diff --git a/.cirrus.yml b/.cirrus.yml
index a2e7f36d1f..629f758e66 100644
--- a/.cirrus.yml
+++ b/.cirrus.yml
@@ -18,6 +18,7 @@ env:
ECDH: no
RECOVERY: no
SCHNORRSIG: no
+ ELLSWIFT: no
### test options
SECP256K1_TEST_ITERS:
BENCH: yes
@@ -36,7 +37,6 @@ cat_logs_snippet: &CAT_LOGS
- cat valgrind_ctime_test.log || true
cat_bench_log_script:
- cat bench.log || true
- on_failure:
cat_config_log_script:
- cat config.log || true
cat_test_env_script:
@@ -67,11 +67,11 @@ task:
<< : *LINUX_CONTAINER
matrix: &ENV_MATRIX
- env: {WIDEMUL: int64, RECOVERY: yes}
- - env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
+ - env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
- env: {WIDEMUL: int128}
- - env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
+ - env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
- - env: {WIDEMUL: int128, ASM: x86_64}
+ - env: {WIDEMUL: int128, ASM: x86_64 , ELLSWIFT: yes}
- env: { RECOVERY: yes, SCHNORRSIG: yes}
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETEST: no, BENCH: no}
- env: {CPPFLAGS: -DDETERMINISTIC}
@@ -178,6 +178,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -197,6 +198,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
matrix:
- env: {}
@@ -217,6 +219,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -234,6 +237,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -241,17 +245,58 @@ task:
<< : *CAT_LOGS
task:
- name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
<< : *LINUX_CONTAINER
env:
- WRAPPER_CMD: wine64-stable
- SECP256K1_TEST_ITERS: 16
- HOST: x86_64-w64-mingw32
+ WRAPPER_CMD: wine
+ WITH_VALGRIND: no
+ ECDH: yes
+ RECOVERY: yes
+ SCHNORRSIG: yes
+ CTIMETEST: no
+ matrix:
+ - name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
+ env:
+ HOST: x86_64-w64-mingw32
+ - name: "i686 (mingw32-w64): Windows (Debian stable, Wine)"
+ env:
+ HOST: i686-w64-mingw32
+ << : *MERGE_BASE
+ test_script:
+ - ./ci/cirrus.sh
+ << : *CAT_LOGS
+
+task:
+ << : *LINUX_CONTAINER
+ env:
+ WRAPPER_CMD: wine
+ WERROR_CFLAGS: -WX
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
+ EXPERIMENTAL: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
+ # Set non-essential options that affect the CLI messages here.
+ # (They depend on the user's taste, so we don't want to set them automatically in configure.ac.)
+ CFLAGS: -nologo -diagnostics:caret
+ LDFLAGS: -XCClinker -nologo -XCClinker -diagnostics:caret
+ # Use a MinGW-w64 host to tell ./configure we're building for Windows.
+ # This will detect some MinGW-w64 tools but then make will need only
+ # the MSVC tools CC, AR and NM as specified below.
+ matrix:
+ - name: "x86_64 (MSVC): Windows (Debian stable, Wine)"
+ env:
+ HOST: x86_64-w64-mingw32
+ CC: /opt/msvc/bin/x64/cl
+ AR: /opt/msvc/bin/x64/lib
+ NM: /opt/msvc/bin/x64/dumpbin -symbols -headers
+ - name: "i686 (MSVC): Windows (Debian stable, Wine)"
+ env:
+ HOST: i686-w64-mingw32
+ CC: /opt/msvc/bin/x86/cl
+ AR: /opt/msvc/bin/x86/lib
+ NM: /opt/msvc/bin/x86/dumpbin -symbols -headers
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
@@ -264,6 +309,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
matrix:
- name: "Valgrind (memcheck)"
@@ -302,22 +348,30 @@ task:
<< : *CAT_LOGS
task:
- name: "C++ -fpermissive"
+ name: "C++ -fpermissive (entire project)"
<< : *LINUX_CONTAINER
env:
- # ./configure correctly errors out when given CC=g++.
- # We hack around this by passing CC=g++ only to make.
- CC: gcc
- MAKEFLAGS: -j4 CC=g++ CFLAGS=-fpermissive\ -g
+ CC: g++
+ CFLAGS: -fpermissive -g
+ CPPFLAGS: -DSECP256K1_CPLUSPLUS_TEST_OVERRIDE
WERROR_CFLAGS:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
+task:
+ name: "C++ (public headers)"
+ << : *LINUX_CONTAINER
+ test_script:
+ - g++ -Werror include/*.h
+ - clang -Werror -x c++-header include/*.h
+ - /opt/msvc/bin/x64/cl.exe -c -WX -TP include/*.h
+
task:
name: "sage prover"
<< : *LINUX_CONTAINER
diff --git a/.gitignore b/.gitignore
index d88627d72e..02265283a0 100644
--- a/.gitignore
+++ b/.gitignore
@@ -13,7 +13,6 @@ schnorr_example
*.so
*.a
*.csv
-!.gitignore
*.log
*.trs
@@ -34,8 +33,6 @@ libtool
*.lo
*.o
*~
-*.log
-*.trs
coverage/
coverage.html
diff --git a/Makefile.am b/Makefile.am
index 51c5960301..145baee617 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -58,7 +58,6 @@ noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
-noinst_HEADERS += src/basic-config.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
@@ -87,7 +86,7 @@ endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
-libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
+libsecp256k1_la_CPPFLAGS = $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(SECP_LIBS) $(COMMON_LIB) $(PRECOMPUTED_LIB)
libsecp256k1_la_LDFLAGS = -no-undefined -version-info $(LIB_VERSION_CURRENT):$(LIB_VERSION_REVISION):$(LIB_VERSION_AGE)
@@ -112,7 +111,7 @@ TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
-tests_CPPFLAGS = -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
+tests_CPPFLAGS = $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
if VALGRIND_ENABLED
tests_CPPFLAGS += -DVALGRIND
noinst_PROGRAMS += valgrind_ctime_test
@@ -228,3 +227,7 @@ endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif
+
+if ENABLE_MODULE_ELLSWIFT
+include src/modules/ellswift/Makefile.am.include
+endif
diff --git a/README.md b/README.md
index f5db915e83..ffdc9aeaee 100644
--- a/README.md
+++ b/README.md
@@ -2,6 +2,8 @@ libsecp256k1
============
[![Build Status](https://api.cirrus-ci.com/github/bitcoin-core/secp256k1.svg?branch=master)](https://cirrus-ci.com/github/bitcoin-core/secp256k1)
+![Dependencies: None](https://img.shields.io/badge/dependencies-none-success)
+[![irc.libera.chat #secp256k1](https://img.shields.io/badge/irc.libera.chat-%23secp256k1-success)](https://web.libera.chat/#secp256k1)
Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1.
@@ -15,6 +17,7 @@ Features:
* Derandomized ECDSA (via RFC6979 or with a caller provided function.)
* Very efficient implementation.
* Suitable for embedded systems.
+* No runtime dependencies.
* Optional module for public key recovery.
* Optional module for ECDH key exchange.
* Optional module for Schnorr signatures according to [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
@@ -72,11 +75,12 @@ To compile optional modules (such as Schnorr signatures), you need to run `./con
Usage examples
-----------
- Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
+Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
* [ECDSA example](examples/ecdsa.c)
* [Schnorr signatures example](examples/schnorr.c)
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
- To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
+
+To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
Test coverage
-----------
diff --git a/build-aux/m4/bitcoin_secp.m4 b/build-aux/m4/bitcoin_secp.m4
index 9cb54de098..98be915b67 100644
--- a/build-aux/m4/bitcoin_secp.m4
+++ b/build-aux/m4/bitcoin_secp.m4
@@ -10,6 +10,7 @@ AC_MSG_RESULT([$has_64bit_asm])
])
AC_DEFUN([SECP_VALGRIND_CHECK],[
+AC_MSG_CHECKING([for valgrind support])
if test x"$has_valgrind" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$VALGRIND_CPPFLAGS $CPPFLAGS"
@@ -21,6 +22,7 @@ if test x"$has_valgrind" != x"yes"; then
#endif
]])], [has_valgrind=yes; AC_DEFINE(HAVE_VALGRIND,1,[Define this symbol if valgrind is installed, and it supports the host platform])])
fi
+AC_MSG_RESULT($has_valgrind)
])
dnl SECP_TRY_APPEND_CFLAGS(flags, VAR)
diff --git a/ci/cirrus.sh b/ci/cirrus.sh
index b85f012d3f..02ddc8c5bf 100755
--- a/ci/cirrus.sh
+++ b/ci/cirrus.sh
@@ -5,10 +5,27 @@ set -x
export LC_ALL=C
+# Start persistent wineserver if necessary.
+# This speeds up jobs with many invocations of wine (e.g., ./configure with MSVC) tremendously.
+case "$WRAPPER_CMD" in
+ *wine*)
+ # This is apparently only reliable when we run a dummy command such as "hh.exe" afterwards.
+ wineserver -p && wine hh.exe
+ ;;
+esac
+
env >> test_env.log
-$CC -v || true
-valgrind --version || true
+if [ -n "$CC" ]; then
+ # The MSVC compiler "cl" doesn't understand "-v"
+ $CC -v || true
+fi
+if [ "$WITH_VALGRIND" = "yes" ]; then
+ valgrind --version
+fi
+if [ -n "$WRAPPER_CMD" ]; then
+ $WRAPPER_CMD --version
+fi
./autogen.sh
@@ -18,6 +35,7 @@ valgrind --version || true
--with-ecmult-window="$ECMULTWINDOW" \
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
+ --enable-module-ellswift="$ELLSWIFT" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--enable-examples="$EXAMPLES" \
--with-valgrind="$WITH_VALGRIND" \
@@ -63,6 +81,9 @@ then
make precomp
fi
+# Shutdown wineserver again
+wineserver -k || true
+
# Check that no repo files have been modified by the build.
# (This fails for example if the precomp files need to be updated in the repo.)
git diff --exit-code
diff --git a/ci/linux-debian.Dockerfile b/ci/linux-debian.Dockerfile
index 5cccbb5565..a83a4e36db 100644
--- a/ci/linux-debian.Dockerfile
+++ b/ci/linux-debian.Dockerfile
@@ -1,15 +1,14 @@
FROM debian:stable
-RUN dpkg --add-architecture i386
-RUN dpkg --add-architecture s390x
-RUN dpkg --add-architecture armhf
-RUN dpkg --add-architecture arm64
-RUN dpkg --add-architecture ppc64el
-RUN apt-get update
+RUN dpkg --add-architecture i386 && \
+ dpkg --add-architecture s390x && \
+ dpkg --add-architecture armhf && \
+ dpkg --add-architecture arm64 && \
+ dpkg --add-architecture ppc64el
# dkpg-dev: to make pkg-config work in cross-builds
# llvm: for llvm-symbolizer, which is used by clang's UBSan for symbolized stack traces
-RUN apt-get install --no-install-recommends --no-upgrade -y \
+RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates \
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
gcc clang llvm libc6-dbg \
@@ -19,8 +18,20 @@ RUN apt-get install --no-install-recommends --no-upgrade -y \
gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 \
gcc-powerpc64le-linux-gnu libc6-dev-ppc64el-cross libc6-dbg:ppc64el \
- wine gcc-mingw-w64-x86-64 \
+ gcc-mingw-w64-x86-64-win32 wine64 wine \
+ gcc-mingw-w64-i686-win32 wine32 \
sagemath
-# Run a dummy command in wine to make it set up configuration
-RUN wine64-stable xcopy || true
+WORKDIR /root
+# The "wine" package provides a convience wrapper that we need
+RUN apt-get update && apt-get install --no-install-recommends -y \
+ git ca-certificates wine64 wine python3-simplejson python3-six msitools winbind procps && \
+ git clone https://github.com/mstorsjo/msvc-wine && \
+ mkdir /opt/msvc && \
+ python3 msvc-wine/vsdownload.py --accept-license --dest /opt/msvc Microsoft.VisualStudio.Workload.VCTools && \
+ msvc-wine/install.sh /opt/msvc
+
+# Initialize the wine environment. Wait until the wineserver process has
+# exited before closing the session, to avoid corrupting the wine prefix.
+RUN wine64 wineboot --init && \
+ while (ps -A | grep wineserver) > /dev/null; do sleep 1; done
diff --git a/configure.ac b/configure.ac
index 2db59a8ff3..cf4019e06f 100644
--- a/configure.ac
+++ b/configure.ac
@@ -33,12 +33,14 @@ AM_INIT_AUTOMAKE([1.11.2 foreign subdir-objects])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
AC_PROG_CC
-if test x"$ac_cv_prog_cc_c89" = x"no"; then
- AC_MSG_ERROR([c89 compiler support required])
-fi
AM_PROG_AS
AM_PROG_AR
+# Clear some cache variables as a workaround for a bug that appears due to a bad
+# interaction between AM_PROG_AR and LT_INIT when combining MSVC's archiver lib.exe.
+# https://debbugs.gnu.org/cgi/bugreport.cgi?bug=54421
+AS_UNSET(ac_cv_prog_AR)
+AS_UNSET(ac_cv_prog_ac_ct_AR)
LT_INIT([win32-dll])
build_windows=no
@@ -87,23 +89,35 @@ esac
#
# TODO We should analogously not touch CPPFLAGS and LDFLAGS but currently there are no issues.
AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
- # Try to append -Werror=unknown-warning-option to CFLAGS temporarily. Otherwise clang will
- # not error out if it gets unknown warning flags and the checks here will always succeed
- # no matter if clang knows the flag or not.
- SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
- SECP_TRY_APPEND_CFLAGS([-Werror=unknown-warning-option], CFLAGS)
-
- SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
- SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
- SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
- SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
- SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
- SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
- SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
- SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
- SECP_TRY_APPEND_CFLAGS([-fvisibility=hidden], $1) # GCC >= 4.0
-
- CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
+ # GCC and compatible (incl. clang)
+ if test "x$GCC" = "xyes"; then
+ # Try to append -Werror=unknown-warning-option to CFLAGS temporarily. Otherwise clang will
+ # not error out if it gets unknown warning flags and the checks here will always succeed
+ # no matter if clang knows the flag or not.
+ SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
+ SECP_TRY_APPEND_CFLAGS([-Werror=unknown-warning-option], CFLAGS)
+
+ SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
+ SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
+ SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
+ SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
+ SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
+ SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
+ SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
+ SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
+ SECP_TRY_APPEND_CFLAGS([-fvisibility=hidden], $1) # GCC >= 4.0
+
+ CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
+ fi
+
+ # MSVC
+ # Assume MSVC if we're building for Windows but not with GCC or compatible;
+ # libtool makes the same assumption internally.
+ # Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
+ if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
+ SECP_TRY_APPEND_CFLAGS([-W2 -wd4146], $1) # Moderate warning level, disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned"
+ SECP_TRY_APPEND_CFLAGS([-external:anglebrackets -external:W0], $1) # Suppress warnings from #include <...> files
+ fi
])
SECP_TRY_APPEND_DEFAULT_CFLAGS(SECP_CFLAGS)
@@ -156,6 +170,11 @@ AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=no]]), [],
[SECP_SET_DEFAULT([enable_module_schnorrsig], [no], [yes])])
+AC_ARG_ENABLE(module_ellswift,
+ AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module (experimental)]),
+ [enable_module_ellswift=$enableval],
+ [enable_module_ellswift=no])
+
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
@@ -326,7 +345,9 @@ if test x"$enable_valgrind" = x"yes"; then
SECP_INCLUDES="$SECP_INCLUDES $VALGRIND_CPPFLAGS"
fi
-# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI)
+# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI).
+# We don't want to set the user variable CFLAGS in CI because this would disable
+# autoconf's logic for setting default CFLAGS, which we would like to test in CI.
SECP_CFLAGS="$SECP_CFLAGS $WERROR_CFLAGS"
###
@@ -346,6 +367,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then
enable_module_extrakeys=yes
fi
+if test x"$enable_module_ellswift" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_ELLSWIFT, 1, [Define this symbol to enable the ElligatorSwift module])
+fi
+
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
# module to set enable_module_extrakeys=yes
if test x"$enable_module_extrakeys" = x"yes"; then
@@ -391,6 +416,7 @@ AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
@@ -411,6 +437,7 @@ echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
+echo " module ellswift = $enable_module_ellswift"
echo
echo " asm = $set_asm"
echo " ecmult window size = $set_ecmult_window"
diff --git a/doc/safegcd_implementation.md b/doc/safegcd_implementation.md
index 063aa8efae..c1cdd0cfe1 100644
--- a/doc/safegcd_implementation.md
+++ b/doc/safegcd_implementation.md
@@ -1,7 +1,7 @@
# The safegcd implementation in libsecp256k1 explained
-This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based
-on the paper
+This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files.
