPU = 10 +local function inception(input_size, config) + local concat = nn.Concat(2) + if config[1][1] ~= 0 then + local conv1 = nn.Sequential() + conv1:add(nn.SpatialConvolution(input_size, config[1][1],1,1,1,1)):add(nn.ReLU(true)) + concat:add(conv1) + end + + local conv3 = nn.Sequential() + conv3:add(nn.SpatialConvolution( input_size, config[2][1],1,1,1,1)):add(nn.ReLU(true)) + conv3:add(nn.SpatialConvolution(config[2][1], config[2][2],3,3,1,1,1,1)):add(nn.ReLU(true)) + concat:add(conv3) + + local conv3xx = nn.Sequential() + conv3xx:add(nn.SpatialConvolution( input_size, config[3][1],1,1,1,1)):add(nn.ReLU(true)) + conv3xx:add(nn.SpatialConvolution(config[3][1], config[3][2],3,3,1,1,1,1)):add(nn.ReLU(true)) + conv3xx:add(nn.SpatialConvolution(config[3][2], config[3][2],3,3,1,1,1,1)):add(nn.ReLU(true)) + concat:add(conv3xx) + + local pool = nn.Sequential() + pool:add(nn.SpatialZeroPadding(1,1,1,1)) -- remove after getting nn R2 into fbcode + if config[4][1] == 'max' then + pool:add(nn.SpatialMaxPooling(3,3,1,1):ceil()) + elseif config[4][1] == 'avg' then + pool:add(nn.SpatialAveragePooling(3,3,1,1):ceil()) + else + error('Unknown pooling') + end + if config[4][2] ~= 0 then + pool:add(nn.SpatialConvolution(input_size, config[4][2],1,1,1,1)):add(nn.ReLU(true)) + end + concat:add(pool) + + return concat +end + +local features = nn.Sequential() +features:add(nn.SpatialConvolution(3,64,7,7,2,2,3,3)):add(nn.ReLU(true)) +features:add(nn.SpatialMaxPooling(3,3,2,2):ceil()) +features:add(nn.SpatialConvolution(64,64,1,1)):add(nn.ReLU(true)) +features:add(nn.SpatialConvolution(64,192,3,3,1,1,1,1)):add(nn.ReLU(true)) +features:add(nn.SpatialMaxPooling(3,3,2,2):ceil()) +features:add(inception( 192, {{ 64},{ 64, 64},{ 64, 96},{'avg', 32}})) -- 3(a) +features:add(inception( 256, {{ 64},{ 64, 96},{ 64, 96},{'avg', 64}})) -- 3(b) +features:add(inception( 320, {{ 0},{128,160},{ 64, 96},{'max', 0}})) -- 3(c) +features:add(nn.SpatialConvolution(576,576,2,2,2,2)) +features:add(inception( 576, {{224},{ 64, 96},{ 96,128},{'avg',128}})) -- 4(a) +features:add(inception( 576, {{192},{ 96,128},{ 96,128},{'avg',128}})) -- 4(b) +features:add(inception( 576, {{160},{128,160},{128,160},{'avg', 96}})) -- 4(c) +features:add(inception( 576, {{ 96},{128,192},{160,192},{'avg', 96}})) -- 4(d) + +local main_branch = nn.Sequential() +main_branch:add(inception( 576, {{ 0},{128,192},{192,256},{'max', 0}})) -- 4(e) +main_branch:add(nn.SpatialConvolution(1024,1024,2,2,2,2)) +main_branch:add(inception(1024, {{352},{192,320},{160,224},{'avg',128}})) -- 5(a) +main_branch:add(inception(1024, {{352},{192,320},{192,224},{'max',128}})) -- 5(b) +main_branch:add(nn.SpatialAveragePooling(7,7,1,1)) +main_branch:add(nn.View(1024):setNumInputDims(3)) +main_branch:add(nn.Linear(1024,nClasses)) +main_branch:add(nn.LogSoftMax()) + +-- add auxillary classifier here (thanks to Christian Szegedy for the details) +local aux_classifier = nn.Sequential() +aux_classifier:add(nn.SpatialAveragePooling(5,5,3,3):ceil()) +aux_classifier:add(nn.SpatialConvolution(576,128,1,1,1,1)) +aux_classifier:add(nn.View(128*4*4):setNumInputDims(3)) +aux_classifier:add(nn.Linear(128*4*4,768)) +aux_classifier:add(nn.ReLU()) +aux_classifier:add(nn.Linear(768,nClasses)) +aux_classifier:add(nn.LogSoftMax()) + +local splitter = nn.Concat(2) +splitter:add(main_branch):add(aux_classifier) +local model = nn.Sequential():add(features):add(splitter) + +model.imageSize = 256 +model.imageCrop = 224 + + +return model diff --git a/test/test-cases/code/vgg.lua b/test/test-cases/code/vgg.lua index a837f60ec..7ee0eee03 100644 --- a/test/test-cases/code/vgg.lua +++ b/test/test-cases/code/vgg.lua @@ -51,7 +51,7 @@ classifier:add(nn.LogSoftMax()) local model = nn.Sequential() model:add(features):add(classifier) -model.imageSize = 256 -model.imageCrop = 224 +--model.imageSize = 256 +--model.imageCrop = 224 return model