-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
943 lines (764 loc) · 39.4 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
import matplotlib.pyplot as plt
import numpy as np
import datasets
import transformers
import re
import torch
import torch.nn.functional as F
import tqdm
import random
from sklearn.metrics import roc_curve, precision_recall_curve, auc
import argparse
import datetime
import os
import json
import functools
import custom_datasets
from multiprocessing.pool import ThreadPool
import time
# 15 colorblind-friendly colors
COLORS = ["#0072B2", "#009E73", "#D55E00", "#CC79A7", "#F0E442",
"#56B4E9", "#E69F00", "#000000", "#0072B2", "#009E73",
"#D55E00", "#CC79A7", "#F0E442", "#56B4E9", "#E69F00"]
# define regex to match all <extra_id_*> tokens, where * is an integer
pattern = re.compile(r"<extra_id_\d+>")
def load_base_model():
print('MOVING BASE MODEL TO GPU...', end='', flush=True)
start = time.time()
try:
mask_model.cpu()
except NameError:
pass
if args.openai_model is None:
base_model.to(DEVICE)
print(f'DONE ({time.time() - start:.2f}s)')
def load_mask_model():
print('MOVING MASK MODEL TO GPU...', end='', flush=True)
start = time.time()
if args.openai_model is None:
base_model.cpu()
if not args.random_fills:
mask_model.to(DEVICE)
print(f'DONE ({time.time() - start:.2f}s)')
def tokenize_and_mask(text, span_length, pct, ceil_pct=False):
tokens = text.split(' ')
mask_string = '<<<mask>>>'
n_spans = pct * len(tokens) / (span_length + args.buffer_size * 2)
if ceil_pct:
n_spans = np.ceil(n_spans)
n_spans = int(n_spans)
n_masks = 0
while n_masks < n_spans:
start = np.random.randint(0, len(tokens) - span_length)
end = start + span_length
search_start = max(0, start - args.buffer_size)
search_end = min(len(tokens), end + args.buffer_size)
if mask_string not in tokens[search_start:search_end]:
tokens[start:end] = [mask_string]
n_masks += 1
# replace each occurrence of mask_string with <extra_id_NUM>, where NUM increments
num_filled = 0
for idx, token in enumerate(tokens):
if token == mask_string:
tokens[idx] = f'<extra_id_{num_filled}>'
num_filled += 1
assert num_filled == n_masks, f"num_filled {num_filled} != n_masks {n_masks}"
text = ' '.join(tokens)
return text
def count_masks(texts):
return [len([x for x in text.split() if x.startswith("<extra_id_")]) for text in texts]
# replace each masked span with a sample from T5 mask_model
def replace_masks(texts):
n_expected = count_masks(texts)
stop_id = mask_tokenizer.encode(f"<extra_id_{max(n_expected)}>")[0]
tokens = mask_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
outputs = mask_model.generate(**tokens, max_length=150, do_sample=True, top_p=args.mask_top_p, num_return_sequences=1, eos_token_id=stop_id)
return mask_tokenizer.batch_decode(outputs, skip_special_tokens=False)
def extract_fills(texts):
# remove <pad> from beginning of each text
texts = [x.replace("<pad>", "").replace("</s>", "").strip() for x in texts]
# return the text in between each matched mask token
extracted_fills = [pattern.split(x)[1:-1] for x in texts]
# remove whitespace around each fill
extracted_fills = [[y.strip() for y in x] for x in extracted_fills]
return extracted_fills
def apply_extracted_fills(masked_texts, extracted_fills):
# split masked text into tokens, only splitting on spaces (not newlines)
tokens = [x.split(' ') for x in masked_texts]
n_expected = count_masks(masked_texts)
# replace each mask token with the corresponding fill
for idx, (text, fills, n) in enumerate(zip(tokens, extracted_fills, n_expected)):
if len(fills) < n:
tokens[idx] = []
else:
for fill_idx in range(n):
text[text.index(f"<extra_id_{fill_idx}>")] = fills[fill_idx]
# join tokens back into text
texts = [" ".join(x) for x in tokens]
return texts
def perturb_texts_(texts, span_length, pct, ceil_pct=False):
if not args.random_fills:
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
raw_fills = replace_masks(masked_texts)
extracted_fills = extract_fills(raw_fills)
perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
# Handle the fact that sometimes the model doesn't generate the right number of fills and we have to try again
attempts = 1
while '' in perturbed_texts:
idxs = [idx for idx, x in enumerate(perturbed_texts) if x == '']
print(f'WARNING: {len(idxs)} texts have no fills. Trying again [attempt {attempts}].')