+It is based on the paper
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
@@ -769,3 +769,30 @@ def modinv_var(M, Mi, x):
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, Mi)
```
+
+## 8. From GCDs to Jacobi symbol
+
+We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we make corresponding updates to *j* using [properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties). In particular, we update *j* whenever we divide *g* by *2* or swap *f* and *g*; these updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied very quickly. Overall, this calculation is slightly simpler than the one for modular inverse because we no longer need to keep track of *d* and *e*.
+
+However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative values. We resolve this by using the following modified steps:
+
+```python
+ # Before
+ if delta > 0 and g & 1:
+ delta, f, g = 1 - delta, g, (g - f) // 2
+
+ # After
+ if delta > 0 and g & 1:
+ delta, f, g = 1 - delta, g, (g + f) // 2
+```
+
+The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4 and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm will converge. The justification for posdivsteps is completely empirical: in practice, it appears that the vast majority of inputs converge to *f=g=gcd(f0, g0)* in a number of steps proportional to their logarithm.
+
+Note that:
+- We require inputs to satisfy *gcd(x, M) = 1*.
+- We need to update the termination condition from *g=0* to *f=1*.
+- We deal with the case where *g=0* on input specially.
+
+We account for the possibility of nonconvergence by only performing a bounded number of posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not yet been found.
+
+The optimizations in sections 3-7 above are described in the context of the original divsteps, but in the C implementation we also adapt most of them (not including "avoiding modulus operations", since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate Jacobi symbols for secret data) to the posdivsteps version.
diff --git a/include/secp256k1_ellswift.h b/include/secp256k1_ellswift.h
new file mode 100644
index 0000000000..995402cf97
--- /dev/null
+++ b/include/secp256k1_ellswift.h
@@ -0,0 +1,170 @@
+#ifndef SECP256K1_ELLSWIFT_H
+#define SECP256K1_ELLSWIFT_H
+
+#include "secp256k1.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* This module provides an implementation of ElligatorSwift as well as
+ * a version of x-only ECDH using it.
+ *
+ * ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
+ * Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
+ * public keys in 64-byte objects which are indistinguishable from
+ * uniformly random.
+ *
+ * Let f be the function from pairs of field elements to point X coordinates,
+ * defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
+ * f(u,t):
+ * - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
+ * a square root of -3.
+ * - If u=0, set u=1 instead.
+ * - If t=0, set t=1 instead.
+ * - If u^3 + t^2 + 7 = 0, multiply t by 2.
+ * - Let X = (u^3 + 7 - t^2) / (2 * t)
+ * - Let Y = (X + t) / (C * u)
+ * - Return the first of [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
+ * X coordinate on the curve (at least one of them is, for any inputs u and t).
+ *
+ * Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
+ * encodings of field elements u and t concatenated, where f(u,t) = x.
+ * The encoding algorithm is described in the paper, and effectively picks a
+ * uniformly random pair (u,t) among those which encode x.
+ *
+ * If the Y coordinate is relevant, it is given the same parity as t.
+ *
+ * Changes w.r.t. the the paper:
+ * - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
+ * at infinity in the paper. Here they are remapped to finite points.
+ * - The paper uses an additional encoding bit for the parity of y. Here the
+ * parity of t is used (negating t does not affect the decoded x coordinate,
+ * so this is possible).
+ */
+
+/** A pointer to a function used for hashing the shared X coordinate along
+ * with the encoded public keys to a uniform shared secret.
+ *
+ * Returns: 1 if a shared secret was was successfully computed.
+ * 0 will cause secp256k1_ellswift_xdh to fail and return 0.
+ * Other return values are not allowed, and the behaviour of
+ * secp256k1_ellswift_xdh is undefined for other return values.
+ * Out: output: pointer to an array to be filled by the function
+ * In: x32: pointer to the 32-byte serialized X coordinate
+ * of the resulting shared point
+ * ours64: pointer to the 64-byte encoded public key we sent
+ * to the other party
+ * theirs64: pointer to the 64-byte encoded public key we received
+ * from the other party
+ * data: arbitrary data pointer that is passed through
+ */
+typedef int (*secp256k1_ellswift_xdh_hash_function)(
+ unsigned char *output,
+ const unsigned char *x32,
+ const unsigned char *ours64,
+ const unsigned char *theirs64,
+ void *data
+);
+
+/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
+ * SHA256(key1 || key2 || x32), where (key1, key2) = sorted([ours64, theirs64]), and
+ * ignores data. The sorting is lexicographic. */
+SECP256K1_API extern const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_sha256;
+
+/** A default secp256k1_ellswift_xdh_hash_function, currently secp256k1_ellswift_xdh_hash_function_sha256. */
+SECP256K1_API extern const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_default;
+
+/* Construct a 64-byte ElligatorSwift encoding of a given pubkey.
+ *
+ * Returns: 1 when pubkey is valid.
+ * Args: ctx: pointer to a context object
+ * Out: ell64: pointer to a 64-byte array to be filled
+ * In: pubkey: a pointer to a secp256k1_pubkey containing an
+ * initialized public key
+ * rnd32: pointer to 32 bytes of entropy (must be unpredictable)
+ *
+ * This function runs in variable time.
+ */
+SECP256K1_API int secp256k1_ellswift_encode(
+ const secp256k1_context* ctx,
+ unsigned char *ell64,
+ const secp256k1_pubkey *pubkey,
+ const unsigned char *rnd32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Decode a 64-bytes ElligatorSwift encoded public key.
+ *
+ * Returns: always 1
+ * Args: ctx: pointer to a context object
+ * Out: pubkey: pointer to a secp256k1_pubkey that will be filled
+ * In: ell64: pointer to a 64-byte array to decode
+ *
+ * This function runs in variable time.
+ */
+SECP256K1_API int secp256k1_ellswift_decode(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *ell64
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Compute an ElligatorSwift public key for a secret key.
+ *
+ * Returns: 1: secret was valid, public key was stored.
+ * 0: secret was invalid, try again.
+ * Args: ctx: pointer to a context object, initialized for signing.
+ * Out: ell64: pointer to a 64-byte area to receive the ElligatorSwift public key
+ * In: seckey32: pointer to a 32-byte secret key.
+ * auxrand32: (optional) pointer to 32 bytes of additional randomness
+ *
+ * Constant time in seckey and auxrand32, but not in the resulting public key.
+ *
+ * This function can be used instead of calling secp256k1_ec_pubkey_create followed
+ * by secp256k1_ellswift_encode. It is safer, as it can use the secret key as
+ * entropy for the encoding. That means that if the secret key itself is
+ * unpredictable, no additional auxrand32 is needed to achieve indistinguishability
+ * of the encoding.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
+ const secp256k1_context* ctx,
+ unsigned char *ell64,
+ const unsigned char *seckey32,
+ const unsigned char *auxrand32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Given a private key, and ElligatorSwift public keys sent in both directions,
+ * compute a shared secret using x-only Diffie-Hellman.
+ *
+ * Returns: 1: shared secret was succesfully computed
+ * 0: secret was invalid or hashfp returned 0
+ * Args: ctx: pointer to a context object.
+ * Out: output: pointer to an array to be filled by hashfp.
+ * In: theirs64: a pointer to the 64-byte ElligatorSwift public key received from the other party.
+ * ours64: a pointer to the 64-byte ElligatorSwift public key sent to the other party.
+ * seckey32: a pointer to the 32-byte private key corresponding to ours64.
+ * hashfp: pointer to a hash function. If NULL,
+ * secp256k1_elswift_xdh_hash_function_default is used
+ * (in which case, 32 bytes will be written to output).
+ * data: arbitrary data pointer that is passed through to hashfp
+ * (ignored for secp256k1_ellswift_xdh_hash_function_default).
+ *
+ * Constant time in seckey32.
+ *
+ * This function is more efficient than decoding the public keys, and performing ECDH on them.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ const unsigned char* theirs64,
+ const unsigned char* ours64,
+ const unsigned char* seckey32,
+ secp256k1_ellswift_xdh_hash_function hashfp,
+ void *data
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* SECP256K1_ELLSWIFT_H */
diff --git a/src/basic-config.h b/src/basic-config.h
deleted file mode 100644
index 6f7693cb8f..0000000000
--- a/src/basic-config.h
+++ /dev/null
@@ -1,17 +0,0 @@
-/***********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
- ***********************************************************************/
-
-#ifndef SECP256K1_BASIC_CONFIG_H
-#define SECP256K1_BASIC_CONFIG_H
-
-#ifdef USE_BASIC_CONFIG
-
-#define ECMULT_WINDOW_SIZE 15
-#define ECMULT_GEN_PREC_BITS 4
-
-#endif /* USE_BASIC_CONFIG */
-
-#endif /* SECP256K1_BASIC_CONFIG_H */
diff --git a/src/bench.c b/src/bench.c
index d5937b763f..80b0692cd5 100644
--- a/src/bench.c
+++ b/src/bench.c
@@ -121,6 +121,22 @@ static void bench_sign_run(void* arg, int iters) {
}
}
+static void bench_keygen_run(void* arg, int iters) {
+ int i;
+ bench_sign_data *data = (bench_sign_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ unsigned char pub33[33];
+ size_t len = 33;
+ secp256k1_pubkey pubkey;
+ CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
+ memcpy(data->key, pub33 + 1, 32);
+ data->key[17] ^= i;
+ }
+}
+
+
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/bench_impl.h"
#endif
@@ -133,6 +149,10 @@ static void bench_sign_run(void* arg, int iters) {
# include "modules/schnorrsig/bench_impl.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/bench_impl.h"
+#endif
+
int main(int argc, char** argv) {
int i;
secp256k1_pubkey pubkey;
@@ -145,7 +165,9 @@ int main(int argc, char** argv) {
/* Check for invalid user arguments */
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
- "ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
+ "ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
+ "keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
+ "ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
@@ -212,6 +234,7 @@ int main(int argc, char** argv) {
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_sign_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
@@ -230,5 +253,10 @@ int main(int argc, char** argv) {
run_schnorrsig_bench(iters, argc, argv);
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ /* ElligatorSwift benchmarks */
+ run_ellswift_bench(iters, argc, argv);
+#endif
+
return 0;
}
diff --git a/src/bench.h b/src/bench.h
index aa275fe919..611ba11f04 100644
--- a/src/bench.h
+++ b/src/bench.h
@@ -7,15 +7,31 @@
#ifndef SECP256K1_BENCH_H
#define SECP256K1_BENCH_H
+#include
#include
#include
#include
-#include "sys/time.h"
+
+#if (defined(_MSC_VER) && _MSC_VER >= 1900)
+# include
+#else
+# include "sys/time.h"
+#endif
static int64_t gettime_i64(void) {
+#if (defined(_MSC_VER) && _MSC_VER >= 1900)
+ /* C11 way to get wallclock time */
+ struct timespec tv;
+ if (!timespec_get(&tv, TIME_UTC)) {
+ fputs("timespec_get failed!", stderr);
+ exit(1);
+ }
+ return (int64_t)tv.tv_nsec / 1000 + (int64_t)tv.tv_sec * 1000000LL;
+#else
struct timeval tv;
gettimeofday(&tv, NULL);
return (int64_t)tv.tv_usec + (int64_t)tv.tv_sec * 1000000LL;
+#endif
}
#define FP_EXP (6)
diff --git a/src/bench_internal.c b/src/bench_internal.c
index 7eb3af28d7..27af24b1a0 100644
--- a/src/bench_internal.c
+++ b/src/bench_internal.c
@@ -218,6 +218,17 @@ void bench_field_sqrt(void* arg, int iters) {
CHECK(j <= iters);
}
+void bench_field_jacobi_var(void* arg, int iters) {
+ int i, j = 0;
+ bench_inv *data = (bench_inv*)arg;
+
+ for (i = 0; i < iters; i++) {
+ j += secp256k1_fe_jacobi_var(&data->fe[0]);
+ secp256k1_fe_add(&data->fe[0], &data->fe[1]);
+ }
+ CHECK(j <= iters);
+}
+
void bench_group_double_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
@@ -379,6 +390,7 @@ int main(int argc, char **argv) {
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "jacobi")) run_benchmark("field_jacobi_var", bench_field_jacobi_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
diff --git a/src/ecmult.h b/src/ecmult.h
index b47d8f494a..e28c602506 100644
--- a/src/ecmult.h
+++ b/src/ecmult.h
@@ -11,6 +11,17 @@
#include "scalar.h"
#include "scratch.h"
+#ifndef ECMULT_WINDOW_SIZE
+# define ECMULT_WINDOW_SIZE 15
+# ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_MSG("ECMULT_WINDOW_SIZE undefined, assuming default value")
+# endif
+#endif
+
+#ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_DEF(ECMULT_WINDOW_SIZE)
+#endif
+
/* Noone will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* tested.
diff --git a/src/ecmult_const.h b/src/ecmult_const.h
index f891f3f306..aae902743b 100644
--- a/src/ecmult_const.h
+++ b/src/ecmult_const.h
@@ -18,4 +18,23 @@
*/
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
+/**
+ * Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
+ * only, specified as fraction n/d. Only the x coordinate of the result is returned.
+ *
+ * If known_on_curve is 0, a verification is performed that n/d is a valid X
+ * coordinate, and 0 is returned if not. Otherwise, 1 is returned.
+ *
+ * d being NULL is interpreted as d=1.
+ *
+ * Constant time in the value of q, but not any other inputs.
+ */
+static int secp256k1_ecmult_const_xonly(
+ secp256k1_fe* r,
+ const secp256k1_fe *n,
+ const secp256k1_fe *d,
+ const secp256k1_scalar *q,
+ int bits,
+ int known_on_curve);
+
#endif /* SECP256K1_ECMULT_CONST_H */
diff --git a/src/ecmult_const_impl.h b/src/ecmult_const_impl.h
index 12dbcc6c5b..1940ee7f08 100644
--- a/src/ecmult_const_impl.h
+++ b/src/ecmult_const_impl.h
@@ -228,4 +228,58 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
+static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int bits, int known_on_curve) {
+
+ /* This algorithm is a generalization of Peter Dettman's technique for
+ * avoiding the square root in a random-basepoint x-only multiplication
+ * on a Weierstrass curve:
+ * https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
+ */
+ secp256k1_fe g, i;
+ secp256k1_ge p;
+ secp256k1_gej rj;
+
+ /* Compute g = (n^3 + B*d^3). */
+ secp256k1_fe_sqr(&g, n);
+ secp256k1_fe_mul(&g, &g, n);
+ if (d) {
+ secp256k1_fe b;
+ secp256k1_fe_sqr(&b, d);
+ secp256k1_fe_mul(&b, &b, d);
+ secp256k1_fe_mul(&b, &b, &secp256k1_fe_const_b);
+ secp256k1_fe_add(&g, &b);
+ if (!known_on_curve) {
+ secp256k1_fe c;
+ secp256k1_fe_mul(&c, &g, d);
+ if (secp256k1_fe_jacobi_var(&c) < 0) return 0;
+ }
+ } else {
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b);
+ if (!known_on_curve) {
+ if (secp256k1_fe_jacobi_var(&g) < 0) return 0;
+ }
+ }
+
+ /* Compute base point P = (n*g, g^2), the effective affine version of
+ * (n*g, g^2, sqrt(d*g)), which has corresponding affine X coordinate
+ * n/d. */
+ secp256k1_fe_mul(&p.x, &g, n);
+ secp256k1_fe_sqr(&p.y, &g);
+ p.infinity = 0;
+
+ /* Perform x-only EC multiplication of P with q. */
+ secp256k1_ecmult_const(&rj, &p, q, bits);
+
+ /* The resulting (X, Y, Z) point on the effective-affine isomorphic curve
+ * corresponds to (X, Y, Z*sqrt(d*g)) on the secp256k1 curve. The affine
+ * version of that has X coordinate (X / (Z^2*d*g)). */
+ secp256k1_fe_sqr(&i, &rj.z);
+ secp256k1_fe_mul(&i, &i, &g);
+ if (d) secp256k1_fe_mul(&i, &i, d);
+ secp256k1_fe_inv(&i, &i);
+ secp256k1_fe_mul(r, &rj.x, &i);
+
+ return 1;
+}
+
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */
diff --git a/src/ecmult_gen.h b/src/ecmult_gen.h
index f48f266461..a430e8d5d9 100644
--- a/src/ecmult_gen.h
+++ b/src/ecmult_gen.h
@@ -10,9 +10,21 @@
#include "scalar.h"
#include "group.h"
+#ifndef ECMULT_GEN_PREC_BITS
+# define ECMULT_GEN_PREC_BITS 4
+# ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_MSG("ECMULT_GEN_PREC_BITS undefined, assuming default value")
+# endif
+#endif
+
+#ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_DEF(ECMULT_GEN_PREC_BITS)
+#endif
+
#if ECMULT_GEN_PREC_BITS != 2 && ECMULT_GEN_PREC_BITS != 4 && ECMULT_GEN_PREC_BITS != 8
# error "Set ECMULT_GEN_PREC_BITS to 2, 4 or 8."
#endif
+
#define ECMULT_GEN_PREC_G(bits) (1 << bits)
#define ECMULT_GEN_PREC_N(bits) (256 / bits)
diff --git a/src/ecmult_gen_impl.h b/src/ecmult_gen_impl.h
index 2c8a503acc..4f5ea9f3c0 100644
--- a/src/ecmult_gen_impl.h
+++ b/src/ecmult_gen_impl.h
@@ -88,31 +88,31 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int overflow;
- unsigned char keydata[64] = {0};
+ unsigned char keydata[64];
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
+ return;
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
- secp256k1_scalar_get_b32(nonce32, &ctx->blind);
+ secp256k1_scalar_get_b32(keydata, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
- memcpy(keydata, nonce32, 32);
- if (seed32 != NULL) {
- memcpy(keydata + 32, seed32, 32);
- }
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
+ VERIFY_CHECK(seed32 != NULL);
+ memcpy(keydata + 32, seed32, 32);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
memset(keydata, 0, sizeof(keydata));
/* Accept unobservably small non-uniformity. */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
overflow = !secp256k1_fe_set_b32(&s, nonce32);
overflow |= secp256k1_fe_is_zero(&s);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
- /* Randomize the projection to defend against multiplier sidechannels. */
+ /* Randomize the projection to defend against multiplier sidechannels.
