-
Notifications
You must be signed in to change notification settings - Fork 1
/
mllib_tests.py
423 lines (368 loc) · 17.6 KB
/
mllib_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import json
import numpy
import time
import pyspark
from pyspark.ml.classification import LogisticRegression as MLLogisticRegression
from pyspark.ml.regression import LinearRegression as MLLinearRegression
from pyspark.mllib.classification import *
from pyspark.mllib.clustering import *
from pyspark.mllib.regression import *
from pyspark.mllib.recommendation import *
from pyspark.mllib.stat import *
from mllib_data import *
class PerfTest:
def __init__(self, sc):
self.sc = sc
def initialize(self, options):
self.options = options
def createInputData(self):
raise NotImplementedError
def run(self):
"""
:return: List of [trainingTime, testTime, trainingMetric, testMetric] tuples,
or list of [time] tuples
"""
raise NotImplementedError
class NonPredictionTest(PerfTest):
def __init__(self, sc):
PerfTest.__init__(self, sc)
def runTest(self):
raise NotImplementedError
def run(self):
"""
:return: List of [time] 1-element tuples
"""
options = self.options
results = []
for i in range(options.num_trials):
start = time.time()
self.runTest()
runtime = time.time() - start
results.append([runtime])
time.sleep(options.inter_trial_wait)
return results
class PredictionTest(PerfTest):
def __init__(self, sc):
PerfTest.__init__(self, sc)
def train(self, rdd):
"""
:return: Trained model to be passed to test.
"""
raise NotImplementedError
def evaluate(self, model, rdd):
"""
:return: Evaluation metric for model on the given data.
"""
raise NotImplementedError
def run(self):
options = self.options
self.trainRDD.cache() # match Scala tests for caching before computing testTime
self.trainRDD.count()
results = []
for i in range(options.num_trials):
# Train
start = time.time()
model = self.train(self.trainRDD)
trainingTime = time.time() - start
# Measure test time on training set since it is probably larger.
start = time.time()
print 'computing trainingMetric...'
trainingMetric = self.evaluate(model, self.trainRDD)
print ' done computing trainingMetric'
testTime = time.time() - start
# Test
print 'computing testMetric...'
testMetric = self.evaluate(model, self.testRDD)
print ' done computing testMetric'
results.append([trainingTime, testTime, trainingMetric, testMetric])
time.sleep(options.inter_trial_wait)
return results
@classmethod
def _evaluateAccuracy(cls, model, rdd):
"""
:return: 0/1 classification accuracy as percentage for model on the given data.
"""
acc = rdd.map(lambda lp: 1.0 if lp.label == model.predict(lp.features) else 0.0).mean()
return 100.0 * acc
@classmethod
def _evaluateRMSE(cls, model, rdd):
"""
:return: root mean squared error (RMSE) for model on the given data.
"""
squaredError =\
rdd.map(lambda lp: numpy.square(lp.label - model.predict(lp.features))).mean()
return numpy.sqrt(squaredError)
class GLMTest(PredictionTest):
def __init__(self, sc):
PredictionTest.__init__(self, sc)
def createInputData(self):
options = self.options
numTrain = options.num_examples
numTest = int(options.num_examples * 0.2)
self.trainRDD = LabeledDataGenerator.generateGLMData(
self.sc, numTrain, options.num_features,
options.num_partitions, options.random_seed, labelType=2)
self.testRDD = LabeledDataGenerator.generateGLMData(
self.sc, numTest, options.num_features,
options.num_partitions, options.random_seed + 1, labelType=2)
class GLMClassificationTest(GLMTest):
def __init__(self, sc):
GLMTest.__init__(self, sc)
def train(self, rdd):
"""
:return: Trained model to be passed to test.
"""
options = self.options
if options.reg_type == "elastic-net": # use spark.ml
lr = MLLogisticRegression(maxIter=options.num_iterations, regParam=options.reg_param,
elasticNetParam=options.elastic_net_param)
# TODO: Do not include time for conversion to DataFrame (but this currently matches
# the Scala tests)
df = rdd.toDF()
lrModel = lr.fit(df)
numFeatures = len(lrModel.weights)
numClasses = 2
return LogisticRegressionModel(lrModel.weights, lrModel.intercept,
numFeatures, numClasses)
else:
if options.loss == "logistic":
if options.optimizer == "sgd":
return LogisticRegressionWithSGD.train(data=rdd,
iterations=options.num_iterations,
step=options.step_size,
miniBatchFraction=1.0,
regParam=options.reg_param,
regType=options.reg_type)
elif options.optimizer == "l-bfgs":
return LogisticRegressionWithLBFGS.train(data=rdd,
iterations=options.num_iterations,
regParam=options.reg_param,
regType=options.reg_type,
tolerance=0.0)
else:
raise Exception("GLMClassificationTest cannot run with loss = %s,"
" optimizer = %s" % (options.loss, options.optimizer))
elif options.loss == "hinge":
if options.optimizer == "sgd":
return SVMWithSGD.train(data=rdd, iterations=options.num_iterations,
step=options.step_size, regParam=options.reg_param,
miniBatchFraction=1.0, regType=options.reg_type)
else:
raise Exception("GLMClassificationTest does not recognize loss: %s" % options.loss)
def evaluate(self, model, rdd):
return PredictionTest._evaluateAccuracy(model, rdd)
class GLMRegressionTest(GLMTest):
def __init__(self, sc):
GLMTest.__init__(self, sc)
def train(self, rdd):
"""
This ignores the optimizer parameter since it makes config difficult for Linear Regression.
