diff --git a/integrations/jina.md b/integrations/jina.md index 47ec3b4..9649732 100644 --- a/integrations/jina.md +++ b/integrations/jina.md @@ -55,6 +55,10 @@ You can reference the table below for hints on dimension vs. performance: | :-------------------------------------: | :---: | :---: | :---: | :---: | :---: | :--: | :---: | | Average Retrieval Performance (nDCG@10) | 52.54 | 58.54 | 61.64 | 62.72 | 63.16 | 63.3 | 63.35 | +**Late Chunking in Long-Context Embedding Models** + +`jina-embeddings-v3` supports [Late Chunking](https://jina.ai/news/late-chunking-in-long-context-embedding-models/), the technique to leverage the model's long-context capabilities for generating contextual chunk embeddings. Include `late_chunking=True` in your request to enable contextual chunked representation. When set to true, Jina AI API will concatenate all sentences in the input field and feed them as a single string to the model. Internally, the model embeds this long concatenated string and then performs late chunking, returning a list of embeddings that matches the size of the input list. + ### **Table of Contents** - [Haystack 2.0](#haystack-20) @@ -105,7 +109,8 @@ indexing_pipeline.add_component( api_key=Secret.from_token(""), model="jina-embeddings-v3", dimensions=1024, - task="retrieval.passage" + task="retrieval.passage", + late_chunking=True, ) ) indexing_pipeline.add_component("writer", DocumentWriter(document_store=document_store))