+ Do this before our own call to secp256k1_ecmult_gen below. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
@@ -121,6 +121,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
+ /* The random projection in ctx->initial ensures that gb will have a random projection. */
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
diff --git a/src/field.h b/src/field.h
index 2584a494ee..c9bafeb481 100644
--- a/src/field.h
+++ b/src/field.h
@@ -139,4 +139,7 @@ static void secp256k1_fe_half(secp256k1_fe *r);
* magnitude set to 'm' and is normalized if (and only if) 'm' is zero. */
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
+/** Compute the Jacobi symbol of a / p. 0 if a=0; 1 if a square; -1 if a non-square. */
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *a);
+
#endif /* SECP256K1_FIELD_H */
diff --git a/src/field_10x26_impl.h b/src/field_10x26_impl.h
index 21742bf6eb..61a86190c5 100644
--- a/src/field_10x26_impl.h
+++ b/src/field_10x26_impl.h
@@ -1364,4 +1364,32 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
}
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *x) {
+ secp256k1_fe tmp;
+ secp256k1_modinv32_signed30 s;
+ int ret;
+
+ tmp = *x;
+ secp256k1_fe_normalize_var(&tmp);
+ secp256k1_fe_to_signed30(&s, &tmp);
+ ret = secp256k1_jacobi32_maybe_var(&s, &secp256k1_const_modinfo_fe);
+ if (ret == -2) {
+ /* secp256k1_jacobi32_maybe_var failed to compute the Jacobi symbol. Fall back
+ * to computing a square root. This should be extremely rare with random
+ * input. */
+ secp256k1_fe dummy;
+ ret = 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1;
+#ifdef VERIFY
+ } else {
+ secp256k1_fe dummy;
+ if (secp256k1_fe_is_zero(&tmp)) {
+ VERIFY_CHECK(ret == 0);
+ } else {
+ VERIFY_CHECK(ret == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
+ }
+#endif
+ }
+ return ret;
+}
+
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
diff --git a/src/field_5x52_impl.h b/src/field_5x52_impl.h
index 6bd202f587..26e89123a0 100644
--- a/src/field_5x52_impl.h
+++ b/src/field_5x52_impl.h
@@ -667,4 +667,32 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
#endif
}
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *x) {
+ secp256k1_fe tmp;
+ secp256k1_modinv64_signed62 s;
+ int ret;
+
+ tmp = *x;
+ secp256k1_fe_normalize_var(&tmp);
+ secp256k1_fe_to_signed62(&s, &tmp);
+ ret = secp256k1_jacobi64_maybe_var(&s, &secp256k1_const_modinfo_fe);
+ if (ret == -2) {
+ /* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
+ * to computing a square root. This should be extremely rare with random
+ * input. */
+ secp256k1_fe dummy;
+ ret = 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1;
+#ifdef VERIFY
+ } else {
+ secp256k1_fe dummy;
+ if (secp256k1_fe_is_zero(&tmp)) {
+ VERIFY_CHECK(ret == 0);
+ } else {
+ VERIFY_CHECK(ret == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
+ }
+#endif
+ }
+ return ret;
+}
+
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
diff --git a/src/group.h b/src/group.h
index bb7dae1cf7..92ac487143 100644
--- a/src/group.h
+++ b/src/group.h
@@ -23,7 +23,7 @@ typedef struct {
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates.
- * Note: For exhastive test mode, sepc256k1 is replaced by a small subgroup of a different curve.
+ * Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
@@ -51,6 +51,12 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
+/** Determine whether x is a valid X coordinate on the curve. */
+static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
+
+/** Determine whether fraction xn/xd is a valid X coordinate on the curve. */
+static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
+
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
diff --git a/src/group_impl.h b/src/group_impl.h
index 63735ab682..b3e9fcf4d3 100644
--- a/src/group_impl.h
+++ b/src/group_impl.h
@@ -695,4 +695,33 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
#endif
}
+static int secp256k1_ge_x_on_curve_var(const secp256k1_fe* x)
+{
+ secp256k1_fe c;
+ secp256k1_fe_sqr(&c, x);
+ secp256k1_fe_mul(&c, &c, x);
+ secp256k1_fe_add(&c, &secp256k1_fe_const_b);
+ return secp256k1_fe_jacobi_var(&c) >= 0;
+}
+
+static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe* xn, const secp256k1_fe* xd) {
+ /* We want to determine whether (xn/xd) is on the curve.
+ *
+ * (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
+ */
+ secp256k1_fe r, t;
+ secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
+ secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
+ secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
+ secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
+ secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
+#if defined(EXHAUSTIVE_GROUP_ORDER)
+ secp256k1_fe_mul(&t, &t, &secp256k1_fe_const_b); /* t = 7*xd^4 */
+#else
+ secp256k1_fe_mul_int(&t, 7);
+#endif
+ secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
+ return secp256k1_fe_jacobi_var(&r) >= 0;
+}
+
#endif /* SECP256K1_GROUP_IMPL_H */
diff --git a/src/modinv32.h b/src/modinv32.h
index 0efdda9ab5..263bda20b8 100644
--- a/src/modinv32.h
+++ b/src/modinv32.h
@@ -39,4 +39,8 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
+/* Compute the Jacobi symbol for (x | modinfo->modulus). Either x must be 0, or x must be coprime with
+ * modulus. All limbs of x must be non-negative. Returns -2 if the result cannot be computed. */
+static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
+
#endif /* SECP256K1_MODINV32_H */
diff --git a/src/modinv32_impl.h b/src/modinv32_impl.h
index 661c5fc04c..d61424c4e8 100644
--- a/src/modinv32_impl.h
+++ b/src/modinv32_impl.h
@@ -232,6 +232,21 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
return zeta;
}
+/* inv256[i] = -(2*i+1)^-1 (mod 256) */
+static const uint8_t secp256k1_modinv32_inv256[128] = {
+ 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
+ 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
+ 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
+ 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
+ 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
+ 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
+ 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
+ 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
+ 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
+ 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
+ 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
+};
+
/* Compute the transition matrix and eta for 30 divsteps (variable time).
*
* Input: eta: initial eta
@@ -243,21 +258,6 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
- /* inv256[i] = -(2*i+1)^-1 (mod 256) */
- static const uint8_t inv256[128] = {
- 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
- 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
- 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
- 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
- 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
- 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
- 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
- 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
- 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
- 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
- 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
- };
-
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
@@ -297,7 +297,7 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
- w = (g * inv256[(f >> 1) & 127]) & m;
+ w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
@@ -317,6 +317,83 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
return eta;
}
+/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
+ * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
+ * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
+ *
+ * Input: eta: initial eta
+ * f0: bottom limb of initial f
+ * g0: bottom limb of initial g
+ * Output: t: transition matrix
+ * Return: final eta
+ */
+static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
+ /* Transformation matrix. */
+ uint32_t u = 1, v = 0, q = 0, r = 1;
+ uint32_t f = f0, g = g0, m;
+ uint16_t w;
+ int i = 30, limit, zeros;
+ int jac = *jacp;
+
+ for (;;) {
+ /* Use a sentinel bit to count zeros only up to i. */
+ zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
+ /* Perform zeros divsteps at once; they all just divide g by two. */
+ g >>= zeros;
+ u <<= zeros;
+ v <<= zeros;
+ eta -= zeros;
+ i -= zeros;
+ /* Update the bottom bit of jac: when dividing g by an odd power of 2,
+ * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
+ jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
+ /* We're done once we've done 30 posdivsteps. */
+ if (i == 0) break;
+ VERIFY_CHECK((f & 1) == 1);
+ VERIFY_CHECK((g & 1) == 1);
+ VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
+ VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
+ /* If eta is negative, negate it and replace f,g with g,f. */
+ if (eta < 0) {
+ uint32_t tmp;
+ eta = -eta;
+ /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
+ * if both f and g are 3 mod 4. */
+ jac ^= ((f & g) >> 1);
+ tmp = f; f = g; g = tmp;
+ tmp = u; u = q; q = tmp;
+ tmp = v; v = r; r = tmp;
+ }
+ /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
+ * than i can be cancelled out (as we'd be done before that point), and no more than eta+1
+ * can be done as its sign will flip once that happens. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
+ VERIFY_CHECK(limit > 0 && limit <= 30);
+ m = (UINT32_MAX >> (32 - limit)) & 255U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
+ w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
+ /* Do so. */
+ g += f * w;
+ q += u * w;
+ r += v * w;
+ VERIFY_CHECK((g & m) == 0);
+ }
+ /* Return data in t and return value. */
+ t->u = (int32_t)u;
+ t->v = (int32_t)v;
+ t->q = (int32_t)q;
+ t->r = (int32_t)r;
+ /* The determinant of t must be a power of two. This guarantees that multiplication with t
+ * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
+ * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
+ * the aggregate of 30 of them will have determinant 2^30 or -2^30. */
+ VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
+ (int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
+ *jacp = jac;
+ return eta;
+}
+
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
@@ -584,4 +661,71 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
*x = d;
}
+/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
+ * In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
+#ifdef VERIFY
+#define JACOBI32_ITERATIONS 25
+#else
+#define JACOBI32_ITERATIONS 50
+#endif
+
+/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1, or x must be 0. */
+static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
+ /* Start with f=modulus, g=x, eta=-1. */
+ secp256k1_modinv32_signed30 f = modinfo->modulus;
+ secp256k1_modinv32_signed30 g = *x;
+ int j, len = 9;
+ int32_t eta = -1; /* eta = -delta; delta is initially 1 */
+ int32_t cond, fn, gn;
+ int jac = 0;
+ int count;
+
+ VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);
+
+ /* The loop below does not converge for input g=0. Deal with this case specifically. */
+ if (!(g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8])) return 0;
+
+ for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
+ /* Compute transition matrix and new eta after 30 posdivsteps. */
+ secp256k1_modinv32_trans2x2 t;
+ eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
+ /* Update f,g using that transition matrix. */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
+ /* If the bottom limb of f is 1, there is a chance that f=1. */
+ if (f.v[0] == 1) {
+ cond = 0;
+ /* Check if the other limbs are also 0. */
+ for (j = 1; j < len; ++j) {
+ cond |= f.v[j];
+ }
+ /* If so, we're done. */
+ if (cond == 0) return 1 - 2*(jac & 1);
+ }
+
+ /* Determine if len>1 and limb (len-1) of both f and g is 0. */
+ fn = f.v[len - 1];
+ gn = g.v[len - 1];
+ cond = ((int32_t)len - 2) >> 31;
+ cond |= fn;
+ cond |= gn;
+ /* If so, reduce length. */
+ if (cond == 0) --len;
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ }
+
+ /* The loop failed to converge to f=g after 1500 iterations. Return -2, indicating unknown result. */
+ return -2;
+}
+
#endif /* SECP256K1_MODINV32_IMPL_H */
diff --git a/src/modinv64.h b/src/modinv64.h
index da506dfa9f..e432fcbe8d 100644
--- a/src/modinv64.h
+++ b/src/modinv64.h
@@ -43,4 +43,8 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
+/* Compute the Jacobi symbol for (x | modinfo->modulus). Either x must be 0, or x must be coprime with
+ * modulus. All limbs of x must be non-negative. Returns -2 if the result cannot be computed. */
+static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
+
#endif /* SECP256K1_MODINV64_H */
diff --git a/src/modinv64_impl.h b/src/modinv64_impl.h
index 0743a9c821..198599a52a 100644
--- a/src/modinv64_impl.h
+++ b/src/modinv64_impl.h
@@ -256,7 +256,7 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
tmp = v; v = r; r = -tmp;
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
* out (as we'd be done before that point), and no more than eta+1 can be done as its
- * will flip again once that happens. */
+ * sign will flip again once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 6) bits. */
@@ -294,6 +294,94 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
return eta;
}
+/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
+ * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
+ * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
+ *
+ * Input: eta: initial eta
+ * f0: bottom limb of initial f
+ * g0: bottom limb of initial g
+ * Output: t: transition matrix
+ * Return: final eta
+ */
+static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
+ /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
+ uint64_t u = 1, v = 0, q = 0, r = 1;
+ uint64_t f = f0, g = g0, m;
+ uint32_t w;
+ int i = 62, limit, zeros;
+ int jac = *jacp;
+
+ for (;;) {
+ /* Use a sentinel bit to count zeros only up to i. */
+ zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
+ /* Perform zeros divsteps at once; they all just divide g by two. */
+ g >>= zeros;
+ u <<= zeros;
+ v <<= zeros;
+ eta -= zeros;
+ i -= zeros;
+ /* Update the bottom bit of jac: when dividing g by an odd power of 2,
+ * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
+ jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
+ /* We're done once we've done 62 posdivsteps. */
+ if (i == 0) break;
+ VERIFY_CHECK((f & 1) == 1);
+ VERIFY_CHECK((g & 1) == 1);
+ VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
+ VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
+ /* If eta is negative, negate it and replace f,g with g,f. */
+ if (eta < 0) {
+ uint64_t tmp;
+ eta = -eta;
+ tmp = f; f = g; g = tmp;
+ tmp = u; u = q; q = tmp;
+ tmp = v; v = r; r = tmp;
+ /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
+ * if both f and g are 3 mod 4. */
+ jac ^= ((f & g) >> 1);
+ /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
+ * out (as we'd be done before that point), and no more than eta+1 can be done as its
+ * sign will flip again once that happens. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ VERIFY_CHECK(limit > 0 && limit <= 62);
+ /* m is a mask for the bottom min(limit, 6) bits. */
+ m = (UINT64_MAX >> (64 - limit)) & 63U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
+ * bits. */
+ w = (f * g * (f * f - 2)) & m;
+ } else {
+ /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
+ * eta tends to be smaller here. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ VERIFY_CHECK(limit > 0 && limit <= 62);
+ /* m is a mask for the bottom min(limit, 4) bits. */
+ m = (UINT64_MAX >> (64 - limit)) & 15U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
+ * bits. */
+ w = f + (((f + 1) & 4) << 1);
+ w = (-w * g) & m;
+ }
+ g += f * w;
+ q += u * w;
+ r += v * w;
+ VERIFY_CHECK((g & m) == 0);
+ }
+ /* Return data in t and return value. */
+ t->u = (int64_t)u;
+ t->v = (int64_t)v;
+ t->q = (int64_t)q;
+ t->r = (int64_t)r;
+ /* The determinant of t must be a power of two. This guarantees that multiplication with t
+ * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
+ * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