:return: Trained model to be passed to test.
"""
options = self.options
if options.loss == "l2":
if options.reg_type in ["none", "l1", "l2"]:
return LinearRegressionWithSGD.train(data=rdd,
iterations=options.num_iterations,
step=options.step_size,
miniBatchFraction=1.0,
regParam=options.reg_param,
regType=options.reg_type)
elif options.reg_type == "elastic-net": # use spark.ml
lr = MLLinearRegression(maxIter=options.num_iterations, regParam=options.reg_param,
elasticNetParam=options.elastic_net_param)
# TODO: Do not include time for conversion to DataFrame (but this currently matches
# the Scala tests)
df = rdd.toDF()
lrModel = lr.fit(df)
return LinearRegressionModel(lrModel.weights, lrModel.intercept)
else:
raise Exception("GLMRegressionTest cannot run with loss = %s, reg_type = %s" \
% (options.loss, options.reg_type))
else:
raise Exception("GLMRegressionTest does not recognize loss: %s" % options.loss)
def evaluate(self, model, rdd):
return PredictionTest._evaluateRMSE(model, rdd)
class NaiveBayesTest(PredictionTest):
def __init__(self, sc):
PredictionTest.__init__(self, sc)
def createInputData(self):
options = self.options
numTrain = options.num_examples
numTest = int(options.num_examples * 0.2)
self.trainRDD = LabeledDataGenerator.generateGLMData(
self.sc, numTrain, options.num_features,
options.num_partitions, options.random_seed, labelType=2)
self.testRDD = LabeledDataGenerator.generateGLMData(
self.sc, numTest, options.num_features,
options.num_partitions, options.random_seed + 1, labelType=2)
def evaluate(self, model, rdd):
return PredictionTest._evaluateAccuracy(model, rdd)
def train(self, rdd):
return NaiveBayes.train(rdd, lambda_=options.nb_lambda)
class KMeansTest(NonPredictionTest):
def __init__(self, sc):
NonPredictionTest.__init__(self, sc)
def createInputData(self):
options = self.options
self.data = FeaturesGenerator.generateContinuousData(
self.sc, options.num_examples, options.num_features,
options.num_partitions, options.random_seed)
def runTest(self):
model = KMeans.train(self.data, k=options.num_centers,
maxIterations=options.num_iterations)
class ALSTest(PredictionTest):
def __init__(self, sc):
PredictionTest.__init__(self, sc)
def createInputData(self):
options = self.options
numTrain = options.num_ratings
numTest = int(options.num_ratings * 0.2)
self.trainRDD = RatingGenerator.generateRatingData(
self.sc, options.num_users, options.num_products, numTrain,
options.implicit_prefs, options.num_partitions, options.random_seed)
self.testRDD = RatingGenerator.generateRatingData(
self.sc, options.num_users, options.num_products, numTest,
options.implicit_prefs, options.num_partitions, options.random_seed + 1)
def evaluate(self, model, rdd):
"""
:return: root mean squared error (RMSE) for model on the given ratings.
"""
implicit_prefs = self.options.implicit_prefs
predictions = model.predictAll(rdd.map(lambda r: (r[0], r[1])))
sparkVersion = float(str(sc.version)[:3])
def mapPrediction(r):
if sparkVersion <= 1.1:
(user, product, rating) = (r[0], r[1], r[2])
else:
(user, product, rating) = (r.user, r.product, r.rating)
mappedRating = max(min(rating, 1.0), 0.0) if implicit_prefs else rating
return ((user, product), mappedRating)
predictionsAndRatings = \
predictions.map(mapPrediction).join(rdd.map(lambda r: ((r[0], r[1]), r[2]))).values()
return numpy.sqrt(predictionsAndRatings.map(lambda ab: numpy.square(ab[0] - ab[1])).mean())
def train(self, rdd):
if options.implicit_prefs:
model = ALS.trainImplicit(rdd, rank=options.rank,
iterations=options.num_iterations,
lambda_=options.reg_param, blocks=options.num_partitions)
else:
model = ALS.train(rdd, rank=options.rank,
iterations=options.num_iterations,
lambda_=options.reg_param, blocks=options.num_partitions)
return model
class CorrelationTest(NonPredictionTest):
def __init__(self, sc):
NonPredictionTest.__init__(self, sc)
def createInputData(self):
options = self.options
self.data = FeaturesGenerator.generateContinuousData(
self.sc, options.num_rows, options.num_cols,
options.num_partitions, options.random_seed)
class PearsonCorrelationTest(CorrelationTest):
def __init__(self, sc):
CorrelationTest.__init__(self, sc)
def runTest(self):
corr = Statistics.corr(self.data, method="pearson")
class SpearmanCorrelationTest(CorrelationTest):
def __init__(self, sc):
CorrelationTest.__init__(self, sc)
def runTest(self):
corr = Statistics.corr(self.data, method="spearman")