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for idx, x in enumerate(texts) if idx in idxs]
raw_fills = replace_masks(masked_texts)
extracted_fills = extract_fills(raw_fills)
new_perturbed_texts = apply_extracted_fills(masked_texts, extracted_fills)
for idx, x in zip(idxs, new_perturbed_texts):
perturbed_texts[idx] = x
attempts += 1
else:
if args.random_fills_tokens:
# tokenize base_tokenizer
tokens = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
valid_tokens = tokens.input_ids != base_tokenizer.pad_token_id
replace_pct = args.pct_words_masked * (args.span_length / (args.span_length + 2 * args.buffer_size))
# replace replace_pct of input_ids with random tokens
random_mask = torch.rand(tokens.input_ids.shape, device=DEVICE) < replace_pct
random_mask &= valid_tokens
random_tokens = torch.randint(0, base_tokenizer.vocab_size, (random_mask.sum(),), device=DEVICE)
# while any of the random tokens are special tokens, replace them with random non-special tokens
while any(base_tokenizer.decode(x) in base_tokenizer.all_special_tokens for x in random_tokens):
random_tokens = torch.randint(0, base_tokenizer.vocab_size, (random_mask.sum(),), device=DEVICE)
tokens.input_ids[random_mask] = random_tokens
perturbed_texts = base_tokenizer.batch_decode(tokens.input_ids, skip_special_tokens=True)
else:
masked_texts = [tokenize_and_mask(x, span_length, pct, ceil_pct) for x in texts]
perturbed_texts = masked_texts
# replace each <extra_id_*> with args.span_length random words from FILL_DICTIONARY
for idx, text in enumerate(perturbed_texts):
filled_text = text
for fill_idx in range(count_masks([text])[0]):
fill = random.sample(FILL_DICTIONARY, span_length)
filled_text = filled_text.replace(f"<extra_id_{fill_idx}>", " ".join(fill))
assert count_masks([filled_text])[0] == 0, "Failed to replace all masks"
perturbed_texts[idx] = filled_text
return perturbed_texts
def perturb_texts(texts, span_length, pct, ceil_pct=False):
chunk_size = args.chunk_size
if '11b' in mask_filling_model_name:
chunk_size //= 2
outputs = []
for i in tqdm.tqdm(range(0, len(texts), chunk_size), desc="Applying perturbations"):
outputs.extend(perturb_texts_(texts[i:i + chunk_size], span_length, pct, ceil_pct=ceil_pct))
return outputs
def drop_last_word(text):
return ' '.join(text.split(' ')[:-1])
def _openai_sample(p):
if args.dataset != 'pubmed': # keep Answer: prefix for pubmed
p = drop_last_word(p)
# sample from the openai model
kwargs = { "engine": args.openai_model, "max_tokens": 200 }
if args.do_top_p:
kwargs['top_p'] = args.top_p
r = openai.Completion.create(prompt=f"{p}", **kwargs)
return p + r['choices'][0].text
# sample from base_model using ****only**** the first 30 tokens in each example as context
def sample_from_model(texts, min_words=55, prompt_tokens=30):
# encode each text as a list of token ids
if args.dataset == 'pubmed':
texts = [t[:t.index(custom_datasets.SEPARATOR)] for t in texts]
all_encoded = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
else:
all_encoded = base_tokenizer(texts, return_tensors="pt", padding=True).to(DEVICE)
all_encoded = {key: value[:, :prompt_tokens] for key, value in all_encoded.items()}
if args.openai_model:
# decode the prefixes back into text
prefixes = base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True)
pool = ThreadPool(args.batch_size)
decoded = pool.map(_openai_sample, prefixes)
else:
decoded = ['' for _ in range(len(texts))]
# sample from the model until we get a sample with at least min_words words for each example
# this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works
tries = 0
while (m := min(len(x.split()) for x in decoded)) < min_words:
if tries != 0:
print()
print(f"min words: {m}, needed {min_words}, regenerating (try {tries})")
sampling_kwargs = {}
if args.do_top_p:
sampling_kwargs['top_p'] = args.top_p
elif args.do_top_k:
sampling_kwargs['top_k'] = args.top_k
min_length = 50 if args.dataset in ['pubmed'] else 150
outputs = base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True, **sampling_kwargs, pad_token_id=base_tokenizer.eos_token_id, eos_token_id=base_tokenizer.eos_token_id)
decoded = base_tokenizer.batch_decode(outputs, skip_special_tokens=True)
tries += 1