+ * the aggregate of 62 of them will have determinant 2^62 or -2^62. */
+ VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62 ||
+ (int128_t)t->u * t->r - (int128_t)t->v * t->q == -(((int128_t)1) << 62));
+ *jacp = jac;
+ return eta;
+}
+
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
@@ -590,4 +678,71 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
*x = d;
}
+/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
+ * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
+#ifdef VERIFY
+#define JACOBI64_ITERATIONS 12
+#else
+#define JACOBI64_ITERATIONS 25
+#endif
+
+/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1, or x must be 0. */
+static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
+ /* Start with f=modulus, g=x, eta=-1. */
+ secp256k1_modinv64_signed62 f = modinfo->modulus;
+ secp256k1_modinv64_signed62 g = *x;
+ int j, len = 5;
+ int64_t eta = -1; /* eta = -delta; delta is initially 1 */
+ int64_t cond, fn, gn;
+ int jac = 0;
+ int count;
+
+ VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
+
+ /* The loop below does not converge for input g=0. Deal with this case specifically. */
+ if (!(g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4])) return 0;
+
+ for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
+ /* Compute transition matrix and new eta after 62 posdivsteps. */
+ secp256k1_modinv64_trans2x2 t;
+ eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
+ /* Update f,g using that transition matrix. */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
+ /* If the bottom limb of f is 1, there is a chance that f=1. */
+ if (f.v[0] == 1) {
+ cond = 0;
+ /* Check if the other limbs are also 0. */
+ for (j = 1; j < len; ++j) {
+ cond |= f.v[j];
+ }
+ /* If so, we're done. */
+ if (cond == 0) return 1 - 2*(jac & 1);
+ }
+
+ /* Determine if len>1 and limb (len-1) of both f and g is 0. */
+ fn = f.v[len - 1];
+ gn = g.v[len - 1];
+ cond = ((int64_t)len - 2) >> 63;
+ cond |= fn;
+ cond |= gn;
+ /* If so, reduce length. */
+ if (cond == 0) --len;
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ }
+
+ /* The loop failed to converge to f=g after 1550 iterations. Return -2, indicating unknown result. */
+ return -2;
+}
+
#endif /* SECP256K1_MODINV64_IMPL_H */
diff --git a/src/modules/ecdh/bench_impl.h b/src/modules/ecdh/bench_impl.h
index 94d833462f..8df15bcf43 100644
--- a/src/modules/ecdh/bench_impl.h
+++ b/src/modules/ecdh/bench_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_ECDH_BENCH_H
#define SECP256K1_MODULE_ECDH_BENCH_H
-#include "../include/secp256k1_ecdh.h"
+#include "../../../include/secp256k1_ecdh.h"
typedef struct {
secp256k1_context *ctx;
diff --git a/src/modules/ellswift/Makefile.am.include b/src/modules/ellswift/Makefile.am.include
new file mode 100644
index 0000000000..e7efea2981
--- /dev/null
+++ b/src/modules/ellswift/Makefile.am.include
@@ -0,0 +1,4 @@
+include_HEADERS += include/secp256k1_ellswift.h
+noinst_HEADERS += src/modules/ellswift/bench_impl.h
+noinst_HEADERS += src/modules/ellswift/main_impl.h
+noinst_HEADERS += src/modules/ellswift/tests_impl.h
diff --git a/src/modules/ellswift/bench_impl.h b/src/modules/ellswift/bench_impl.h
new file mode 100644
index 0000000000..0345511e12
--- /dev/null
+++ b/src/modules/ellswift/bench_impl.h
@@ -0,0 +1,100 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_BENCH_H
+#define SECP256K1_MODULE_ELLSWIFT_BENCH_H
+
+#include "../include/secp256k1_ellswift.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ secp256k1_pubkey point[256];
+ unsigned char rnd64[64];
+} bench_ellswift_data;
+
+static void bench_ellswift_setup(void* arg) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+ static const unsigned char init[64] = {
+ 0x78, 0x1f, 0xb7, 0xd4, 0x67, 0x7f, 0x08, 0x68,
+ 0xdb, 0xe3, 0x1d, 0x7f, 0x1b, 0xb0, 0xf6, 0x9e,
+ 0x0a, 0x64, 0xca, 0x32, 0x9e, 0xc6, 0x20, 0x79,
+ 0x03, 0xf3, 0xd0, 0x46, 0x7a, 0x0f, 0xd2, 0x21,
+ 0xb0, 0x2c, 0x46, 0xd8, 0xba, 0xca, 0x26, 0x4f,
+ 0x8f, 0x8c, 0xd4, 0xdd, 0x2d, 0x04, 0xbe, 0x30,
+ 0x48, 0x51, 0x1e, 0xd4, 0x16, 0xfd, 0x42, 0x85,
+ 0x62, 0xc9, 0x02, 0xf9, 0x89, 0x84, 0xff, 0xdc
+ };
+ memcpy(data->rnd64, init, 64);
+ for (i = 0; i < 256; ++i) {
+ int j;
+ CHECK(secp256k1_ellswift_decode(data->ctx, &data->point[i], data->rnd64));
+ for (j = 0; j < 64; ++j) {
+ data->rnd64[j] += 1;
+ }
+ }
+ CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[255], init + 16));
+}
+
+static void bench_ellswift_encode(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[i & 255], data->rnd64 + 16));
+ }
+}
+
+static void bench_ellswift_create(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ unsigned char buf[64];
+ CHECK(secp256k1_ellswift_create(data->ctx, buf, data->rnd64, data->rnd64 + 32));
+ memcpy(data->rnd64, buf, 64);
+ }
+}
+
+static void bench_ellswift_decode(void* arg, int iters) {
+ int i;
+ secp256k1_pubkey out;
+ size_t len;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_decode(data->ctx, &out, data->rnd64) == 1);
+ len = 33;
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->rnd64 + (i % 32), &len, &out, SECP256K1_EC_COMPRESSED));
+ }
+}
+
+static void bench_ellswift_xdh(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_xdh(data->ctx, data->rnd64 + (i % 33), data->rnd64, data->rnd64, data->rnd64 + ((i + 16) % 33), NULL, NULL) == 1);
+ }
+}
+
+void run_ellswift_bench(int iters, int argc, char** argv) {
+ bench_ellswift_data data;
+ int d = argc == 1;
+
+ /* create a context with signing capabilities */
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ memset(data.rnd64, 11, sizeof(data.rnd64));
+
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "encode") || have_flag(argc, argv, "ellswift_encode")) run_benchmark("ellswift_encode", bench_ellswift_encode, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_decode")) run_benchmark("ellswift_decode", bench_ellswift_decode, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ellswift_keygen")) run_benchmark("ellswift_keygen", bench_ellswift_create, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ecdh") || have_flag(argc, argv, "ellswift_ecdh")) run_benchmark("ellswift_ecdh", bench_ellswift_xdh, bench_ellswift_setup, NULL, &data, 10, iters);
+
+ secp256k1_context_destroy(data.ctx);
+}
+
+#endif /* SECP256K1_MODULE_ellswift_BENCH_H */
diff --git a/src/modules/ellswift/main_impl.h b/src/modules/ellswift/main_impl.h
new file mode 100644
index 0000000000..5795b717a9
--- /dev/null
+++ b/src/modules/ellswift/main_impl.h
@@ -0,0 +1,462 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
+#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
+
+#include "../../../include/secp256k1.h"
+#include "../../../include/secp256k1_ellswift.h"
+#include "../../hash.h"
+
+/** c1 = (sqrt(-3)-1)/2 */
+static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
+/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
+static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
+/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
+static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
+
+/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
+static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe* xn, secp256k1_fe* xd, const secp256k1_fe* u, const secp256k1_fe* t) {
+ /* The implemented algorithm is the following (all operations in GF(p)):
+ *
+ * - c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852
+ * - If u=0, set u=1.
+ * - If t=0, set t=1.
+ * - If u^3+7+t^2 = 0, set t=2*t.
+ * - Let X=(u^3+7-t^2)/(2*t)
+ * - Let Y=(X+t)/(c0*u)
+ * - If x3=u+4*Y^2 is a valid x coordinate, return x3.
+ * - If x2=(-X/Y-u)/2 is a valid x coordinare, return x2.
+ * - Return x1=(X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
+ *
+ * Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
+ *
+ * - ...
+ * - Let s=t^2
+ * - Let g=u^3+7
+ * - If g+s=0, set t=2*t, s=4*s
+ * - Let X=(g-s)/(2*t)
+ * - Let Y=(X+t)/(c0*u) = (g+s)/(2*c0*t*u)
+ * - If x3=u+4*Y^2 is a valid x coordinate, return x3.
+ * - If x2=(-X/Y-u)/2 is a valid x coordinate, return it.
+ * - Return x1=-(x2+u).
+ *
+ * Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s)
+ *
+ * - ...
+ * - If g+s=0, set s=4*s
+ * - If x3=u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
+ * - If x2=(-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
+ * - Return x1=(c0*u*(g-s)/(g+s)-u)/2.
+ *
+ * Simplifying x2 using 2 additional constants:
+ *
+ * - c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40
+ * - c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
+ * - ...
+ * - If x2=u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
+ * - ...
+ *
+ * Writing x3 as a fraction:
+ *
+ * - ...
+ * - If x3=(3*s*u^3-(g+s)^2)/(3*s*u^2)
+ * - ...
+
+ * Overall, we get:
+ *
+ * - c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40
+ * - c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
+ * - If u=0, set u=1.
+ * - If t=0, set s=1, else set s=t^2
+ * - Let g=u^3+7
+ * - If g+s=0, set s=4*s
+ * - If x3=(3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
+ * - If x2=u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
+ * - Return x1=-(x2+u)
+ */
+ secp256k1_fe u1, s, g, p, d, n, l;
+ u1 = *u;
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
+ secp256k1_fe_sqr(&s, t);
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
+ secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
+ secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b); /* g = u^3 + 7 */
+ p = g; /* p = g */
+ secp256k1_fe_add(&p, &s); /* p = g+s */
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
+ secp256k1_fe_mul_int(&s, 4); /* s = 4*s */
+ /* recompute p = g+s */
+ p = g; /* p = g */
+ secp256k1_fe_add(&p, &s); /* p = g+s */
+ }
+ secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
+ secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
+ secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
+ secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
+ secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
+ secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
+ if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
+ /* Return n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
+ *xn = n;
+ *xd = d;
+ return;
+ }
+ *xd = p;
+ secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
+ secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
+ secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
+ secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
+ /* Possible optimization: in the invocation below, d^2 = (g+s)^2 is computed,
+ * which we already have computed above. This could be deduplicated. */
+ if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
+ /* Return n/p = u*(c1*s+c2*g)/(g+s) */
+ *xn = n;
+ return;
+ }
+ secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
+ secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*g*s */
+ secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)+u*g*s */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
+#endif
+ /* Return n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
+}
+
+/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
+static void secp256k1_ellswift_xswiftec_var(secp256k1_fe* x, const secp256k1_fe* u, const secp256k1_fe* t) {
+ secp256k1_fe xn, xd;
+ secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
+ secp256k1_fe_inv_var(&xd, &xd);
+ secp256k1_fe_mul(x, &xn, &xd);
+}
+
+/** Decode ElligatorSwift encoding (u, t) to point P. */
+static void secp256k1_ellswift_swiftec_var(secp256k1_ge* p, const secp256k1_fe* u, const secp256k1_fe* t) {
+ secp256k1_fe x;
+ secp256k1_ellswift_xswiftec_var(&x, u, t);
+ secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
+}
+
+/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
+ *
+ * There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
+ * fewer, or none at all. Each such partial inverse can be accessed individually using a
+ * distinct input argument c (in range 0-7), and some or all of these may return failure.
+ * The following guarantees exist:
+ * - Given (x, u), no two distinct c values give the same successful result t.
+ * - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
+ * - Given (x, u), all t values that map back to x can be reached by combining the
+ * successful results from this function over all c values, with the exception of:
+ * - this function cannot be called with u=0
+ * - no result with t=0 will be returned
+ * - no result for which u^3 + t^2 + 7 = 0 will be returned.
+ */
+static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe* t, const secp256k1_fe* x, const secp256k1_fe* u, int c) {
+ /* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
+ *
+ * - If (c & 2) = 0:
+ * - If (-x-u) is a valid X coordinate, fail.
+ * - If (c & 1) = 0, let v=x; otherwise, let v=-x-u.
+ * - Let s=-(u^3+7)/(u^2+u*v+v^2)
+ * - If (c & 2) = 2:
+ * - Let s=x-u
+ * - If s=0, fail.
+ * - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist
+ * - If (c & 1) = 1:
+ * - If r=0, fail.
+ * - Let r=-r.
+ * - Let v=(r/s-u)/2.
+ * - Let w=sqrt(s); fail if it doesn't exist.
+ * - If (c & 4) = 4, let w=-w.
+ * - Return w*(c1*u-v).
+ */
+ secp256k1_fe v = *x, um = *u; /* v = x; um = u */
+ secp256k1_fe g, m, s, w;
+ secp256k1_fe_normalize_weak(&v);
+ secp256k1_fe_normalize_weak(&um);
+ secp256k1_fe_sqr(&g, u); /* g = u^2 */
+ secp256k1_fe_mul(&g, &g, u); /* g = u^3 */
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b); /* g = u^3+7 */
+ if (!(c & 2)) {
+ secp256k1_fe o;
+ m = v; /* m = x */
+ secp256k1_fe_add(&m, &um); /* m = x+u */
+ secp256k1_fe_negate(&m, &m, 2); /* m = -(x+u) */
+ if (secp256k1_ge_x_on_curve_var(&m)) return 0; /* test if -(x+u) on curve */
+ if (c & 1) v = m; /* if c&1, v = -x-u */
+ /* v = algorithm v */
+ o = um; /* o = u */
+ secp256k1_fe_add(&o, &v); /* o = u+v */
+ secp256k1_fe_sqr(&o, &o); /* o = (u+v)^2 */
+ secp256k1_fe_negate(&o, &o, 1); /* o = -(u+v)^2 */
+ secp256k1_fe_mul(&s, &um, &v); /* s = u*v */
+ secp256k1_fe_add(&s, &o); /* s = u*v-(u+v)^2 = -(u^2+u*v+v^2) */
+ secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3+7)*(u^2+u*v+v^2) [= algorithm s*(u^2+u*v+v^2)^2] */
+ if (secp256k1_fe_jacobi_var(&m) < 0) return 0; /* algorithm s is square iff m is square */
+ secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2+u*v+v^2) */
+ secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3+7)/(u^2+u*v+v^2) [= algorithm s] */
+ } else {
+ secp256k1_fe r2, r;
+ secp256k1_fe_negate(&m, &um, 1); /* m = -u */
+ s = m;
+ secp256k1_fe_add(&s, &v); /* s = x-u [= algorithm s] */
+ if (secp256k1_fe_normalizes_to_zero_var(&s)) return 0; /* test s=0 */
+ if (secp256k1_fe_jacobi_var(&s) < 0) return 0; /* early squareness check of s */
+ secp256k1_fe_normalize_weak(&g);
+ secp256k1_fe_mul_int(&g, 4); /* g = 4*(u^3+7) */
+ secp256k1_fe_sqr(&r2, &um); /* r2 = u^2 */
+ secp256k1_fe_mul_int(&r2, 3); /* r2 = 3*u^2 */
+ secp256k1_fe_mul(&r2, &r2, &s); /* r2 = 3*u^2*s */
+ secp256k1_fe_add(&r2, &g); /* r2 = 4*(u^3+7)+3*u^2*s */
+ secp256k1_fe_mul(&r2, &r2, &s); /* r2 = s*(4*(u^3+7)+3*u^2*s) */
+ secp256k1_fe_negate(&r2, &r2, 1); /* r2 = -s*(4*(u^3+7)+3*u^2*s) */
+ if (secp256k1_fe_jacobi_var(&r2) < 0) return 0;
+ VERIFY_CHECK(secp256k1_fe_sqrt(&r, &r2)); /* r = sqrt(r2) [= algorithm r] */
+ if (c & 1) {
+ if (secp256k1_fe_normalizes_to_zero_var(&r)) return 0; /* test r=0 */
+ secp256k1_fe_negate(&r, &r, 1); /* r=-r [= algorithm r] */
+ }
+ secp256k1_fe_inv_var(&v, &s); /* v = 1/s */
+ secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
+ secp256k1_fe_add(&v, &m); /* v = r/s-u */
+ secp256k1_fe_half(&v); /* v = (r/s-u)/2 [= algorithm v] */
+ }
+ VERIFY_CHECK(secp256k1_fe_sqrt(&w, &s)); /* w = sqrt(s) [= algorithm w] */
+ if (!(c & 4)) secp256k1_fe_negate(&w, &w, 1); /* w = -w [= algorithm -w] */
+ secp256k1_fe_mul(&um, &um, &secp256k1_ellswift_c3); /* um = c3*u = -c1*u */
+ secp256k1_fe_add(&um, &v); /* um = v-c1*u */
+ secp256k1_fe_mul(t, &w, &um); /* t = -w*(v-c1*u) = w*(c1-u) */
+ return 1;
+}
+
+/** Find an ElligatorSwift encoding (u, t) for X coordinate x.
+ *
+ * hasher is a SHA256 object which a incrementing 4-byte counter is added to to
+ * generate randomness for the rejection sampling in this function. Its size plus
+ * 4 (for the counter) plus 9 (for the SHA256 padding) must be a multiple of 64
+ * for efficiency reasons.
