forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10-resnet.py
executable file
·172 lines (140 loc) · 5.89 KB
/
cifar10-resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: cifar10-resnet.py
# Author: Yuxin Wu
import argparse
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils.summary import add_moving_summary, add_param_summary
from tensorpack.utils.gpu import get_num_gpu
"""
CIFAR10 ResNet example. See:
Deep Residual Learning for Image Recognition, arxiv:1512.03385
This implementation uses the variants proposed in:
Identity Mappings in Deep Residual Networks, arxiv:1603.05027
I can reproduce the results on 2 TitanX for
n=5, about 7.1% val error after 67k steps (20.4 step/s)
n=18, about 5.95% val error after 80k steps (5.6 step/s, not converged)
n=30: a 182-layer network, about 5.6% val error after 51k steps (3.4 step/s)
This model uses the whole training set instead of a train-val split.
To train:
./cifar10-resnet.py --gpu 0,1
"""
BATCH_SIZE = 128
NUM_UNITS = None
class Model(ModelDesc):
def __init__(self, n):
super(Model, self).__init__()
self.n = n
def inputs(self):
return [tf.TensorSpec([None, 32, 32, 3], tf.float32, 'input'),
tf.TensorSpec([None], tf.int32, 'label')]
def build_graph(self, image, label):
image = image / 128.0
assert tf.test.is_gpu_available()
image = tf.transpose(image, [0, 3, 1, 2])
def residual(name, l, increase_dim=False, first=False):
shape = l.get_shape().as_list()
in_channel = shape[1]
if increase_dim:
out_channel = in_channel * 2
stride1 = 2
else:
out_channel = in_channel
stride1 = 1
with tf.variable_scope(name):
b1 = l if first else BNReLU(l)
c1 = Conv2D('conv1', b1, out_channel, strides=stride1, activation=BNReLU)
c2 = Conv2D('conv2', c1, out_channel)
if increase_dim:
l = AvgPooling('pool', l, 2)
l = tf.pad(l, [[0, 0], [in_channel // 2, in_channel // 2], [0, 0], [0, 0]])
l = c2 + l
return l
with argscope([Conv2D, AvgPooling, BatchNorm, GlobalAvgPooling], data_format='channels_first'), \
argscope(Conv2D, use_bias=False, kernel_size=3,
kernel_initializer=tf.variance_scaling_initializer(scale=2.0, mode='fan_out')):
l = Conv2D('conv0', image, 16, activation=BNReLU)
l = residual('res1.0', l, first=True)
for k in range(1, self.n):
l = residual('res1.{}'.format(k), l)
# 32,c=16
l = residual('res2.0', l, increase_dim=True)
for k in range(1, self.n):
l = residual('res2.{}'.format(k), l)
# 16,c=32
l = residual('res3.0', l, increase_dim=True)
for k in range(1, self.n):
l = residual('res3.' + str(k), l)
l = BNReLU('bnlast', l)
# 8,c=64
l = GlobalAvgPooling('gap', l)
logits = FullyConnected('linear', l, 10)
tf.nn.softmax(logits, name='output')
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wrong = tf.cast(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), tf.float32, name='wrong_vector')
# monitor training error
add_moving_summary(tf.reduce_mean(wrong, name='train_error'))
# weight decay on all W of fc layers
wd_w = tf.train.exponential_decay(0.0002, get_global_step_var(),
480000, 0.2, True)
wd_cost = tf.multiply(wd_w, regularize_cost('.*/W', tf.nn.l2_loss), name='wd_cost')
add_moving_summary(cost, wd_cost)
add_param_summary(('.*/W', ['histogram'])) # monitor W
return tf.add_n([cost, wd_cost], name='cost')
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=0.01, trainable=False)
opt = tf.train.MomentumOptimizer(lr, 0.9)
return opt
def get_data(train_or_test):
isTrain = train_or_test == 'train'
ds = dataset.Cifar10(train_or_test)
pp_mean = ds.get_per_pixel_mean(('train',))
if isTrain:
augmentors = [
imgaug.CenterPaste((40, 40)),
imgaug.RandomCrop((32, 32)),
imgaug.Flip(horiz=True),
imgaug.MapImage(lambda x: x - pp_mean),
]
else:
augmentors = [
imgaug.MapImage(lambda x: x - pp_mean)
]
ds = AugmentImageComponent(ds, augmentors)
ds = BatchData(ds, BATCH_SIZE, remainder=not isTrain)
if isTrain:
ds = MultiProcessRunner(ds, 3, 2)
return ds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('-n', '--num_units',
help='number of units in each stage',
type=int, default=18)
parser.add_argument('--load', help='load model for training')
args = parser.parse_args()
NUM_UNITS = args.num_units
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.auto_set_dir()
dataset_train = get_data('train')
dataset_test = get_data('test')
config = TrainConfig(
model=Model(n=NUM_UNITS),
dataflow=dataset_train,
callbacks=[
ModelSaver(),
InferenceRunner(dataset_test,
[ScalarStats('cost'), ClassificationError('wrong_vector')]),
ScheduledHyperParamSetter('learning_rate',
[(1, 0.1), (82, 0.01), (123, 0.001), (300, 0.0002)])
],
max_epoch=400,
session_init=SmartInit(args.load),
)
num_gpu = max(get_num_gpu(), 1)
launch_train_with_config(config, SyncMultiGPUTrainerParameterServer(num_gpu))