forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
load-resnet.py
executable file
·177 lines (146 loc) · 6.26 KB
/
load-resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: load-resnet.py
# Author: Eric Yujia Huang <yujiah1@andrew.cmu.edu>
# Yuxin Wu
import argparse
import functools
import numpy as np
import re
import cv2
import six
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow.dataset import ILSVRCMeta
from tensorpack.utils import logger
from imagenet_utils import ImageNetModel, eval_classification, get_imagenet_dataflow
from resnet_model import resnet_bottleneck, resnet_group
DEPTH = None
CFG = {
50: ([3, 4, 6, 3]),
101: ([3, 4, 23, 3]),
152: ([3, 8, 36, 3])
}
class Model(ModelDesc):
def inputs(self):
return [tf.TensorSpec([None, 224, 224, 3], tf.float32, 'input'),
tf.TensorSpec([None], tf.int32, 'label')]
def build_graph(self, image, label):
blocks = CFG[DEPTH]
bottleneck = functools.partial(resnet_bottleneck, stride_first=True)
# tensorflow with padding=SAME will by default pad [2,3] here.
# but caffe conv with stride will pad [3,2]
image = tf.pad(image, [[0, 0], [3, 2], [3, 2], [0, 0]])
image = tf.transpose(image, [0, 3, 1, 2])
with argscope([Conv2D, MaxPooling, GlobalAvgPooling, BatchNorm],
data_format='channels_first'), \
argscope(Conv2D, use_bias=False):
logits = (LinearWrap(image)
.Conv2D('conv0', 64, 7, strides=2, activation=BNReLU, padding='VALID')
.MaxPooling('pool0', 3, strides=2, padding='SAME')
.apply2(resnet_group, 'group0', bottleneck, 64, blocks[0], 1)
.apply2(resnet_group, 'group1', bottleneck, 128, blocks[1], 2)
.apply2(resnet_group, 'group2', bottleneck, 256, blocks[2], 2)
.apply2(resnet_group, 'group3', bottleneck, 512, blocks[3], 2)
.GlobalAvgPooling('gap')
.FullyConnected('linear', 1000)())
tf.nn.softmax(logits, name='prob')
ImageNetModel.compute_loss_and_error(logits, label)
def get_inference_augmentor():
# load ResNet mean from Kaiming:
# from tensorpack.utils.loadcaffe import get_caffe_pb
# obj = get_caffe_pb().BlobProto()
# obj.ParseFromString(open('ResNet_mean.binaryproto').read())
# pp_mean_224 = np.array(obj.data).reshape(3, 224, 224).transpose(1,2,0)
meta = ILSVRCMeta()
pp_mean = meta.get_per_pixel_mean()
pp_mean_224 = pp_mean[16:-16, 16:-16, :]
transformers = [
imgaug.ResizeShortestEdge(256),
imgaug.CenterCrop((224, 224)),
imgaug.MapImage(lambda x: x - pp_mean_224),
]
return transformers
def run_test(params, input):
pred_config = PredictConfig(
model=Model(),
session_init=SmartInit(params),
input_names=['input'],
output_names=['prob']
)
predict_func = OfflinePredictor(pred_config)
prepro = imgaug.AugmentorList(get_inference_augmentor())
im = cv2.imread(input).astype('float32')
im = prepro.augment(im)
im = np.reshape(im, (1, 224, 224, 3))
outputs = predict_func(im)
prob = outputs[0]
ret = prob[0].argsort()[-10:][::-1]
print(ret)
meta = ILSVRCMeta().get_synset_words_1000()
print([meta[k] for k in ret])
def name_conversion(caffe_layer_name):
""" Convert a caffe parameter name to a tensorflow parameter name as
defined in the above model """
# beginning & end mapping
NAME_MAP = {'bn_conv1/beta': 'conv0/bn/beta',
'bn_conv1/gamma': 'conv0/bn/gamma',
'bn_conv1/mean/EMA': 'conv0/bn/mean/EMA',
'bn_conv1/variance/EMA': 'conv0/bn/variance/EMA',
'conv1/W': 'conv0/W', 'conv1/b': 'conv0/b',
'fc1000/W': 'linear/W', 'fc1000/b': 'linear/b'}
if caffe_layer_name in NAME_MAP:
return NAME_MAP[caffe_layer_name]
s = re.search('([a-z]+)([0-9]+)([a-z]+)_', caffe_layer_name)
if s is None:
s = re.search('([a-z]+)([0-9]+)([a-z]+)([0-9]+)_', caffe_layer_name)
layer_block_part1 = s.group(3)
layer_block_part2 = s.group(4)
assert layer_block_part1 in ['a', 'b']
layer_block = 0 if layer_block_part1 == 'a' else int(layer_block_part2)
else:
layer_block = ord(s.group(3)) - ord('a')
layer_type = s.group(1)
layer_group = s.group(2)
layer_branch = int(re.search('_branch([0-9])', caffe_layer_name).group(1))
assert layer_branch in [1, 2]
if layer_branch == 2:
layer_id = re.search('_branch[0-9]([a-z])/', caffe_layer_name).group(1)
layer_id = ord(layer_id) - ord('a') + 1
TYPE_DICT = {'res': 'conv{}', 'bn': 'conv{}/bn'}
layer_type = TYPE_DICT[layer_type].format(layer_id if layer_branch == 2 else 'shortcut')
tf_name = caffe_layer_name[caffe_layer_name.index('/'):]
tf_name = 'group{}/block{}/{}'.format(
int(layer_group) - 2, layer_block, layer_type) + tf_name
return tf_name
def convert_param_name(param):
resnet_param = {}
for k, v in six.iteritems(param):
try:
newname = name_conversion(k)
except Exception:
logger.error("Exception when processing caffe layer {}".format(k))
raise
logger.info("Name Transform: " + k + ' --> ' + newname)
resnet_param[newname] = v
return resnet_param
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--load', required=True,
help='.npz model file generated by tensorpack.utils.loadcaffe')
parser.add_argument('-d', '--depth', help='resnet depth', required=True, type=int, choices=[50, 101, 152])
parser.add_argument('--input', help='an input image')
parser.add_argument('--convert', help='npz output file to save the converted model')
parser.add_argument('--eval', help='ILSVRC dir to run validation on')
args = parser.parse_args()
DEPTH = args.depth
param = dict(np.load(args.load))
param = convert_param_name(param)
if args.convert:
assert args.convert.endswith('.npz')
np.savez_compressed(args.convert, **param)
if args.eval:
ds = get_imagenet_dataflow(args.eval, 'val', 128, get_inference_augmentor())
eval_classification(Model(), SmartRestore(param), ds)
elif args.input:
run_test(param, args.input)