+ */
+static void secp256k1_ellswift_xelligatorswift_var(secp256k1_fe* u, secp256k1_fe* t, const secp256k1_fe* x, const secp256k1_sha256* hasher) {
+ /* Pool of 3-bit branch values. */
+ unsigned char branch_hash[32];
+ /* Number of 3-bit values in branch_hash left. */
+ int branches_left = 0;
+ /* Field elements u and branch values are extracted from
+ * SHA256(hasher || cnt) for consecutive values of cnt. cnt==0
+ * is first used to populate a pool of 64 4-bit branch values. The 64 cnt
+ * values that follow are used to generate field elements u. cnt==65 (and
+ * multiples thereof) are used to repopulate the pool and start over, if
+ * that were ever necessary. */
+ uint32_t cnt = 0;
+ VERIFY_CHECK((hasher->bytes + 4 + 9) % 64 == 0);
+ while (1) {
+ int branch;
+ /* If the pool of branch values is empty, populate it. */
+ if (branches_left == 0) {
+ secp256k1_sha256 hash = *hasher;
+ unsigned char buf4[4];
+ buf4[0] = cnt;
+ buf4[1] = cnt >> 8;
+ buf4[2] = cnt >> 16;
+ buf4[3] = cnt >> 24;
+ ++cnt;
+ secp256k1_sha256_write(&hash, buf4, 4);
+ secp256k1_sha256_finalize(&hash, branch_hash);
+ branches_left = 64;
+ }
+ /* Take a 3-bit branch value from the branch pool (top bit is discarded). */
+ --branches_left;
+ branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
+ /* Compute a new u value by hashing. */
+ {
+ secp256k1_sha256 hash = *hasher;
+ unsigned char buf4[4];
+ unsigned char u32[32];
+ buf4[0] = cnt;
+ buf4[1] = cnt >> 8;
+ buf4[2] = cnt >> 16;
+ buf4[3] = cnt >> 24;
+ ++cnt;
+ secp256k1_sha256_write(&hash, buf4, 4);
+ secp256k1_sha256_finalize(&hash, u32);
+ if (!secp256k1_fe_set_b32(u, u32)) continue;
+ if (secp256k1_fe_is_zero(u)) continue;
+ }
+ /* Find a remainder t, and return it if found. */
+ if (secp256k1_ellswift_xswiftec_inv_var(t, x, u, branch)) {
+ secp256k1_fe_normalize_var(t);
+ break;
+ }
+ }
+}
+
+/** Find an ElligatorSwift encoding (u, t) for point P. */
+static void secp256k1_ellswift_elligatorswift_var(secp256k1_fe* u, secp256k1_fe* t, const secp256k1_ge* p, const secp256k1_sha256* hasher) {
+ secp256k1_ellswift_xelligatorswift_var(u, t, &p->x, hasher);
+ if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
+ secp256k1_fe_negate(t, t, 1);
+ secp256k1_fe_normalize_var(t);
+ }
+}
+
+int secp256k1_ellswift_encode(const secp256k1_context* ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
+ secp256k1_ge p;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(ell64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(rnd32 != NULL);
+
+ if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ static const unsigned char PREFIX[128 - 9 - 4 - 32 - 33] = "secp256k1_ellswift_encode";
+ secp256k1_fe u, t;
+ unsigned char p33[33];
+ secp256k1_sha256 hash;
+
+ /* Set up hasher state */
+ secp256k1_sha256_initialize(&hash);
+ secp256k1_sha256_write(&hash, PREFIX, sizeof(PREFIX));
+ secp256k1_sha256_write(&hash, rnd32, 32);
+ secp256k1_fe_get_b32(p33, &p.x);
+ p33[32] = secp256k1_fe_is_odd(&p.y);
+ secp256k1_sha256_write(&hash, p33, sizeof(p33));
+ VERIFY_CHECK(hash.bytes == 128 - 9 - 4);
+
+ /* Compute ElligatorSwift encoding and construct output. */
+ secp256k1_ellswift_elligatorswift_var(&u, &t, &p, &hash);
+ secp256k1_fe_get_b32(ell64, &u);
+ secp256k1_fe_get_b32(ell64 + 32, &t);
+ return 1;
+ }
+ /* Only returned in case the provided pubkey is invalid. */
+ return 0;
+}
+
+int secp256k1_ellswift_create(const secp256k1_context* ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *rnd32) {
+ secp256k1_ge p;
+ secp256k1_fe u, t;
+ secp256k1_sha256 hash;
+ secp256k1_scalar seckey_scalar;
+ static const unsigned char PREFIX[32] = "secp256k1_ellswift_create";
+ static const unsigned char ZERO[32] = {0};
+ int ret = 0;
+
+ /* Sanity check inputs. */
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(ell64 != NULL);
+ memset(ell64, 0, 64);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(seckey32 != NULL);
+
+ /* Compute (affine) public key */
+ ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
+ secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
+ secp256k1_fe_normalize_var(&p.x);
+ secp256k1_fe_normalize_var(&p.y);
+
+ /* Set up hasher state */
+ secp256k1_sha256_initialize(&hash);
+ secp256k1_sha256_write(&hash, PREFIX, sizeof(PREFIX));
+ secp256k1_sha256_write(&hash, seckey32, 32);
+ secp256k1_sha256_write(&hash, rnd32 ? rnd32 : ZERO, 32);
+ secp256k1_sha256_write(&hash, ZERO, 32 - 9 - 4);
+ secp256k1_declassify(ctx, &hash, sizeof(hash)); /* hasher gets to declassify private key */
+
+ /* Compute ElligatorSwift encoding and construct output. */
+ secp256k1_ellswift_elligatorswift_var(&u, &t, &p, &hash);
+ secp256k1_fe_get_b32(ell64, &u);
+ secp256k1_fe_get_b32(ell64 + 32, &t);
+
+ secp256k1_memczero(ell64, 64, !ret);
+ secp256k1_scalar_clear(&seckey_scalar);
+
+ return ret;
+}
+
+int secp256k1_ellswift_decode(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
+ secp256k1_fe u, t;
+ secp256k1_ge p;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(ell64 != NULL);
+
+ secp256k1_fe_set_b32(&u, ell64);
+ secp256k1_fe_normalize_var(&u);
+ secp256k1_fe_set_b32(&t, ell64 + 32);
+ secp256k1_fe_normalize_var(&t);
+ secp256k1_ellswift_swiftec_var(&p, &u, &t);
+ secp256k1_pubkey_save(pubkey, &p);
+ return 1;
+}
+
+static int ellswift_xdh_hash_function_sha256(unsigned char *output, const unsigned char *x32, const unsigned char *ours64, const unsigned char *theirs64, void *data) {
+ secp256k1_sha256 sha;
+
+ (void)data;
+
+ secp256k1_sha256_initialize(&sha);
+ if (secp256k1_memcmp_var(ours64, theirs64, 64) <= 0) {
+ secp256k1_sha256_write(&sha, ours64, 64);
+ secp256k1_sha256_write(&sha, theirs64, 64);
+ } else {
+ secp256k1_sha256_write(&sha, theirs64, 64);
+ secp256k1_sha256_write(&sha, ours64, 64);
+ }
+ secp256k1_sha256_write(&sha, x32, 32);
+ secp256k1_sha256_finalize(&sha, output);
+
+ return 1;
+}
+
+const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_sha256 = ellswift_xdh_hash_function_sha256;
+const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_default = ellswift_xdh_hash_function_sha256;
+
+int secp256k1_ellswift_xdh(const secp256k1_context* ctx, unsigned char *output, const unsigned char* theirs64, const unsigned char* ours64, const unsigned char* seckey32, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
+ int ret = 0;
+ int overflow;
+ secp256k1_scalar s;
+ secp256k1_fe xn, xd, px, u, t;
+ unsigned char sx[32];
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(output != NULL);
+ ARG_CHECK(theirs64 != NULL);
+ ARG_CHECK(ours64 != NULL);
+ ARG_CHECK(seckey32 != NULL);
+
+ if (hashfp == NULL) {
+ hashfp = secp256k1_ellswift_xdh_hash_function_default;
+ }
+
+ /* Load remote public key (as fraction). */
+ secp256k1_fe_set_b32(&u, theirs64);
+ secp256k1_fe_normalize_var(&u);
+ secp256k1_fe_set_b32(&t, theirs64 + 32);
+ secp256k1_fe_normalize_var(&t);
+ secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
+
+ /* Load private key (using one if invalid). */
+ secp256k1_scalar_set_b32(&s, seckey32, &overflow);
+ overflow = secp256k1_scalar_is_zero(&s);
+ secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
+
+ /* Compute shared X coordinate. */
+ secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 256, 1);
+ secp256k1_fe_normalize(&px);
+ secp256k1_fe_get_b32(sx, &px);
+
+ /* Invoke hasher */
+ ret = hashfp(output, sx, ours64, theirs64, data);
+
+ memset(sx, 0, 32);
+ secp256k1_fe_clear(&px);
+ secp256k1_scalar_clear(&s);
+
+ return !!ret & !overflow;
+}
+
+#endif
diff --git a/src/modules/ellswift/tests_impl.h b/src/modules/ellswift/tests_impl.h
new file mode 100644
index 0000000000..cd73eb03cf
--- /dev/null
+++ b/src/modules/ellswift/tests_impl.h
@@ -0,0 +1,292 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuile *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_H
+#define SECP256K1_MODULE_ELLSWIFT_TESTS_H
+
+#include "../../../include/secp256k1_ellswift.h"
+
+struct ellswift_xswiftec_inv_test {
+ int enc_bitmap;
+ secp256k1_fe u;
+ secp256k1_fe x;
+ secp256k1_fe encs[8];
+};
+
+struct ellswift_decode_test {
+ unsigned char enc[64];
+ secp256k1_fe x;
+ int odd_y;
+};
+
+/* Set of (point, encodings) test vectors, selected to maximize branch coverage.
+ * Created using an independent implementation, and tested against paper author's code. */
+static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
+ {0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x45654798, 0xece071ba, 0x79286d04, 0xf7f3eb1c, 0x3f1d17dd, 0x883610f2, 0xad2efd82, 0xa287466b), SECP256K1_FE_CONST(0x0aeaa886, 0xf6b76c71, 0x58452418, 0xcbf5033a, 0xdc5747e9, 0xe9b5d3b2, 0x303db969, 0x36528557), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xba9ab867, 0x131f8e45, 0x86d792fb, 0x080c14e3, 0xc0e2e822, 0x77c9ef0d, 0x52d1027c, 0x5d78b5c4), SECP256K1_FE_CONST(0xf5155779, 0x0948938e, 0xa7badbe7, 0x340afcc5, 0x23a8b816, 0x164a2c4d, 0xcfc24695, 0xc9ad76d8)}},
+ {0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP256K1_FE_CONST(0x1be8cc0b, 0x04be0c68, 0x1d0c6a68, 0xf733f82c, 0x6c896e0c, 0x8a262fcd, 0x392918e3, 0x03a7abf4), SECP256K1_FE_CONST(0x605b5814, 0xbf9b8cb0, 0x66667c9e, 0x5480d22d, 0xc5b6c92f, 0x14b4af3e, 0xe0a9eb83, 0xb03685e3), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xe41733f4, 0xfb41f397, 0xe2f39597, 0x08cc07d3, 0x937691f3, 0x75d9d032, 0xc6d6e71b, 0xfc58503b), SECP256K1_FE_CONST(0x9fa4a7eb, 0x4064734f, 0x99998361, 0xab7f2dd2, 0x3a4936d0, 0xeb4b50c1, 0x1f56147b, 0x4fc9764c), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP256K1_FE_CONST(0xf63580b8, 0xaa49c484, 0x6de56e39, 0xe1b3e73f, 0x171e881e, 0xba8c66f6, 0x14e67e5c, 0x975dfc07), SECP256K1_FE_CONST(0xb6307b33, 0x2e699f1c, 0xf77841d9, 0x0af25365, 0x404deb7f, 0xed5edb30, 0x90db49e6, 0x42a156b6), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x09ca7f47, 0x55b63b7b, 0x921a91c6, 0x1e4c18c0, 0xe8e177e1, 0x45739909, 0xeb1981a2, 0x68a20028), SECP256K1_FE_CONST(0x49cf84cc, 0xd19660e3, 0x0887be26, 0xf50dac9a, 0xbfb21480, 0x12a124cf, 0x6f24b618, 0xbd5ea579), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP256K1_FE_CONST(0xe69df7d9, 0xc026c366, 0x00ebdf58, 0x80726758, 0x47c0c431, 0xc8eb7306, 0x82533e96, 0x4b6252c9), SECP256K1_FE_CONST(0x4f18bbdf, 0x7c2d6c5f, 0x818c1880, 0x2fa35cd0, 0x69eaa79f, 0xff74e4fc, 0x837c80d9, 0x3fece2f8), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x19620826, 0x3fd93c99, 0xff1420a7, 0x7f8d98a7, 0xb83f3bce, 0x37148cf9, 0x7dacc168, 0xb49da966), SECP256K1_FE_CONST(0xb0e74420, 0x83d293a0, 0x7e73e77f, 0xd05ca32f, 0x96155860, 0x008b1b03, 0x7c837f25, 0xc0131937), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb3dae4b7, 0xdcf858e4, 0xc6968057, 0xcef2b156, 0x46543152, 0x6538199c, 0xf52dc1b2, 0xd62fda30), SECP256K1_FE_CONST(0x4aa77dd5, 0x5d6b6d3c, 0xfa10cc9d, 0x0fe42f79, 0x232e4575, 0x661049ae, 0x36779c1d, 0x0c666d88), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x4c251b48, 0x2307a71b, 0x39697fa8, 0x310d4ea9, 0xb9abcead, 0x9ac7e663, 0x0ad23e4c, 0x29d021ff), SECP256K1_FE_CONST(0xb558822a, 0xa29492c3, 0x05ef3362, 0xf01bd086, 0xdcd1ba8a, 0x99efb651, 0xc98863e1, 0xf3998ea7)}},
+ {0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0x587c1a0c, 0xee91939e, 0x7f784d23, 0xb963004a, 0x3bf44f5d, 0x4e32a008, 0x1995ba20, 0xb0fca59e), SECP256K1_FE_CONST(0x2ea98853, 0x0715e8d1, 0x0363907f, 0xf2512452, 0x4d471ba2, 0x454d5ce3, 0xbe3f0419, 0x4dfd3a3c), {SECP256K1_FE_CONST(0xcfd5a094, 0xaa0b9b88, 0x91b76c6a, 0xb9438f66, 0xaa1c095a, 0x65f9f701, 0x35e81712, 0x92245e74), SECP256K1_FE_CONST(0xa89057d7, 0xc6563f0d, 0x6efa19ae, 0x84412b8a, 0x7b47e791, 0xa191ecdf, 0xdf2af84f, 0xd97bc339), SECP256K1_FE_CONST(0x475d0ae9, 0xef46920d, 0xf07b3411, 0x7be5a081, 0x7de1023e, 0x3cc32689, 0xe9be145b, 0x406b0aef), SECP256K1_FE_CONST(0xa0759178, 0xad802324, 0x54f827ef, 0x05ea3e72, 0xad8d7541, 0x8e6d4cc1, 0xcd4f5306, 0xc5e7c453), SECP256K1_FE_CONST(0x302a5f6b, 0x55f46477, 0x6e489395, 0x46bc7099, 0x55e3f6a5, 0x9a0608fe, 0xca17e8ec, 0x6ddb9dbb), SECP256K1_FE_CONST(0x576fa828, 0x39a9c0f2, 0x9105e651, 0x7bbed475, 0x84b8186e, 0x5e6e1320, 0x20d507af, 0x268438f6), SECP256K1_FE_CONST(0xb8a2f516, 0x10b96df2, 0x0f84cbee, 0x841a5f7e, 0x821efdc1, 0xc33cd976, 0x1641eba3, 0xbf94f140), SECP256K1_FE_CONST(0x5f8a6e87, 0x527fdcdb, 0xab07d810, 0xfa15c18d, 0x52728abe, 0x7192b33e, 0x32b0acf8, 0x3a1837dc)}},
+ {0xcc, SECP256K1_FE_CONST(0x5fa88b33, 0x65a635cb, 0xbcee003c, 0xce9ef51d, 0xd1a310de, 0x277e441a, 0xbccdb7be, 0x1e4ba249), SECP256K1_FE_CONST(0x79461ff6, 0x2bfcbcac, 0x4249ba84, 0xdd040f2c, 0xec3c63f7, 0x25204dc7, 0xf464c16b, 0xf0ff3170), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x6bb700e1, 0xf4d7e236, 0xe8d193ff, 0x4a76c1b3, 0xbcd4e2b2, 0x5acac3d5, 0x1c8dac65, 0x3fe909a0), SECP256K1_FE_CONST(0xf4c73410, 0x633da7f6, 0x3a4f1d55, 0xaec6dd32, 0xc4c6d89e, 0xe74075ed, 0xb5515ed9, 0x0da9e683), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x9448ff1e, 0x0b281dc9, 0x172e6c00, 0xb5893e4c, 0x432b1d4d, 0xa5353c2a, 0xe3725399, 0xc016f28f), SECP256K1_FE_CONST(0x0b38cbef, 0x9cc25809, 0xc5b0e2aa, 0x513922cd, 0x3b392761, 0x18bf8a12, 0x4aaea125, 0xf25615ac)}},