if args.openai_model:
global API_TOKEN_COUNTER
# count total number of tokens with GPT2_TOKENIZER
total_tokens = sum(len(GPT2_TOKENIZER.encode(x)) for x in decoded)
API_TOKEN_COUNTER += total_tokens
return decoded
def get_likelihood(logits, labels):
assert logits.shape[0] == 1
assert labels.shape[0] == 1
logits = logits.view(-1, logits.shape[-1])[:-1]
labels = labels.view(-1)[1:]
log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
log_likelihood = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1)
return log_likelihood.mean()
# Get the log likelihood of each text under the base_model
def get_ll(text):
if args.openai_model:
kwargs = { "engine": args.openai_model, "temperature": 0, "max_tokens": 0, "echo": True, "logprobs": 0}
r = openai.Completion.create(prompt=f"<|endoftext|>{text}", **kwargs)
result = r['choices'][0]
tokens, logprobs = result["logprobs"]["tokens"][1:], result["logprobs"]["token_logprobs"][1:]
assert len(tokens) == len(logprobs), f"Expected {len(tokens)} logprobs, got {len(logprobs)}"
return np.mean(logprobs)
else:
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
labels = tokenized.input_ids
return -base_model(**tokenized, labels=labels).loss.item()
def get_lls(texts):
if not args.openai_model:
return [get_ll(text) for text in texts]
else:
global API_TOKEN_COUNTER
# use GPT2_TOKENIZER to get total number of tokens
total_tokens = sum(len(GPT2_TOKENIZER.encode(text)) for text in texts)
API_TOKEN_COUNTER += total_tokens * 2 # multiply by two because OpenAI double-counts echo_prompt tokens
pool = ThreadPool(args.batch_size)
return pool.map(get_ll, texts)
# get the average rank of each observed token sorted by model likelihood
def get_rank(text, log=False):
assert args.openai_model is None, "get_rank not implemented for OpenAI models"
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
logits = base_model(**tokenized).logits[:,:-1]
labels = tokenized.input_ids[:,1:]
# get rank of each label token in the model's likelihood ordering
matches = (logits.argsort(-1, descending=True) == labels.unsqueeze(-1)).nonzero()
assert matches.shape[1] == 3, f"Expected 3 dimensions in matches tensor, got {matches.shape}"
ranks, timesteps = matches[:,-1], matches[:,-2]
# make sure we got exactly one match for each timestep in the sequence
assert (timesteps == torch.arange(len(timesteps)).to(timesteps.device)).all(), "Expected one match per timestep"
ranks = ranks.float() + 1 # convert to 1-indexed rank
if log:
ranks = torch.log(ranks)
return ranks.float().mean().item()
# get average entropy of each token in the text
def get_entropy(text):
assert args.openai_model is None, "get_entropy not implemented for OpenAI models"
with torch.no_grad():
tokenized = base_tokenizer(text, return_tensors="pt").to(DEVICE)
logits = base_model(**tokenized).logits[:,:-1]
neg_entropy = F.softmax(logits, dim=-1) * F.log_softmax(logits, dim=-1)
return -neg_entropy.sum(-1).mean().item()
def get_roc_metrics(real_preds, sample_preds):
fpr, tpr, _ = roc_curve([0] * len(real_preds) + [1] * len(sample_preds), real_preds + sample_preds)
roc_auc = auc(fpr, tpr)
return fpr.tolist(), tpr.tolist(), float(roc_auc)
def get_precision_recall_metrics(real_preds, sample_preds):
precision, recall, _ = precision_recall_curve([0] * len(real_preds) + [1] * len(sample_preds), real_preds + sample_preds)
pr_auc = auc(recall, precision)
return precision.tolist(), recall.tolist(), float(pr_auc)
# save the ROC curve for each experiment, given a list of output dictionaries, one for each experiment, using colorblind-friendly colors
def save_roc_curves(experiments):
# first, clear plt
plt.clf()
for experiment, color in zip(experiments, COLORS):
metrics = experiment["metrics"]
plt.plot(metrics["fpr"], metrics["tpr"], label=f"{experiment['name']}, roc_auc={metrics['roc_auc']:.3f}", color=color)
# print roc_auc for this experiment
print(f"{experiment['name']} roc_auc: {metrics['roc_auc']:.3f}")
plt.plot([0, 1], [0, 1], color='black', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title(f'ROC Curves ({base_model_name} - {args.mask_filling_model_name})')
plt.legend(loc="lower right", fontsize=6)
plt.savefig(f"{SAVE_FOLDER}/roc_curves.png")