if __name__ == "__main__":
import optparse
parser = optparse.OptionParser(usage="Usage: %prog [options] test_names")
# COMMON_OPTS
parser.add_option("--num-trials", type="int", default=1)
parser.add_option("--inter-trial-wait", type="int", default=3)
# MLLIB_COMMON_OPTS
parser.add_option("--num-partitions", type="int", default=10)
parser.add_option("--random-seed", type="int", default=5)
parser.add_option("--num-iterations", type="int", default=20)
parser.add_option("--reg-param", type="float", default=0.1)
parser.add_option("--rank", type="int", default=2)
# MLLIB_REGRESSION_CLASSIFICATION_TEST_OPTS
parser.add_option("--num-examples", type="int", default=1024)
parser.add_option("--num-features", type="int", default=50)
# MLLIB_GLM_TEST_OPTS
parser.add_option("--step-size", type="float", default=0.1)
parser.add_option("--reg-type", type="string", default="none")
parser.add_option("--loss", type="string", default="L2")
parser.add_option("--optimizer", type="string", default="sgd")
parser.add_option("--elastic-net-param", type="float", default=0.0)
# MLLIB_GLM_REGRESSION_TEST_OPTS
parser.add_option("--intercept", type="float", default=0.0)
parser.add_option("--label-noise", type="float", default=0.1)
# MLLIB_CLASSIFICATION_TEST_OPTS
parser.add_option("--feature-noise", type="float", default=1.0)
# NAIVE_BAYES_TEST_OPTS
parser.add_option("--per-negative", type="float", default=0.3)
parser.add_option("--nb-lambda", type="float", default=1.0)
parser.add_option("--model-type", type="string", default="multinomial")
# MLLIB_DECISION_TREE_TEST_OPTS
parser.add_option("--label-type", type="int", default=2)
parser.add_option("--frac-categorical-features", type="float", default=0.5)
parser.add_option("--frac-binary-features", type="float", default=0.5)
parser.add_option("--tree-depth", type="int", default=5)
parser.add_option("--max-bins", type="int", default=32)
# (for Spark 1.2+ only:)
parser.add_option("--ensemble-type", type="string", default="RandomForest")
parser.add_option("--num-trees", type="int", default=1)
parser.add_option("--feature-subset-strategy", type="string", default="auto")
# MLLIB_RECOMMENDATION_TEST_OPTS
parser.add_option("--num-users", type="int", default=60)
parser.add_option("--num-products", type="int", default=50)
parser.add_option("--num-ratings", type="int", default=500)
parser.add_option("--implicit-prefs", type="int", default=0)
# MLLIB_CLUSTERING_TEST_OPTS
parser.add_option("--num-centers", type="int", default=5)
# MLLIB_LINALG_TEST_OPTS + MLLIB_STATS_TEST_OPTS
parser.add_option("--num-rows", type="int", default=1000)
parser.add_option("--num-cols", type="int", default=10)
options, cases = parser.parse_args()
sc = pyspark.SparkContext(appName="MLlibTestRunner")
for name in cases:
test = globals()[name](sc)
test.initialize(options)
test.createInputData()
javaSystemProperties = sc._jvm.System.getProperties()
systemProperties = {}
for k in javaSystemProperties.keys():
if type(javaSystemProperties[k]) != unicode:
print "type(javaSystemProperties[k]) != unicode"
print "\t type(javaSystemProperties[k]) = %r" % type(javaSystemProperties[k])
systemProperties[k] = javaSystemProperties[k]
ts = test.run()
if len(ts) != test.options.num_trials:
raise Exception("mllib_tests.py FAILED (got %d results instead of %d)" %
(len(ts), test.options.num_trials))
results = []
if len(ts[0]) == 1:
# results include: time
print "Results from each trial:"
print "trial\ttime"
for trial in range(test.options.num_trials):
t = ts[trial]
print "%d\t%.3f" % (trial, t[0])
results.append({"time": t[0]})
else:
# results include: trainingTime, testTime, trainingMetric, testMetric
print "Results from each trial:"
print "trial\ttrainingTime\ttestTime\ttrainingMetric\ttestMetric"
for trial in range(test.options.num_trials):
t = ts[trial]
print "%d\t%.3f\t%.3f\t%.3f\t%.3f" % (trial, t[0], t[1], t[2], t[3])
results.append({"trainingTime": t[0], "testTime": t[1],
"trainingMetric": t[2], "testMetric": t[3]})
# JSON results
sparkConfInfo = {} # convert to dict to match Scala JSON
for (a,b) in sc._conf.getAll():
sparkConfInfo[a] = b
jsonResults = json.dumps({"testName": name,
"options": vars(options),
"sparkConf": sparkConfInfo,
"sparkVersion": sc.version,
"systemProperties": systemProperties,
"results": results},
separators=(',', ':')) # use separators for compact encoding
print "results: " + jsonResults