+ {0xcc, SECP256K1_FE_CONST(0x6fb31c75, 0x31f03130, 0xb42b155b, 0x952779ef, 0xbb46087d, 0xd9807d24, 0x1a48eac6, 0x3c3d96d6), SECP256K1_FE_CONST(0x56f81be7, 0x53e8d4ae, 0x4940ea6f, 0x46f6ec9f, 0xda66a6f9, 0x6cc95f50, 0x6cb2b574, 0x90e94260), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x59059774, 0x795bdb7a, 0x837fbe11, 0x40a5fa59, 0x984f48af, 0x8df95d57, 0xdd6d1c05, 0x437dcec1), SECP256K1_FE_CONST(0x22a644db, 0x79376ad4, 0xe7b3a009, 0xe58b3f13, 0x137c54fd, 0xf911122c, 0xc93667c4, 0x7077d784), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xa6fa688b, 0x86a42485, 0x7c8041ee, 0xbf5a05a6, 0x67b0b750, 0x7206a2a8, 0x2292e3f9, 0xbc822d6e), SECP256K1_FE_CONST(0xdd59bb24, 0x86c8952b, 0x184c5ff6, 0x1a74c0ec, 0xec83ab02, 0x06eeedd3, 0x36c9983a, 0x8f8824ab)}},
+ {0x00, SECP256K1_FE_CONST(0x704cd226, 0xe71cb682, 0x6a590e80, 0xdac90f2d, 0x2f5830f0, 0xfdf135a3, 0xeae3965b, 0xff25ff12), SECP256K1_FE_CONST(0x138e0afa, 0x68936ee6, 0x70bd2b8d, 0xb53aedbb, 0x7bea2a85, 0x97388b24, 0xd0518edd, 0x22ad66ec), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x725e9147, 0x92cb8c89, 0x49e7e116, 0x8b7cdd8a, 0x8094c91c, 0x6ec2202c, 0xcd53a6a1, 0x8771edeb), SECP256K1_FE_CONST(0x8da16eb8, 0x6d347376, 0xb6181ee9, 0x74832275, 0x7f6b36e3, 0x913ddfd3, 0x32ac595d, 0x788e0e44), {SECP256K1_FE_CONST(0xdd357786, 0xb9f68733, 0x30391aa5, 0x62580965, 0x4e43116e, 0x82a5a5d8, 0x2ffd1d66, 0x24101fc4), SECP256K1_FE_CONST(0xa0b7efca, 0x01814594, 0xc59c9aae, 0x8e497001, 0x86ca5d95, 0xe88bcc80, 0x399044d9, 0xc2d8613d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x22ca8879, 0x460978cc, 0xcfc6e55a, 0x9da7f69a, 0xb1bcee91, 0x7d5a5a27, 0xd002e298, 0xdbefdc6b), SECP256K1_FE_CONST(0x5f481035, 0xfe7eba6b, 0x3a636551, 0x71b68ffe, 0x7935a26a, 0x1774337f, 0xc66fbb25, 0x3d279af2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x78fe6b71, 0x7f2ea4a3, 0x2708d79c, 0x151bf503, 0xa5312a18, 0xc0963437, 0xe865cc6e, 0xd3f6ae97), SECP256K1_FE_CONST(0x8701948e, 0x80d15b5c, 0xd8f72863, 0xeae40afc, 0x5aced5e7, 0x3f69cbc8, 0x179a3390, 0x2c094d98), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x44, SECP256K1_FE_CONST(0x7c37bb9c, 0x5061dc07, 0x413f11ac, 0xd5a34006, 0xe64c5c45, 0x7fdb9a43, 0x8f217255, 0xa961f50d), SECP256K1_FE_CONST(0x5c1a76b4, 0x4568eb59, 0xd6789a74, 0x42d9ed7c, 0xdc6226b7, 0x752b4ff8, 0xeaf8e1a9, 0x5736e507), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb94d30cd, 0x7dbff60b, 0x64620c17, 0xca0fafaa, 0x40b3d1f5, 0x2d077a60, 0xa2e0cafd, 0x145086c2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x46b2cf32, 0x824009f4, 0x9b9df3e8, 0x35f05055, 0xbf4c2e0a, 0xd2f8859f, 0x5d1f3501, 0xebaf756d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x82388888, 0x967f82a6, 0xb444438a, 0x7d44838e, 0x13c0d478, 0xb9ca060d, 0xa95a41fb, 0x94303de6), SECP256K1_FE_CONST(0x29e96541, 0x70628fec, 0x8b497289, 0x8b113cf9, 0x8807f460, 0x9274f4f3, 0x140d0674, 0x157c90a0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x91298f57, 0x70af7a27, 0xf0a47188, 0xd24c3b7b, 0xf98ab299, 0x0d84b0b8, 0x98507e3c, 0x561d6472), SECP256K1_FE_CONST(0x144f4ccb, 0xd9a74698, 0xa88cbf6f, 0xd00ad886, 0xd339d29e, 0xa19448f2, 0xc572cac0, 0xa07d5562), {SECP256K1_FE_CONST(0xe6a0ffa3, 0x807f09da, 0xdbe71e0f, 0x4be4725f, 0x2832e76c, 0xad8dc1d9, 0x43ce8393, 0x75eff248), SECP256K1_FE_CONST(0x837b8e68, 0xd4917544, 0x764ad090, 0x3cb11f86, 0x15d2823c, 0xefbb06d8, 0x9049dbab, 0xc69befda), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x195f005c, 0x7f80f625, 0x2418e1f0, 0xb41b8da0, 0xd7cd1893, 0x52723e26, 0xbc317c6b, 0x8a1009e7), SECP256K1_FE_CONST(0x7c847197, 0x2b6e8abb, 0x89b52f6f, 0xc34ee079, 0xea2d7dc3, 0x1044f927, 0x6fb62453, 0x39640c55), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xb682f3d0, 0x3bbb5dee, 0x4f54b5eb, 0xfba931b4, 0xf52f6a19, 0x1e5c2f48, 0x3c73c66e, 0x9ace97e1), SECP256K1_FE_CONST(0x904717bf, 0x0bc0cb78, 0x73fcdc38, 0xaa97f19e, 0x3a626309, 0x72acff92, 0xb24cc6dd, 0xa197cb96), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x77, SECP256K1_FE_CONST(0xc17ec69e, 0x665f0fb0, 0xdbab48d9, 0xc2f94d12, 0xec8a9d7e, 0xacb58084, 0x83309180, 0x1eb0b80b), SECP256K1_FE_CONST(0x147756e6, 0x6d96e31c, 0x426d3cc8, 0x5ed0c4cf, 0xbef6341d, 0xd8b28558, 0x5aa574ea, 0x0204b55e), {SECP256K1_FE_CONST(0x6f4aea43, 0x1a0043bd, 0xd03134d6, 0xd9159119, 0xce034b88, 0xc32e50e8, 0xe36c4ee4, 0x5eac7ae9), SECP256K1_FE_CONST(0xfd5be16d, 0x4ffa2690, 0x126c67c3, 0xef7cb9d2, 0x9b74d397, 0xc78b06b3, 0x605fda34, 0xdc9696a6), SECP256K1_FE_CONST(0x5e9c6079, 0x2a2f000e, 0x45c6250f, 0x296f875e, 0x174efc0e, 0x9703e628, 0x706103a9, 0xdd2d82c7), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x90b515bc, 0xe5ffbc42, 0x2fcecb29, 0x26ea6ee6, 0x31fcb477, 0x3cd1af17, 0x1c93b11a, 0xa1538146), SECP256K1_FE_CONST(0x02a41e92, 0xb005d96f, 0xed93983c, 0x1083462d, 0x648b2c68, 0x3874f94c, 0x9fa025ca, 0x23696589), SECP256K1_FE_CONST(0xa1639f86, 0xd5d0fff1, 0xba39daf0, 0xd69078a1, 0xe8b103f1, 0x68fc19d7, 0x8f9efc55, 0x22d27968), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xc25172fc, 0x3f29b6fc, 0x4a1155b8, 0x57523315, 0x5486b274, 0x64b74b8b, 0x260b499a, 0x3f53cb14), SECP256K1_FE_CONST(0x1ea9cbdb, 0x35cf6e03, 0x29aa31b0, 0xbb0a702a, 0x65123ed0, 0x08655a93, 0xb7dcd528, 0x0e52e1ab), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x7422edc7, 0x843136af, 0x0053bb88, 0x54448a82, 0x99994f9d, 0xdcefd3a9, 0xa92d4546, 0x2c59298a), SECP256K1_FE_CONST(0x78c7774a, 0x266f8b97, 0xea23d05d, 0x064f033c, 0x77319f92, 0x3f6b78bc, 0xe4e20bf0, 0x5fa5398d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x8bdd1238, 0x7bcec950, 0xffac4477, 0xabbb757d, 0x6666b062, 0x23102c56, 0x56d2bab8, 0xd3a6d2a5), SECP256K1_FE_CONST(0x873888b5, 0xd9907468, 0x15dc2fa2, 0xf9b0fcc3, 0x88ce606d, 0xc0948743, 0x1b1df40e, 0xa05ac2a2)}},
+ {0x00, SECP256K1_FE_CONST(0xcab6626f, 0x832a4b12, 0x80ba7add, 0x2fc5322f, 0xf011caed, 0xedf7ff4d, 0xb6735d50, 0x26dc0367), SECP256K1_FE_CONST(0x2b2bef08, 0x52c6f7c9, 0x5d72ac99, 0xa23802b8, 0x75029cd5, 0x73b248d1, 0xf1b3fc80, 0x33788eb6), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0xd8621b4f, 0xfc85b9ed, 0x56e99d8d, 0xd1dd24ae, 0xdcecb147, 0x63b861a1, 0x7112dc77, 0x1a104fd2), SECP256K1_FE_CONST(0x812cabe9, 0x72a22aa6, 0x7c7da0c9, 0x4d8a9362, 0x96eb9949, 0xd70c37cb, 0x2b248757, 0x4cb3ce58), {SECP256K1_FE_CONST(0xfbc5febc, 0x6fdbc9ae, 0x3eb88a93, 0xb982196e, 0x8b6275a6, 0xd5a73c17, 0x387e000c, 0x711bd0e3), SECP256K1_FE_CONST(0x8724c96b, 0xd4e5527f, 0x2dd195a5, 0x1c468d2d, 0x211ba2fa, 0xc7cbe0b4, 0xb3434253, 0x409fb42d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x043a0143, 0x90243651, 0xc147756c, 0x467de691, 0x749d8a59, 0x2a58c3e8, 0xc781fff2, 0x8ee42b4c), SECP256K1_FE_CONST(0x78db3694, 0x2b1aad80, 0xd22e6a5a, 0xe3b972d2, 0xdee45d05, 0x38341f4b, 0x4cbcbdab, 0xbf604802), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xda463164, 0xc6f4bf71, 0x29ee5f0e, 0xc00f65a6, 0x75a8adf1, 0xbd931b39, 0xb64806af, 0xdcda9a22), SECP256K1_FE_CONST(0x25b9ce9b, 0x390b408e, 0xd611a0f1, 0x3ff09a59, 0x8a57520e, 0x426ce4c6, 0x49b7f94f, 0x2325620d), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xdafc971e, 0x4a3a7b6d, 0xcfb42a08, 0xd9692d82, 0xad9e7838, 0x523fcbda, 0x1d4827e1, 0x4481ae2d), SECP256K1_FE_CONST(0x250368e1, 0xb5c58492, 0x304bd5f7, 0x2696d27d, 0x526187c7, 0xadc03425, 0xe2b7d81d, 0xbb7e4e02), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x370c28f1, 0xbe665efa, 0xcde6aa43, 0x6bf86fe2, 0x1e6e314c, 0x1e53dd04, 0x0e6c73a4, 0x6b4c8c49), SECP256K1_FE_CONST(0xcd8acee9, 0x8ffe5653, 0x1a84d7eb, 0x3e48fa40, 0x34206ce8, 0x25ace907, 0xd0edf0ea, 0xeb5e9ca2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xc8f3d70e, 0x4199a105, 0x321955bc, 0x9407901d, 0xe191ceb3, 0xe1ac22fb, 0xf1938c5a, 0x94b36fe6), SECP256K1_FE_CONST(0x32753116, 0x7001a9ac, 0xe57b2814, 0xc1b705bf, 0xcbdf9317, 0xda5316f8, 0x2f120f14, 0x14a15f8d)}},
+ {0x44, SECP256K1_FE_CONST(0xe0294c8b, 0xc1a36b41, 0x66ee92bf, 0xa70a5c34, 0x976fa982, 0x9405efea, 0x8f9cd54d, 0xcb29b99e), SECP256K1_FE_CONST(0xae9690d1, 0x3b8d20a0, 0xfbbf37be, 0xd8474f67, 0xa04e142f, 0x56efd787, 0x70a76b35, 0x9165d8a1), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xdcd45d93, 0x5613916a, 0xf167b029, 0x058ba3a7, 0x00d37150, 0xb9df3472, 0x8cb05412, 0xc16d4182), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x232ba26c, 0xa9ec6e95, 0x0e984fd6, 0xfa745c58, 0xff2c8eaf, 0x4620cb8d, 0x734fabec, 0x3e92baad), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP256K1_FE_CONST(0xc88d25f4, 0x1407376b, 0xb2c03a7f, 0xffeb3ec7, 0x811cc434, 0x91a0c3aa, 0xc0378cdc, 0x78357bee), SECP256K1_FE_CONST(0x51c02636, 0xce00c234, 0x5ecd89ad, 0xb6089fe4, 0xd5e18ac9, 0x24e3145e, 0x6669501c, 0xd37a00d4), SECP256K1_FE_CONST(0x205b3512, 0xdb40521c, 0xb200952e, 0x67b46f67, 0xe09e7839, 0xe0de4400, 0x4138329e, 0xbd9138c5), SECP256K1_FE_CONST(0x58aab390, 0xab6fb55c, 0x1d1b8089, 0x7a207ce9, 0x4a78fa5b, 0x4aa61a33, 0x398bcae9, 0xadb20d3e), SECP256K1_FE_CONST(0x3772da0b, 0xebf8c894, 0x4d3fc580, 0x0014c138, 0x7ee33bcb, 0x6e5f3c55, 0x3fc87322, 0x87ca8041), SECP256K1_FE_CONST(0xae3fd9c9, 0x31ff3dcb, 0xa1327652, 0x49f7601b, 0x2a1e7536, 0xdb1ceba1, 0x9996afe2, 0x2c85fb5b), SECP256K1_FE_CONST(0xdfa4caed, 0x24bfade3, 0x4dff6ad1, 0x984b9098, 0x1f6187c6, 0x1f21bbff, 0xbec7cd60, 0x426ec36a), SECP256K1_FE_CONST(0xa7554c6f, 0x54904aa3, 0xe2e47f76, 0x85df8316, 0xb58705a4, 0xb559e5cc, 0xc6743515, 0x524deef1)}},
+ {0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP256K1_FE_CONST(0x67119877, 0x832ab8f4, 0x59a82165, 0x6d8261f5, 0x44a553b8, 0x9ae4f25c, 0x52a97134, 0xb70f3426), SECP256K1_FE_CONST(0xffee02f5, 0xe649c07f, 0x0560eff1, 0x867ec7b3, 0x2d0e595e, 0x9b1c0ea6, 0xe2a4fc70, 0xc97cd71f), SECP256K1_FE_CONST(0xb5e0c189, 0xeb5b4bac, 0xd025b744, 0x4d74178b, 0xe8d5246c, 0xfa4a9a20, 0x7964a057, 0xee969992), SECP256K1_FE_CONST(0x5746e459, 0x1bf7f4c3, 0x044609ea, 0x372e9086, 0x03975d27, 0x9fdef834, 0x9f0b08d3, 0x2f07619d), SECP256K1_FE_CONST(0x98ee6788, 0x7cd5470b, 0xa657de9a, 0x927d9e0a, 0xbb5aac47, 0x651b0da3, 0xad568eca, 0x48f0c809), SECP256K1_FE_CONST(0x0011fd0a, 0x19b63f80, 0xfa9f100e, 0x7981384c, 0xd2f1a6a1, 0x64e3f159, 0x1d5b038e, 0x36832510), SECP256K1_FE_CONST(0x4a1f3e76, 0x14a4b453, 0x2fda48bb, 0xb28be874, 0x172adb93, 0x05b565df, 0x869b5fa7, 0x1169629d), SECP256K1_FE_CONST(0xa8b91ba6, 0xe4080b3c, 0xfbb9f615, 0xc8d16f79, 0xfc68a2d8, 0x602107cb, 0x60f4f72b, 0xd0f89a92)}},
+ {0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP256K1_FE_CONST(0x4f867ad8, 0xbb3d8404, 0x09d26b67, 0x307e6210, 0x0153273f, 0x72fa4b74, 0x84becfa1, 0x4ebe7408), SECP256K1_FE_CONST(0x5bbc4f59, 0xe452cc5f, 0x22a99144, 0xb10ce898, 0x9a89a995, 0xec3cea1c, 0x91ae10e8, 0xf721bb5d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb0798527, 0x44c27bfb, 0xf62d9498, 0xcf819def, 0xfeacd8c0, 0x8d05b48b, 0x7b41305d, 0xb1418827), SECP256K1_FE_CONST(0xa443b0a6, 0x1bad33a0, 0xdd566ebb, 0x4ef31767, 0x6576566a, 0x13c315e3, 0x6e51ef16, 0x08de40d2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x0c00c571, 0x5b56fe63, 0x2d814ad8, 0xa77f8e66, 0x628ea47a, 0x6116834f, 0x8c1218f3, 0xa03cbd50), SECP256K1_FE_CONST(0xdf88e44f, 0xac84fa52, 0xdf4d59f4, 0x8819f18f, 0x6a8cd415, 0x1d162afa, 0xf773166f, 0x57c7ff46), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xf3ff3a8e, 0xa4a9019c, 0xd27eb527, 0x58807199, 0x9d715b85, 0x9ee97cb0, 0x73ede70b, 0x5fc33edf), SECP256K1_FE_CONST(0x20771bb0, 0x537b05ad, 0x20b2a60b, 0x77e60e70, 0x95732bea, 0xe2e9d505, 0x088ce98f, 0xa837fce9)}},
+ {0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP256K1_FE_CONST(0x6c4c580b, 0x76c75940, 0x43569f9d, 0xae16dc28, 0x01c16a1f, 0xbe128608, 0x81b75f8e, 0xf929bce5), SECP256K1_FE_CONST(0x94231355, 0xe7385c5f, 0x25ca436a, 0xa6419147, 0x1aea4393, 0xd6e86ab7, 0xa35fe2af, 0xacaefd0d), SECP256K1_FE_CONST(0xdff2a195, 0x1ada6db5, 0x74df8340, 0x48149da3, 0x397a75b8, 0x29abf58c, 0x7e69db1b, 0x41ac0989), SECP256K1_FE_CONST(0xa52b66d3, 0xc9070355, 0x48028bf8, 0x04711bf4, 0x22aba95f, 0x1a666fc8, 0x6f4648e0, 0x5f29caae), SECP256K1_FE_CONST(0x93b3a7f4, 0x8938a6bf, 0xbca96062, 0x51e923d7, 0xfe3e95e0, 0x41ed79f7, 0x7e48a070, 0x06d63f4a), SECP256K1_FE_CONST(0x6bdcecaa, 0x18c7a3a0, 0xda35bc95, 0x59be6eb8, 0xe515bc6c, 0x29179548, 0x5ca01d4f, 0x5350ff22), SECP256K1_FE_CONST(0x200d5e6a, 0xe525924a, 0x8b207cbf, 0xb7eb625c, 0xc6858a47, 0xd6540a73, 0x819624e3, 0xbe53f2a6), SECP256K1_FE_CONST(0x5ad4992c, 0x36f8fcaa, 0xb7fd7407, 0xfb8ee40b, 0xdd5456a0, 0xe5999037, 0x90b9b71e, 0xa0d63181)}},
+ {0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+};
+
+/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage.