# save the histogram of log likelihoods in two side-by-side plots, one for real and real perturbed, and one for sampled and sampled perturbed
def save_ll_histograms(experiments):
# first, clear plt
plt.clf()
for experiment in experiments:
try:
results = experiment["raw_results"]
# plot histogram of sampled/perturbed sampled on left, original/perturbed original on right
plt.figure(figsize=(20, 6))
plt.subplot(1, 2, 1)
plt.hist([r["sampled_ll"] for r in results], alpha=0.5, bins='auto', label='sampled')
plt.hist([r["perturbed_sampled_ll"] for r in results], alpha=0.5, bins='auto', label='perturbed sampled')
plt.xlabel("log likelihood")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.subplot(1, 2, 2)
plt.hist([r["original_ll"] for r in results], alpha=0.5, bins='auto', label='original')
plt.hist([r["perturbed_original_ll"] for r in results], alpha=0.5, bins='auto', label='perturbed original')
plt.xlabel("log likelihood")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.savefig(f"{SAVE_FOLDER}/ll_histograms_{experiment['name']}.png")
except:
pass
# save the histograms of log likelihood ratios in two side-by-side plots, one for real and real perturbed, and one for sampled and sampled perturbed
def save_llr_histograms(experiments):
# first, clear plt
plt.clf()
for experiment in experiments:
try:
results = experiment["raw_results"]
# plot histogram of sampled/perturbed sampled on left, original/perturbed original on right
plt.figure(figsize=(20, 6))
plt.subplot(1, 2, 1)
# compute the log likelihood ratio for each result
for r in results:
r["sampled_llr"] = r["sampled_ll"] - r["perturbed_sampled_ll"]
r["original_llr"] = r["original_ll"] - r["perturbed_original_ll"]
plt.hist([r["sampled_llr"] for r in results], alpha=0.5, bins='auto', label='sampled')
plt.hist([r["original_llr"] for r in results], alpha=0.5, bins='auto', label='original')
plt.xlabel("log likelihood ratio")
plt.ylabel('count')
plt.legend(loc='upper right')
plt.savefig(f"{SAVE_FOLDER}/llr_histograms_{experiment['name']}.png")
except:
pass
def get_perturbation_results(span_length=10, n_perturbations=1, n_samples=500):
load_mask_model()
torch.manual_seed(0)
np.random.seed(0)
results = []
original_text = data["original"]
sampled_text = data["sampled"]
perturb_fn = functools.partial(perturb_texts, span_length=span_length, pct=args.pct_words_masked)
p_sampled_text = perturb_fn([x for x in sampled_text for _ in range(n_perturbations)])
p_original_text = perturb_fn([x for x in original_text for _ in range(n_perturbations)])
for _ in range(n_perturbation_rounds - 1):
try:
p_sampled_text, p_original_text = perturb_fn(p_sampled_text), perturb_fn(p_original_text)
except AssertionError:
break
assert len(p_sampled_text) == len(sampled_text) * n_perturbations, f"Expected {len(sampled_text) * n_perturbations} perturbed samples, got {len(p_sampled_text)}"
assert len(p_original_text) == len(original_text) * n_perturbations, f"Expected {len(original_text) * n_perturbations} perturbed samples, got {len(p_original_text)}"
for idx in range(len(original_text)):
results.append({
"original": original_text[idx],
"sampled": sampled_text[idx],
"perturbed_sampled": p_sampled_text[idx * n_perturbations: (idx + 1) * n_perturbations],
"perturbed_original": p_original_text[idx * n_perturbations: (idx + 1) * n_perturbations]
})
load_base_model()
for res in tqdm.tqdm(results, desc="Computing log likelihoods"):
p_sampled_ll = get_lls(res["perturbed_sampled"])
p_original_ll = get_lls(res["perturbed_original"])
res["original_ll"] = get_ll(res["original"])
res["sampled_ll"] = get_ll(res["sampled"])
res["all_perturbed_sampled_ll"] = p_sampled_ll
res["all_perturbed_original_ll"] = p_original_ll
res["perturbed_sampled_ll"] = np.mean(p_sampled_ll)
res["perturbed_original_ll"] = np.mean(p_original_ll)
res["perturbed_sampled_ll_std"] = np.std(p_sampled_ll) if len(p_sampled_ll) > 1 else 1
res["perturbed_original_ll_std"] = np.std(p_original_ll) if len(p_original_ll) > 1 else 1
return results
def run_perturbation_experiment(results, criterion, span_length=10, n_perturbations=1, n_samples=500):
# compute diffs with perturbed
predictions = {'real': [], 'samples': []}
for res in results:
if criterion == 'd':
predictions['real'].append(res['original_ll'] - res['perturbed_original_ll'])
