-
Notifications
You must be signed in to change notification settings - Fork 167
/
manasa-and-pizza.cpp
108 lines (91 loc) · 1.91 KB
/
manasa-and-pizza.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
//manasa-and-pizza.cpp
//Manasa and Pizza
//Ad Infinitum - Math Programming Contest June'14
//Author: derekhh
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN = 3, MOD = 1000000007;
struct Matrix
{
int v[MAXN][MAXN], row, col;
};
Matrix add(Matrix a, Matrix b)
{
Matrix ans;
ans.row = a.row, ans.col = a.col;
for (int i = 1; i <= a.row; i++)
for (int j = 1; j <= a.col; j++)
ans.v[i][j] = (a.v[i][j] + b.v[i][j]) % MOD;
return ans;
}
Matrix mul(Matrix a, Matrix b)
{
Matrix ans;
ans.row = a.row, ans.col = b.col;
for (int i = 1; i <= a.row; i++)
{
for (int j = 1; j <= b.col; j++)
{
ans.v[i][j] = 0;
for (int k = 1; k <= a.col; k++)
ans.v[i][j] = (ans.v[i][j] + (long long)a.v[i][k] * b.v[k][j]) % MOD;
}
}
return ans;
}
Matrix power(Matrix a, long long n)
{
Matrix res;
res.row = a.row, res.col = a.col;
memset(res.v, 0, sizeof(res.v));
for (int i = 1; i <= a.row; i++)
res.v[i][i] = 1;
while (n != 0)
{
if (n % 2 == 1)
res = mul(res, a);
a = mul(a, a);
n /= 2;
}
return res;
}
long long a[5101];
Matrix f[5101];
int main()
{
int n;
cin >> n;
long long sum = 0;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
sum += a[i];
}
Matrix F;
F.col = F.row = 2;
F.v[1][1] = 6;
F.v[1][2] = MOD - 1;
F.v[2][1] = 1;
F.v[2][2] = 0;
Matrix tmp = power(F, sum - 1);
Matrix F_base;
F_base.row = 2; F_base.col = 1;
F_base.v[1][1] = 3; F_base.v[2][1] = 1;
Matrix F_result = mul(tmp, F_base);
int g0 = F_result.v[1][1];
tmp = power(F, sum - 2);
F_result = mul(tmp, F_base);
int g1 = F_result.v[1][1];
f[0].row = f[0].col = 2;
f[0].v[1][1] = f[0].v[2][2] = 1;
f[0].v[1][2] = f[0].v[2][1] = 0;
for (int i = 1; i <= n; i++)
f[i] = add(f[i - 1], mul(f[i - 1], power(F, 2 * a[i])));
Matrix G_base;
G_base.row = 2; G_base.col = 1;
G_base.v[1][1] = g1; G_base.v[2][1] = g0;
Matrix G_result = mul(f[n], G_base);
cout << G_result.v[2][1] << endl;
return 0;
}