+ * Created using an independent implementation, and tested against paper author's code. */
+static const struct ellswift_decode_test ellswift_decode_tests[] = {
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
+ {{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
+ {{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
+ {{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x74e880b3, 0xffd18fe3, 0xcddf7902, 0x522551dd, 0xf97fa4a3, 0x5a3cfda8, 0x197f9470, 0x81a57b8f), 0},
+ {{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x377b643f, 0xce2271f6, 0x4e5c8101, 0x566107c1, 0xbe498074, 0x50917838, 0x04f65478, 0x1ac9217c), 1},
+ {{0x12, 0x36, 0x58, 0x44, 0x4f, 0x32, 0xbe, 0x8f, 0x02, 0xea, 0x20, 0x34, 0xaf, 0xa7, 0xef, 0x4b, 0xbe, 0x8a, 0xdc, 0x91, 0x8c, 0xeb, 0x49, 0xb1, 0x27, 0x73, 0xb6, 0x25, 0xf4, 0x90, 0xb3, 0x68, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8d, 0xc5, 0xfe, 0x11}, SECP256K1_FE_CONST(0xed16d65c, 0xf3a9538f, 0xcb2c139f, 0x1ecbc143, 0xee148271, 0x20cbc265, 0x9e667256, 0x800b8142), 0},
+ {{0x14, 0x6f, 0x92, 0x46, 0x4d, 0x15, 0xd3, 0x6e, 0x35, 0x38, 0x2b, 0xd3, 0xca, 0x5b, 0x0f, 0x97, 0x6c, 0x95, 0xcb, 0x08, 0xac, 0xdc, 0xf2, 0xd5, 0xb3, 0x57, 0x06, 0x17, 0x99, 0x08, 0x39, 0xd7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x45, 0xe9, 0x3b}, SECP256K1_FE_CONST(0x0d5cd840, 0x427f941f, 0x65193079, 0xab8e2e83, 0x024ef2ee, 0x7ca558d8, 0x8879ffd8, 0x79fb6657), 0},
+ {{0x15, 0xfd, 0xf5, 0xcf, 0x09, 0xc9, 0x07, 0x59, 0xad, 0xd2, 0x27, 0x2d, 0x57, 0x4d, 0x2b, 0xb5, 0xfe, 0x14, 0x29, 0xf9, 0xf3, 0xc1, 0x4c, 0x65, 0xe3, 0x19, 0x4b, 0xf6, 0x1b, 0x82, 0xaa, 0x73, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0xcf, 0xd9, 0x06}, SECP256K1_FE_CONST(0x16d0e439, 0x46aec93f, 0x62d57eb8, 0xcde68951, 0xaf136cf4, 0xb307938d, 0xd1447411, 0xe07bffe1), 1},
+ {{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
+ {{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
+ {{0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x98bec3b2, 0xa351fa96, 0xcfd191c1, 0x77835193, 0x1b9e9ba9, 0xad1149f6, 0xd9eadca8, 0x0981b801), 0},
+ {{0x40, 0x56, 0xa3, 0x4a, 0x21, 0x0e, 0xec, 0x78, 0x92, 0xe8, 0x82, 0x06, 0x75, 0xc8, 0x60, 0x09, 0x9f, 0x85, 0x7b, 0x26, 0xaa, 0xd8, 0x54, 0x70, 0xee, 0x6d, 0x3c, 0xf1, 0x30, 0x4a, 0x9d, 0xcf, 0x37, 0x5e, 0x70, 0x37, 0x42, 0x71, 0xf2, 0x0b, 0x13, 0xc9, 0x98, 0x6e, 0xd7, 0xd3, 0xc1, 0x77, 0x99, 0x69, 0x8c, 0xfc, 0x43, 0x5d, 0xbe, 0xd3, 0xa9, 0xf3, 0x4b, 0x38, 0xc8, 0x23, 0xc2, 0xb4}, SECP256K1_FE_CONST(0x868aac20, 0x03b29dbc, 0xad1a3e80, 0x3855e078, 0xa89d1654, 0x3ac64392, 0xd1224172, 0x98cec76e), 0},
+ {{0x41, 0x97, 0xec, 0x37, 0x23, 0xc6, 0x54, 0xcf, 0xdd, 0x32, 0xab, 0x07, 0x55, 0x06, 0x64, 0x8b, 0x2f, 0xf5, 0x07, 0x03, 0x62, 0xd0, 0x1a, 0x4f, 0xff, 0x14, 0xb3, 0x36, 0xb7, 0x8f, 0x96, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0xab, 0x1e, 0x95}, SECP256K1_FE_CONST(0xba5a6314, 0x502a8952, 0xb8f456e0, 0x85928105, 0xf665377a, 0x8ce27726, 0xa5b0eb7e, 0xc1ac0286), 0},
+ {{0x47, 0xeb, 0x3e, 0x20, 0x8f, 0xed, 0xcd, 0xf8, 0x23, 0x4c, 0x94, 0x21, 0xe9, 0xcd, 0x9a, 0x7a, 0xe8, 0x73, 0xbf, 0xbd, 0xbc, 0x39, 0x37, 0x23, 0xd1, 0xba, 0x1e, 0x1e, 0x6a, 0x8e, 0x6b, 0x24, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xd1, 0x2c, 0xb1}, SECP256K1_FE_CONST(0xd192d520, 0x07e541c9, 0x807006ed, 0x0468df77, 0xfd214af0, 0xa795fe11, 0x9359666f, 0xdcf08f7c), 0},
+ {{0x5e, 0xb9, 0x69, 0x6a, 0x23, 0x36, 0xfe, 0x2c, 0x3c, 0x66, 0x6b, 0x02, 0xc7, 0x55, 0xdb, 0x4c, 0x0c, 0xfd, 0x62, 0x82, 0x5c, 0x7b, 0x58, 0x9a, 0x7b, 0x7b, 0xb4, 0x42, 0xe1, 0x41, 0xc1, 0xd6, 0x93, 0x41, 0x3f, 0x00, 0x52, 0xd4, 0x9e, 0x64, 0xab, 0xec, 0x6d, 0x58, 0x31, 0xd6, 0x6c, 0x43, 0x61, 0x28, 0x30, 0xa1, 0x7d, 0xf1, 0xfe, 0x43, 0x83, 0xdb, 0x89, 0x64, 0x68, 0x10, 0x02, 0x21}, SECP256K1_FE_CONST(0xef6e1da6, 0xd6c7627e, 0x80f7a723, 0x4cb08a02, 0x2c1ee1cf, 0x29e4d0f9, 0x642ae924, 0xcef9eb38), 1},
+ {{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
+ {{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
+ {{0x85, 0x1b, 0x1c, 0xa9, 0x45, 0x49, 0x37, 0x1c, 0x4f, 0x1f, 0x71, 0x87, 0x32, 0x1d, 0x39, 0xbf, 0x51, 0xc6, 0xb7, 0xfb, 0x61, 0xf7, 0xcb, 0xf0, 0x27, 0xc9, 0xda, 0x62, 0x02, 0x1b, 0x7a, 0x65, 0xfc, 0x54, 0xc9, 0x68, 0x37, 0xfb, 0x22, 0xb3, 0x62, 0xed, 0xa6, 0x3e, 0xc5, 0x2e, 0xc8, 0x3d, 0x81, 0xbe, 0xdd, 0x16, 0x0c, 0x11, 0xb2, 0x2d, 0x96, 0x5d, 0x9f, 0x4a, 0x6d, 0x64, 0xd2, 0x51}, SECP256K1_FE_CONST(0x3e731051, 0xe12d3323, 0x7eb324f2, 0xaa5b16bb, 0x868eb49a, 0x1aa1fadc, 0x19b6e876, 0x1b5a5f7b), 1},
+ {{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
+ {{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
+ {{0xa0, 0xf1, 0x84, 0x92, 0x18, 0x3e, 0x61, 0xe8, 0x06, 0x3e, 0x57, 0x36, 0x06, 0x59, 0x14, 0x21, 0xb0, 0x6b, 0xc3, 0x51, 0x36, 0x31, 0x57, 0x8a, 0x73, 0xa3, 0x9c, 0x1c, 0x33, 0x06, 0x23, 0x9f, 0x2f, 0x32, 0x90, 0x4f, 0x0d, 0x2a, 0x33, 0xec, 0xca, 0x8a, 0x54, 0x51, 0x70, 0x5b, 0xb5, 0x37, 0xd3, 0xbf, 0x44, 0xe0, 0x71, 0x22, 0x60, 0x25, 0xcd, 0xbf, 0xd2, 0x49, 0xfe, 0x0f, 0x7a, 0xd6}, SECP256K1_FE_CONST(0x97a09cf1, 0xa2eae7c4, 0x94df3c6f, 0x8a9445bf, 0xb8c09d60, 0x832f9b0b, 0x9d5eabe2, 0x5fbd14b9), 0},
+ {{0xa1, 0xed, 0x0a, 0x0b, 0xd7, 0x9d, 0x8a, 0x23, 0xcf, 0xe4, 0xec, 0x5f, 0xef, 0x5b, 0xa5, 0xcc, 0xcf, 0xd8, 0x44, 0xe4, 0xff, 0x5c, 0xb4, 0xb0, 0xf2, 0xe7, 0x16, 0x27, 0x34, 0x1f, 0x1c, 0x5b, 0x17, 0xc4, 0x99, 0x24, 0x9e, 0x0a, 0xc0, 0x8d, 0x5d, 0x11, 0xea, 0x1c, 0x2c, 0x8c, 0xa7, 0x00, 0x16, 0x16, 0x55, 0x9a, 0x79, 0x94, 0xea, 0xde, 0xc9, 0xca, 0x10, 0xfb, 0x4b, 0x85, 0x16, 0xdc}, SECP256K1_FE_CONST(0x65a89640, 0x744192cd, 0xac64b2d2, 0x1ddf989c, 0xdac75007, 0x25b645be, 0xf8e2200a, 0xe39691f2), 0},
+ {{0xba, 0x94, 0x59, 0x4a, 0x43, 0x27, 0x21, 0xaa, 0x35, 0x80, 0xb8, 0x4c, 0x16, 0x1d, 0x0d, 0x13, 0x4b, 0xc3, 0x54, 0xb6, 0x90, 0x40, 0x4d, 0x7c, 0xd4, 0xec, 0x57, 0xc1, 0x6d, 0x3f, 0xbe, 0x98, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0x50, 0x7d, 0xd7}, SECP256K1_FE_CONST(0x5e0d7656, 0x4aae92cb, 0x347e01a6, 0x2afd389a, 0x9aa401c7, 0x6c8dd227, 0x543dc9cd, 0x0efe685a), 0},
+ {{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x2d97f96c, 0xac882dfe, 0x73dc44db, 0x6ce0f1d3, 0x1d624135, 0x8dd5d74e, 0xb3d3b500, 0x03d24c2b), 0},
+ {{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x65, 0x07, 0xd0, 0x9a}, SECP256K1_FE_CONST(0xe7008afe, 0x6e8cbd50, 0x55df120b, 0xd748757c, 0x686dadb4, 0x1cce75e4, 0xaddcc5e0, 0x2ec02b44), 1},
+ {{0xc5, 0x98, 0x1b, 0xae, 0x27, 0xfd, 0x84, 0x40, 0x1c, 0x72, 0xa1, 0x55, 0xe5, 0x70, 0x7f, 0xbb, 0x81, 0x1b, 0x2b, 0x62, 0x06, 0x45, 0xd1, 0x02, 0x8e, 0xa2, 0x70, 0xcb, 0xe0, 0xee, 0x22, 0x5d, 0x4b, 0x62, 0xaa, 0x4d, 0xca, 0x65, 0x06, 0xc1, 0xac, 0xdb, 0xec, 0xc0, 0x55, 0x25, 0x69, 0xb4, 0xb2, 0x14, 0x36, 0xa5, 0x69, 0x2e, 0x25, 0xd9, 0x0d, 0x3b, 0xc2, 0xeb, 0x7c, 0xe2, 0x40, 0x78}, SECP256K1_FE_CONST(0x948b40e7, 0x181713bc, 0x018ec170, 0x2d3d054d, 0x15746c59, 0xa7020730, 0xdd13ecf9, 0x85a010d7), 0},
+ {{0xc8, 0x94, 0xce, 0x48, 0xbf, 0xec, 0x43, 0x30, 0x14, 0xb9, 0x31, 0xa6, 0xad, 0x42, 0x26, 0xd7, 0xdb, 0xd8, 0xea, 0xa7, 0xb6, 0xe3, 0xfa, 0xa8, 0xd0, 0xef, 0x94, 0x05, 0x2b, 0xcf, 0x8c, 0xff, 0x33, 0x6e, 0xeb, 0x39, 0x19, 0xe2, 0xb4, 0xef, 0xb7, 0x46, 0xc7, 0xf7, 0x1b, 0xbc, 0xa7, 0xe9, 0x38, 0x32, 0x30, 0xfb, 0xbc, 0x48, 0xff, 0xaf, 0xe7, 0x7e, 0x8b, 0xcc, 0x69, 0x54, 0x24, 0x71}, SECP256K1_FE_CONST(0xf1c91acd, 0xc2525330, 0xf9b53158, 0x434a4d43, 0xa1c547cf, 0xf29f1550, 0x6f5da4eb, 0x4fe8fa5a), 1},
+ {{0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x872d81ed, 0x8831d999, 0x8b67cb71, 0x05243edb, 0xf86c10ed, 0xfebb786c, 0x110b02d0, 0x7b2e67cd), 0},
+ {{0xd9, 0x17, 0xb7, 0x86, 0xda, 0xc3, 0x56, 0x70, 0xc3, 0x30, 0xc9, 0xc5, 0xae, 0x59, 0x71, 0xdf, 0xb4, 0x95, 0xc8, 0xae, 0x52, 0x3e, 0xd9, 0x7e, 0xe2, 0x42, 0x01, 0x17, 0xb1, 0x71, 0xf4, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x20, 0x01, 0xf6, 0xf6}, SECP256K1_FE_CONST(0xe45b71e1, 0x10b831f2, 0xbdad8651, 0x994526e5, 0x8393fde4, 0x328b1ec0, 0x4d598971, 0x42584691), 1},
+ {{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
+ {{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
+ {{0xe7, 0xee, 0x58, 0x14, 0xc1, 0x70, 0x6b, 0xf8, 0xa8, 0x93, 0x96, 0xa9, 0xb0, 0x32, 0xbc, 0x01, 0x4c, 0x2c, 0xac, 0x9c, 0x12, 0x11, 0x27, 0xdb, 0xf6, 0xc9, 0x92, 0x78, 0xf8, 0xbb, 0x53, 0xd1, 0xdf, 0xd0, 0x4d, 0xbc, 0xda, 0x8e, 0x35, 0x24, 0x66, 0xb6, 0xfc, 0xd5, 0xf2, 0xde, 0xa3, 0xe1, 0x7d, 0x5e, 0x13, 0x31, 0x15, 0x88, 0x6e, 0xda, 0x20, 0xdb, 0x8a, 0x12, 0xb5, 0x4d, 0xe7, 0x1b}, SECP256K1_FE_CONST(0xe842c6e3, 0x529b2342, 0x70a5e977, 0x44edc34a, 0x04d7ba94, 0xe44b6d25, 0x23c9cf01, 0x95730a50), 1},