predictions['samples'].append(res['sampled_ll'] - res['perturbed_sampled_ll'])
elif criterion == 'z':
if res['perturbed_original_ll_std'] == 0:
res['perturbed_original_ll_std'] = 1
print("WARNING: std of perturbed original is 0, setting to 1")
print(f"Number of unique perturbed original texts: {len(set(res['perturbed_original']))}")
print(f"Original text: {res['original']}")
if res['perturbed_sampled_ll_std'] == 0:
res['perturbed_sampled_ll_std'] = 1
print("WARNING: std of perturbed sampled is 0, setting to 1")
print(f"Number of unique perturbed sampled texts: {len(set(res['perturbed_sampled']))}")
print(f"Sampled text: {res['sampled']}")
predictions['real'].append((res['original_ll'] - res['perturbed_original_ll']) / res['perturbed_original_ll_std'])
predictions['samples'].append((res['sampled_ll'] - res['perturbed_sampled_ll']) / res['perturbed_sampled_ll_std'])
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
name = f'perturbation_{n_perturbations}_{criterion}'
print(f"{name} ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
return {
'name': name,
'predictions': predictions,
'info': {
'pct_words_masked': args.pct_words_masked,
'span_length': span_length,
'n_perturbations': n_perturbations,
'n_samples': n_samples,
},
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
def run_baseline_threshold_experiment(criterion_fn, name, n_samples=500):
torch.manual_seed(0)
np.random.seed(0)
results = []
for batch in tqdm.tqdm(range(n_samples // batch_size), desc=f"Computing {name} criterion"):
original_text = data["original"][batch * batch_size:(batch + 1) * batch_size]
sampled_text = data["sampled"][batch * batch_size:(batch + 1) * batch_size]
for idx in range(len(original_text)):
results.append({
"original": original_text[idx],
"original_crit": criterion_fn(original_text[idx]),
"sampled": sampled_text[idx],
"sampled_crit": criterion_fn(sampled_text[idx]),
})
# compute prediction scores for real/sampled passages
predictions = {
'real': [x["original_crit"] for x in results],
'samples': [x["sampled_crit"] for x in results],
}
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"{name}_threshold ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
return {
'name': f'{name}_threshold',
'predictions': predictions,
'info': {
'n_samples': n_samples,
},
'raw_results': results,
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
# strip newlines from each example; replace one or more newlines with a single space
def strip_newlines(text):
return ' '.join(text.split())
# trim to shorter length
def trim_to_shorter_length(texta, textb):
# truncate to shorter of o and s
shorter_length = min(len(texta.split(' ')), len(textb.split(' ')))
texta = ' '.join(texta.split(' ')[:shorter_length])
textb = ' '.join(textb.split(' ')[:shorter_length])
return texta, textb
def truncate_to_substring(text, substring, idx_occurrence):
# truncate everything after the idx_occurrence occurrence of substring
assert idx_occurrence > 0, 'idx_occurrence must be > 0'
idx = -1
for _ in range(idx_occurrence):
idx = text.find(substring, idx + 1)
if idx == -1:
return text
return text[:idx]
def generate_samples(raw_data, batch_size):
torch.manual_seed(42)
np.random.seed(42)
data = {
"original": [],
"sampled": [],
}
for batch in range(len(raw_data) // batch_size):
print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size)
original_text = raw_data[batch * batch_size:(batch + 1) * batch_size]
sampled_text = sample_from_model(original_text, min_words=30 if args.dataset in ['pubmed'] else 55)
for o, s in zip(original_text, sampled_text):
if args.dataset == 'pubmed':
s = truncate_to_substring(s, 'Question:', 2)
o = o.replace(custom_datasets.SEPARATOR, ' ')
o, s = trim_to_shorter_length(o, s)
# add to the data
data["original"].append(o)
data["sampled"].append(s)
if args.pre_perturb_pct > 0:
print(f'APPLYING {args.pre_perturb_pct}, {args.pre_perturb_span_length} PRE-PERTURBATIONS')
load_mask_model()
data["sampled"] = perturb_texts(data["sampled"], args.pre_perturb_span_length, args.pre_perturb_pct, ceil_pct=True)
load_base_model()
return data
def generate_data(dataset, key):
# load data
if dataset in custom_datasets.DATASETS:
