-
Notifications
You must be signed in to change notification settings - Fork 0
/
objectDetection.py
72 lines (59 loc) · 2.79 KB
/
objectDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as np
import time
capture = cv2.VideoCapture(0)
widthAndHeight = 320
confidanceThreshHold = 0.5
nmsThreshold = 0.3
classesFile = r'C:\Users\Denis\Desktop\Diplomski\pythonProject\model.data\custom.names'
classNames = []
with open(classesFile, 'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
print(classNames)
modelConf = r'C:\Users\Denis\Desktop\Diplomski\pythonProject\model.data\yolov4-helmet.cfg'
modelWeig = r'C:\Users\Denis\Desktop\Diplomski\pythonProject\model.data\yolov4-helmet-detection.weights'
net = cv2.dnn.readNetFromDarknet(modelConf, modelWeig)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) #tu mozemo odabrat i CUDA ako imamo graficku i drivere isntalirane
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) #isto tako mozemo i ovdje odabrati CUDA ako imamo graficku, graficka puno brze obraduje sliku nego CPU
colors = [tuple(255 * np.random.rand(3)) for i in range(5)]
def findObjects(outputs, img):
height, width, channels = img.shape
boundingBox = []
classIds = []
confidanceValue = []
for output in outputs:
for detection in output:
scores = detection[5:] #ukloni ostalih pet feildova iz responsa i gledaj samo confidance value
classId = np.argmax(scores)
confidance = scores[classId]
if confidance > confidanceThreshHold:
w, h = int(detection[2] * width), int(detection[3] * height)
x, y = int((detection[0] * width) - w/2), int((detection[1] * height) - h/2)
boundingBox.append([x, y, w, h])
classIds.append(classId)
confidanceValue.append(float(confidance))
indices = cv2.dnn.NMSBoxes(boundingBox, confidanceValue, confidanceThreshHold, nmsThreshold)
for color, i in zip(colors, indices):
i = i[0]
box = boundingBox[i]
x, y, w, h = box[0], box[1], box[2], box[3]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, f'{classNames[classIds[i]].upper()} {int(confidanceValue[i] * 100)}%', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 0), 2)
while True:
success, img = capture.read()
blob = cv2.dnn.blobFromImage(img, 1/255, (widthAndHeight, widthAndHeight), [0, 0, 0], 1, crop=False)
net.setInput(blob)
startTime = time.time()
layerNames = net.getLayerNames() #s ovim cemo dobiti imena svih nasih layera
#print(layerNames)
outPutNames = [layerNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
#print(outPutNames)
outputs = net.forward(outPutNames)
#print(outputs[0].shape)
#print(outputs[1].shape)
#print(outputs[2].shape)
#print(outputs[0][0])
findObjects(outputs, img)
print('FPS {:.1f}'.format(1/(time.time() - startTime)))
cv2.imshow('image', img)
cv2.waitKey(1)