forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
viz.py
139 lines (113 loc) · 3.83 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# -*- coding: utf-8 -*-
# File: viz.py
import numpy as np
from tensorpack.utils import viz
from tensorpack.utils.palette import PALETTE_RGB
from config import config as cfg
from utils.np_box_ops import area as np_area
from utils.np_box_ops import iou as np_iou
from common import polygons_to_mask
def draw_annotation(img, boxes, klass, polygons=None, is_crowd=None):
"""Will not modify img"""
labels = []
assert len(boxes) == len(klass)
if is_crowd is not None:
assert len(boxes) == len(is_crowd)
for cls, crd in zip(klass, is_crowd):
clsname = cfg.DATA.CLASS_NAMES[cls]
if crd == 1:
clsname += ';Crowd'
labels.append(clsname)
else:
for cls in klass:
labels.append(cfg.DATA.CLASS_NAMES[cls])
img = viz.draw_boxes(img, boxes, labels)
if polygons is not None:
for p in polygons:
mask = polygons_to_mask(p, img.shape[0], img.shape[1])
img = draw_mask(img, mask)
return img
def draw_proposal_recall(img, proposals, proposal_scores, gt_boxes):
"""
Draw top3 proposals for each gt.
Args:
proposals: NPx4
proposal_scores: NP
gt_boxes: NG
"""
box_ious = np_iou(gt_boxes, proposals) # ng x np
box_ious_argsort = np.argsort(-box_ious, axis=1)
good_proposals_ind = box_ious_argsort[:, :3] # for each gt, find 3 best proposals
good_proposals_ind = np.unique(good_proposals_ind.ravel())
proposals = proposals[good_proposals_ind, :]
tags = list(map(str, proposal_scores[good_proposals_ind]))
img = viz.draw_boxes(img, proposals, tags)
return img, good_proposals_ind
def draw_predictions(img, boxes, scores):
"""
Args:
boxes: kx4
scores: kxC
"""
if len(boxes) == 0:
return img
labels = scores.argmax(axis=1)
scores = scores.max(axis=1)
tags = ["{},{:.2f}".format(cfg.DATA.CLASS_NAMES[lb], score) for lb, score in zip(labels, scores)]
return viz.draw_boxes(img, boxes, tags)
def draw_final_outputs(img, results):
"""
Args:
results: [DetectionResult]
"""
if len(results) == 0:
return img
# Display in largest to smallest order to reduce occlusion
boxes = np.asarray([r.box for r in results])
areas = np_area(boxes)
sorted_inds = np.argsort(-areas)
ret = img
tags = []
for result_id in sorted_inds:
r = results[result_id]
if r.mask is not None:
ret = draw_mask(ret, r.mask)
for r in results:
tags.append(
"{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score))
ret = viz.draw_boxes(ret, boxes, tags)
return ret
def draw_final_outputs_blackwhite(img, results):
"""
Args:
results: [DetectionResult]
"""
img_bw = img.mean(axis=2)
img_bw = np.stack([img_bw] * 3, axis=2)
if len(results) == 0:
return img_bw
boxes = np.asarray([r.box for r in results])
all_masks = [r.mask for r in results]
if all_masks[0] is not None:
m = all_masks[0] > 0
for m2 in all_masks[1:]:
m = m | (m2 > 0)
img_bw[m] = img[m]
tags = ["{},{:.2f}".format(cfg.DATA.CLASS_NAMES[r.class_id], r.score) for r in results]
ret = viz.draw_boxes(img_bw, boxes, tags)
return ret
def draw_mask(im, mask, alpha=0.5, color=None):
"""
Overlay a mask on top of the image.
Args:
im: a 3-channel uint8 image in BGR
mask: a binary 1-channel image of the same size
color: if None, will choose automatically
"""
if color is None:
color = PALETTE_RGB[np.random.choice(len(PALETTE_RGB))][::-1]
color = np.asarray(color, dtype=np.float32)
im = np.where(np.repeat((mask > 0)[:, :, None], 3, axis=2),
im * (1 - alpha) + color * alpha, im)
im = im.astype('uint8')
return im