data = custom_datasets.load(dataset, cache_dir)
else:
data = datasets.load_dataset(dataset, split='train', cache_dir=cache_dir)[key]
# get unique examples, strip whitespace, and remove newlines
# then take just the long examples, shuffle, take the first 5,000 to tokenize to save time
# then take just the examples that are <= 512 tokens (for the mask model)
# then generate n_samples samples
# remove duplicates from the data
data = list(dict.fromkeys(data)) # deterministic, as opposed to set()
# strip whitespace around each example
data = [x.strip() for x in data]
# remove newlines from each example
data = [strip_newlines(x) for x in data]
# try to keep only examples with > 250 words
if dataset in ['writing', 'squad', 'xsum']:
long_data = [x for x in data if len(x.split()) > 250]
if len(long_data) > 0:
data = long_data
random.seed(0)
random.shuffle(data)
data = data[:5_000]
# keep only examples with <= 512 tokens according to mask_tokenizer
# this step has the extra effect of removing examples with low-quality/garbage content
tokenized_data = preproc_tokenizer(data)
data = [x for x, y in zip(data, tokenized_data["input_ids"]) if len(y) <= 512]
# print stats about remainining data
print(f"Total number of samples: {len(data)}")
print(f"Average number of words: {np.mean([len(x.split()) for x in data])}")
return generate_samples(data[:n_samples], batch_size=batch_size)
def load_base_model_and_tokenizer(name):
if args.openai_model is None:
print(f'Loading BASE model {args.base_model_name}...')
base_model_kwargs = {}
if 'gpt-j' in name or 'neox' in name:
base_model_kwargs.update(dict(torch_dtype=torch.float16))
if 'gpt-j' in name:
base_model_kwargs.update(dict(revision='float16'))
base_model = transformers.AutoModelForCausalLM.from_pretrained(name,
**base_model_kwargs)
#cache_dir=cache_dir)
else:
base_model = None
optional_tok_kwargs = {}
if "facebook/opt-" in name:
print("Using non-fast tokenizer for OPT")
optional_tok_kwargs['fast'] = False
if args.dataset in ['pubmed']:
optional_tok_kwargs['padding_side'] = 'left'
base_tokenizer = transformers.AutoTokenizer.from_pretrained(name, **optional_tok_kwargs, cache_dir=cache_dir)
base_tokenizer.pad_token_id = base_tokenizer.eos_token_id
return base_model, base_tokenizer
def eval_supervised(data, model):
print(f'Beginning supervised evaluation with {model}...')
detector = transformers.AutoModelForSequenceClassification.from_pretrained(model, cache_dir=cache_dir).to(DEVICE)
tokenizer = transformers.AutoTokenizer.from_pretrained(model, cache_dir=cache_dir)
real, fake = data['original'], data['sampled']
with torch.no_grad():
# get predictions for real
real_preds = []
for batch in tqdm.tqdm(range(len(real) // batch_size), desc="Evaluating real"):
batch_real = real[batch * batch_size:(batch + 1) * batch_size]
batch_real = tokenizer(batch_real, padding=True, truncation=True, max_length=512, return_tensors="pt").to(DEVICE)
real_preds.extend(detector(**batch_real).logits.softmax(-1)[:,0].tolist())
# get predictions for fake
fake_preds = []
for batch in tqdm.tqdm(range(len(fake) // batch_size), desc="Evaluating fake"):
batch_fake = fake[batch * batch_size:(batch + 1) * batch_size]
batch_fake = tokenizer(batch_fake, padding=True, truncation=True, max_length=512, return_tensors="pt").to(DEVICE)
fake_preds.extend(detector(**batch_fake).logits.softmax(-1)[:,0].tolist())
predictions = {
'real': real_preds,
'samples': fake_preds,
}
fpr, tpr, roc_auc = get_roc_metrics(real_preds, fake_preds)
p, r, pr_auc = get_precision_recall_metrics(real_preds, fake_preds)
print(f"{model} ROC AUC: {roc_auc}, PR AUC: {pr_auc}")
# free GPU memory
del detector
torch.mps.empty_cache()
return {
'name': model,
'predictions': predictions,
'info': {
'n_samples': n_samples,
},
'metrics': {
'roc_auc': roc_auc,
'fpr': fpr,
'tpr': tpr,
},
'pr_metrics': {
'pr_auc': pr_auc,
'precision': p,
'recall': r,
},
'loss': 1 - pr_auc,
}
if __name__ == '__main__':
DEVICE = "mps"
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_key', type=str, default="document")
parser.add_argument('--pct_words_masked', type=float, default=0.3) # pct masked is actually pct_words_masked * (span_length / (span_length + 2 * buffer_size))
parser.add_argument('--span_length', type=int, default=2)
parser.add_argument('--n_samples', type=int, default=200)
parser.add_argument('--n_perturbation_list', type=str, default="1,10")
parser.add_argument('--n_perturbation_rounds', type=int, default=1)
parser.add_argument('--base_model_name', type=str, default="gpt2-medium")
parser.add_argument('--scoring_model_name', type=str, default="")
parser.add_argument('--mask_filling_model_name', type=str, default="t5-large")
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--chunk_size', type=int, default=20)
parser.add_argument('--n_similarity_samples', type=int, default=20)
parser.add_argument('--int8', action='store_true')
parser.add_argument('--half', action='store_true')
parser.add_argument('--base_half', action='store_true')
parser.add_argument('--do_top_k', action='store_true')
parser.add_argument('--top_k', type=int, default=40)
parser.add_argument('--do_top_p', action='store_true')
parser.add_argument('--top_p', type=float, default=0.96)
parser.add_argument('--output_name', type=str, default="")
parser.add_argument('--openai_model', type=str, default=None)
parser.add_argument('--openai_key', type=str)
parser.add_argument('--baselines_only', action='store_true')
parser.add_argument('--skip_baselines', action='store_true')
parser.add_argument('--buffer_size', type=int, default=1)
parser.add_argument('--mask_top_p', type=float, default=1.0)
parser.add_argument('--pre_perturb_pct', type=float, default=0.0)
parser.add_argument('--pre_perturb_span_length', type=int, default=5)
parser.add_argument('--random_fills', action='store_true')
parser.add_argument('--random_fills_tokens', action='store_true')
parser.add_argument('--cache_dir', type=str, default="~/.cache")
args = parser.parse_args()
API_TOKEN_COUNTER = 0
if args.openai_model is not None:
import openai
assert args.openai_key is not None, "Must provide OpenAI API key as --openai_key"
openai.api_key = args.openai_key
START_DATE = datetime.datetime.now().strftime('%Y-%m-%d')
START_TIME = datetime.datetime.now().strftime('%H-%M-%S-%f')
# define SAVE_FOLDER as the timestamp - base model name - mask filling model name
# create it if it doesn't exist
precision_string = "int8" if args.int8 else ("fp16" if args.half else "fp32")
sampling_string = "top_k" if args.do_top_k else ("top_p" if args.do_top_p else "temp")
output_subfolder = f"{args.output_name}/" if args.output_name else ""
if args.openai_model is None:
base_model_name = args.base_model_name.replace('/', '_')
else:
base_model_name = "openai-" + args.openai_model.replace('/', '_')
scoring_model_string = (f"-{args.scoring_model_name}" if args.scoring_model_name else "").replace('/', '_')
SAVE_FOLDER = f"tmp_results/{output_subfolder}{base_model_name}{scoring_model_string}-{args.mask_filling_model_name}-{sampling_string}/{START_DATE}-{START_TIME}-{precision_string}-{args.pct_words_masked}-{args.n_perturbation_rounds}-{args.dataset}-{args.n_samples}"
if not os.path.exists(SAVE_FOLDER):
os.makedirs(SAVE_FOLDER)
print(f"Saving results to absolute path: {os.path.abspath(SAVE_FOLDER)}")
# write args to file
with open(os.path.join(SAVE_FOLDER, "args.json"), "w") as f:
json.dump(args.__dict__, f, indent=4)
mask_filling_model_name = args.mask_filling_model_name
n_samples = args.n_samples
batch_size = args.batch_size
n_perturbation_list = [int(x) for x in args.n_perturbation_list.split(",")]
n_perturbation_rounds = args.n_perturbation_rounds
n_similarity_samples = args.n_similarity_samples
cache_dir = args.cache_dir
os.environ["XDG_CACHE_HOME"] = cache_dir
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
print(f"Using cache dir {cache_dir}")
cache_dir = None
GPT2_TOKENIZER = transformers.GPT2Tokenizer.from_pretrained('gpt2', #cache_dir=cache_dir,
local_files_only=False)
# generic generative model
base_model, base_tokenizer = load_base_model_and_tokenizer(args.base_model_name)
# mask filling t5 model
if not args.baselines_only and not args.random_fills:
int8_kwargs = {}
half_kwargs = {}
if args.int8:
int8_kwargs = dict(load_in_8bit=True, device_map='auto', torch_dtype=torch.bfloat16)
elif args.half:
half_kwargs = dict(torch_dtype=torch.bfloat16)
print(f'Loading mask filling model {mask_filling_model_name}...')
mask_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(mask_filling_model_name, **int8_kwargs, **half_kwargs, cache_dir=cache_dir)
try:
n_positions = mask_model.config.n_positions
except AttributeError:
n_positions = 512
else:
n_positions = 512
preproc_tokenizer = transformers.AutoTokenizer.from_pretrained('t5-small', model_max_length=512, cache_dir=cache_dir)
mask_tokenizer = transformers.AutoTokenizer.from_pretrained(mask_filling_model_name, model_max_length=n_positions, cache_dir=cache_dir)
if args.dataset in ['english', 'german']:
preproc_tokenizer = mask_tokenizer
load_base_model()
print(f'Loading dataset {args.dataset}...')
data = generate_data(args.dataset, args.dataset_key)
if args.random_fills:
FILL_DICTIONARY = set()
for texts in data.values():
for text in texts:
FILL_DICTIONARY.update(text.split())
FILL_DICTIONARY = sorted(list(FILL_DICTIONARY))
if args.scoring_model_name:
print(f'Loading SCORING model {args.scoring_model_name}...')
del base_model
del base_tokenizer
torch.mps.empty_cache()
base_model, base_tokenizer = load_base_model_and_tokenizer(args.scoring_model_name)
load_base_model() # Load again because we've deleted/replaced the old model
# write the data to a json file in the save folder
with open(os.path.join(SAVE_FOLDER, "raw_data.json"), "w") as f:
print(f"Writing raw data to {os.path.join(SAVE_FOLDER, 'raw_data.json')}")
json.dump(data, f)
if not args.skip_baselines:
baseline_outputs = [run_baseline_threshold_experiment(get_ll, "likelihood", n_samples=n_samples)]
if args.openai_model is None:
rank_criterion = lambda text: -get_rank(text, log=False)
baseline_outputs.append(run_baseline_threshold_experiment(rank_criterion, "rank", n_samples=n_samples))
logrank_criterion = lambda text: -get_rank(text, log=True)
baseline_outputs.append(run_baseline_threshold_experiment(logrank_criterion, "log_rank", n_samples=n_samples))
entropy_criterion = lambda text: get_entropy(text)
baseline_outputs.append(run_baseline_threshold_experiment(entropy_criterion, "entropy", n_samples=n_samples))
baseline_outputs.append(eval_supervised(data, model='roberta-base-openai-detector'))
baseline_outputs.append(eval_supervised(data, model='roberta-large-openai-detector'))
outputs = []
if not args.baselines_only:
# run perturbation experiments
for n_perturbations in n_perturbation_list:
perturbation_results = get_perturbation_results(args.span_length, n_perturbations, n_samples)
for perturbation_mode in ['d', 'z']:
output = run_perturbation_experiment(
perturbation_results, perturbation_mode, span_length=args.span_length, n_perturbations=n_perturbations, n_samples=n_samples)
outputs.append(output)
with open(os.path.join(SAVE_FOLDER, f"perturbation_{n_perturbations}_{perturbation_mode}_results.json"), "w") as f:
json.dump(output, f)
if not args.skip_baselines:
# write likelihood threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"likelihood_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[0], f)
if args.openai_model is None:
# write rank threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"rank_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[1], f)
# write log rank threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"logrank_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[2], f)
# write entropy threshold results to a file
with open(os.path.join(SAVE_FOLDER, f"entropy_threshold_results.json"), "w") as f:
json.dump(baseline_outputs[3], f)
# write supervised results to a file
with open(os.path.join(SAVE_FOLDER, f"roberta-base-openai-detector_results.json"), "w") as f:
json.dump(baseline_outputs[-2], f)
# write supervised results to a file
with open(os.path.join(SAVE_FOLDER, f"roberta-large-openai-detector_results.json"), "w") as f:
json.dump(baseline_outputs[-1], f)
outputs += baseline_outputs
save_roc_curves(outputs)
save_ll_histograms(outputs)
save_llr_histograms(outputs)
# move results folder from tmp_results/ to results/, making sure necessary directories exist
new_folder = SAVE_FOLDER.replace("tmp_results", "results")
if not os.path.exists(os.path.dirname(new_folder)):
os.makedirs(os.path.dirname(new_folder))
os.rename(SAVE_FOLDER, new_folder)
print(f"Used an *estimated* {API_TOKEN_COUNTER} API tokens (may be inaccurate)")