+ {{0xf2, 0x92, 0xe4, 0x68, 0x25, 0xf9, 0x22, 0x5a, 0xd2, 0x3d, 0xc0, 0x57, 0xc1, 0xd9, 0x1c, 0x4f, 0x57, 0xfc, 0xb1, 0x38, 0x6f, 0x29, 0xef, 0x10, 0x48, 0x1c, 0xb1, 0xd2, 0x25, 0x18, 0x59, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x11, 0xc9, 0x89}, SECP256K1_FE_CONST(0x3cea2c53, 0xb8b01701, 0x66ac7da6, 0x7194694a, 0xdacc84d5, 0x6389225e, 0x330134da, 0xb85a4d55), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x8c, 0x59, 0x00, 0x63, 0xf6, 0x4d, 0x5a, 0x7f, 0x1c, 0x14, 0x91, 0x5c, 0xd6, 0x1e, 0xac, 0x88, 0x6a, 0xb2, 0x95, 0xbe, 0xbd, 0x91, 0x99, 0x25, 0x04, 0xcf, 0x77, 0xed, 0xb0, 0x28, 0xbd, 0xd6, 0x26, 0x7f}, SECP256K1_FE_CONST(0x3fde5713, 0xf8282eea, 0xd7d39d42, 0x01f44a7c, 0x85a5ac8a, 0x0681f35e, 0x54085c6b, 0x69543374), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2c, 0x2c, 0x57, 0x09, 0xe7, 0x15, 0x6c, 0x41, 0x77, 0x17, 0xf2, 0xfe, 0xab, 0x14, 0x71, 0x41, 0xec, 0x3d, 0xa1, 0x9f, 0xb7, 0x59, 0x57, 0x5c, 0xc6, 0xe3, 0x7b, 0x2e, 0xa5, 0xac, 0x93, 0x09, 0xf2, 0x6f, 0x0f, 0x66}, SECP256K1_FE_CONST(0xd2469ab3, 0xe04acbb2, 0x1c65a180, 0x9f39caaf, 0xe7a77c13, 0xd10f9dd3, 0x8f391c01, 0xdc499c52), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3a, 0x08, 0xcc, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x60, 0xe9, 0xf0}, SECP256K1_FE_CONST(0x38e2a5ce, 0x6a93e795, 0xe16d2c39, 0x8bc99f03, 0x69202ce2, 0x1e8f09d5, 0x6777b40f, 0xc512bccc), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3e, 0x91, 0x25, 0x7d, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x864b3dc9, 0x02c37670, 0x9c10a93a, 0xd4bbe29f, 0xce0012f3, 0xdc8672c6, 0x286bba28, 0xd7d6d6fc), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0x5d, 0x6c, 0x1c, 0x32, 0x2c, 0xad, 0xf5, 0x99, 0xdb, 0xb8, 0x64, 0x81, 0x52, 0x2b, 0x3c, 0xc5, 0x5f, 0x15, 0xa6, 0x79, 0x32, 0xdb, 0x2a, 0xfa, 0x01, 0x11, 0xd9, 0xed, 0x69, 0x81, 0xbc, 0xd1, 0x24, 0xbf, 0x44}, SECP256K1_FE_CONST(0x766dfe4a, 0x700d9bee, 0x288b903a, 0xd58870e3, 0xd4fe2f0e, 0xf780bcac, 0x5c823f32, 0x0d9a9bef), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8e, 0x42, 0x6f, 0x03, 0x92, 0x38, 0x90, 0x78, 0xc1, 0x2b, 0x1a, 0x89, 0xe9, 0x54, 0x2f, 0x05, 0x93, 0xbc, 0x96, 0xb6, 0xbf, 0xde, 0x82, 0x24, 0xf8, 0x65, 0x4e, 0xf5, 0xd5, 0xcd, 0xa9, 0x35, 0xa3, 0x58, 0x21, 0x94}, SECP256K1_FE_CONST(0xfaec7bc1, 0x987b6323, 0x3fbc5f95, 0x6edbf37d, 0x54404e74, 0x61c58ab8, 0x631bc68e, 0x451a0478), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x91, 0x19, 0x21, 0x39, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0xf0, 0xf1, 0xeb}, SECP256K1_FE_CONST(0xec29a50b, 0xae138dbf, 0x7d8e2482, 0x5006bb5f, 0xc1a2cc12, 0x43ba335b, 0xc6116fb9, 0xe498ec1f), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x98, 0xeb, 0x9a, 0xb7, 0x6e, 0x84, 0x49, 0x9c, 0x48, 0x3b, 0x3b, 0xf0, 0x62, 0x14, 0xab, 0xfe, 0x06, 0x5d, 0xdd, 0xf4, 0x3b, 0x86, 0x01, 0xde, 0x59, 0x6d, 0x63, 0xb9, 0xe4, 0x5a, 0x16, 0x6a, 0x58, 0x05, 0x41, 0xfe}, SECP256K1_FE_CONST(0x1e0ff2de, 0xe9b09b13, 0x6292a9e9, 0x10f0d6ac, 0x3e552a64, 0x4bba39e6, 0x4e9dd3e3, 0xbbd3d4d4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x8b7dd5c3, 0xedba9ee9, 0x7b70eff4, 0x38f22dca, 0x9849c825, 0x4a2f3345, 0xa0a572ff, 0xeaae0928), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x0881950c, 0x8f51d6b9, 0xa6387465, 0xd5f12609, 0xef1bb254, 0x12a08a74, 0xcb2dfb20, 0x0c74bfbf), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa2, 0xf5, 0xcd, 0x83, 0x88, 0x16, 0xc1, 0x6c, 0x4f, 0xe8, 0xa1, 0x66, 0x1d, 0x60, 0x6f, 0xdb, 0x13, 0xcf, 0x9a, 0xf0, 0x4b, 0x97, 0x9a, 0x2e, 0x15, 0x9a, 0x09, 0x40, 0x9e, 0xbc, 0x86, 0x45, 0xd5, 0x8f, 0xde, 0x02}, SECP256K1_FE_CONST(0x2f083207, 0xb9fd9b55, 0x0063c31c, 0xd62b8746, 0xbd543bdc, 0x5bbf10e3, 0xa35563e9, 0x27f440c8), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x64, 0xd1, 0x62, 0x75, 0x05, 0x46, 0xce, 0x42, 0xb0, 0x43, 0x13, 0x61, 0xe5, 0x2d, 0x4f, 0x52, 0x42, 0xd8, 0xf2, 0x4f, 0x33, 0xe6, 0xb1, 0xf9, 0x9b, 0x59, 0x16, 0x47, 0xcb, 0xc8, 0x08, 0xf4, 0x62, 0xaf, 0x51}, SECP256K1_FE_CONST(0xd41244d1, 0x1ca4f652, 0x40687759, 0xf95ca9ef, 0xbab767ed, 0xedb38fd1, 0x8c36e18c, 0xd3b6f6a9), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xe5, 0xbe, 0x52, 0x37, 0x2d, 0xd6, 0xe8, 0x94, 0xb2, 0xa3, 0x26, 0xfc, 0x36, 0x05, 0xa6, 0xe8, 0xf3, 0xc6, 0x9c, 0x71, 0x0b, 0xf2, 0x7d, 0x63, 0x0d, 0xfe, 0x20, 0x04, 0x98, 0x8b, 0x78, 0xeb, 0x6e, 0xab, 0x36}, SECP256K1_FE_CONST(0x64bf84dd, 0x5e03670f, 0xdb24c0f5, 0xd3c2c365, 0x736f51db, 0x6c92d950, 0x10716ad2, 0xd36134c8), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfb, 0xb9, 0x82, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xd6, 0xdb, 0x1f}, SECP256K1_FE_CONST(0x1c92ccdf, 0xcf4ac550, 0xc28db57c, 0xff0c8515, 0xcb26936c, 0x786584a7, 0x0114008d, 0x6c33a34b), 0},
+};
+
+/** This is a hasher for ellswift_xdh which just returns the shared X coordinate.
+ *
+ * This is generally a bad idea as it means changes to the encoding of the
+ * exchanged public keys do not affect the shared secret. However, it's used here
+ * in tests to be able to verify the X coordinate through other means.
+ */
+static int ellswift_xdh_hash_x32(unsigned char *output, const unsigned char *x32, const unsigned char *ours64, const unsigned char *theirs64, void *data) {
+ (void)ours64;
+ (void)theirs64;
+ (void)data;
+ memcpy(output, x32, 32);
+ return 1;
+}
+
+void run_ellswift_tests(void) {
+ int i = 0;
+ /* Test vectors. */
+ for (i = 0; (unsigned)i < sizeof(ellswift_xswiftec_inv_tests) / sizeof(ellswift_xswiftec_inv_tests[0]); ++i) {
+ const struct ellswift_xswiftec_inv_test* testcase = &ellswift_xswiftec_inv_tests[i];
+ int c;
+ for (c = 0; c < 8; ++c) {
+ secp256k1_fe t;
+ int ret = secp256k1_ellswift_xswiftec_inv_var(&t, &testcase->x, &testcase->u, c);
+ CHECK(ret == ((testcase->enc_bitmap >> c) & 1));
+ if (ret) {
+ secp256k1_fe x2;
+ CHECK(check_fe_equal(&t, &testcase->encs[c]));
+ secp256k1_ellswift_xswiftec_var(&x2, &testcase->u, &testcase->encs[c]);
+ CHECK(check_fe_equal(&testcase->x, &x2));
+ }
+ }
+ }
+ for (i = 0; (unsigned)i < sizeof(ellswift_decode_tests) / sizeof(ellswift_decode_tests[0]); ++i) {
+ const struct ellswift_decode_test* testcase = &ellswift_decode_tests[i];
+ secp256k1_pubkey pubkey;
+ secp256k1_ge ge;
+ int ret;
+ ret = secp256k1_ellswift_decode(ctx, &pubkey, testcase->enc);
+ CHECK(ret);
+ ret = secp256k1_pubkey_load(ctx, &ge, &pubkey);
+ CHECK(ret);
+ CHECK(check_fe_equal(&testcase->x, &ge.x));
+ CHECK(secp256k1_fe_is_odd(&ge.y) == testcase->odd_y);
+ }
+ /* Verify that secp256k1_ellswift_encode + decode roundtrips. */
+ for (i = 0; i < 1000 * count; i++) {
+ unsigned char rnd32[32];
+ unsigned char ell64[64];
+ secp256k1_ge g, g2;
+ secp256k1_pubkey pubkey, pubkey2;
+ /* Generate random public key and random randomizer. */
+ random_group_element_test(&g);
+ secp256k1_pubkey_save(&pubkey, &g);
+ secp256k1_testrand256(rnd32);
+ /* Convert the public key to ElligatorSwift and back. */
+ secp256k1_ellswift_encode(ctx, ell64, &pubkey, rnd32);
+ secp256k1_ellswift_decode(ctx, &pubkey2, ell64);
+ secp256k1_pubkey_load(ctx, &g2, &pubkey2);
+ /* Compare with original. */
+ ge_equals_ge(&g, &g2);
+ }
+ /* Verify the behavior of secp256k1_ellswift_create */
+ for (i = 0; i < 400 * count; i++) {
+ unsigned char rnd32[32], sec32[32];
+ secp256k1_scalar sec;
+ secp256k1_gej res;
+ secp256k1_ge dec;
+ secp256k1_pubkey pub;
+ unsigned char ell64[64];
+ int ret;
+ /* Generate random secret key and random randomizer. */
+ secp256k1_testrand256_test(rnd32);
+ random_scalar_order_test(&sec);
+ secp256k1_scalar_get_b32(sec32, &sec);
+ /* Construct ElligatorSwift-encoded public keys for that key. */
+ ret = secp256k1_ellswift_create(ctx, ell64, sec32, rnd32);
+ CHECK(ret);
+ /* Decode it, and compare with traditionally-computed public key. */
+ secp256k1_ellswift_decode(ctx, &pub, ell64);
+ secp256k1_pubkey_load(ctx, &dec, &pub);
+ secp256k1_ecmult(&res, NULL, &secp256k1_scalar_zero, &sec);
+ ge_equals_gej(&dec, &res);
+ }
+ /* Verify that secp256k1_ellswift_xdh computes the right shared X coordinate. */
+ for (i = 0; i < 800 * count; i++) {
+ unsigned char ell64[64], sec32[32], share32[32];
+ secp256k1_scalar sec;
+ secp256k1_ge dec, res;
+ secp256k1_fe share_x;
+ secp256k1_gej decj, resj;
+ secp256k1_pubkey pub;
+ int ret;
+ /* Generate random secret key. */
+ random_scalar_order_test(&sec);
+ secp256k1_scalar_get_b32(sec32, &sec);
+ /* Generate random ElligatorSwift encoding for the remote key and decode it. */
+ secp256k1_testrand256_test(ell64);
+ secp256k1_testrand256_test(ell64 + 32);
+ secp256k1_ellswift_decode(ctx, &pub, ell64);
+ secp256k1_pubkey_load(ctx, &dec, &pub);
+ secp256k1_gej_set_ge(&decj, &dec);
+ /* Compute the X coordinate of seckey*pubkey using ellswift_xdh. Note that we
+ * pass ell64 as claimed (but incorrect) encoding for sec32 here; this works
+ * because the "hasher" function we use here ignores the ours64 argument. */
+ ret = secp256k1_ellswift_xdh(ctx, share32, ell64, ell64, sec32, &ellswift_xdh_hash_x32, NULL);
+ CHECK(ret);
+ secp256k1_fe_set_b32(&share_x, share32);
+ /* Compute seckey*pubkey directly. */
+ secp256k1_ecmult(&resj, &decj, &sec, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ /* Compare. */
+ CHECK(check_fe_equal(&res.x, &share_x));
+ }
+ /* Verify the joint behavior of secp256k1_ellswift_xdh */
+ for (i = 0; i < 200 * count; i++) {
+ unsigned char rnd32a[32], rnd32b[32], sec32a[32], sec32b[32];
+ secp256k1_scalar seca, secb;
+ unsigned char ell64a[64], ell64b[64];
+ unsigned char share32a[32], share32b[32];
+ int ret;
+ /* Generate random secret keys and random randomizers. */
+ secp256k1_testrand256_test(rnd32a);
+ secp256k1_testrand256_test(rnd32b);
+ random_scalar_order_test(&seca);
+ random_scalar_order_test(&secb);
+ secp256k1_scalar_get_b32(sec32a, &seca);
+ secp256k1_scalar_get_b32(sec32b, &secb);
+ /* Construct ElligatorSwift-encoded public keys for those keys. */
+ ret = secp256k1_ellswift_create(ctx, ell64a, sec32a, rnd32a);
+ CHECK(ret);
+ ret = secp256k1_ellswift_create(ctx, ell64b, sec32b, rnd32b);
+ CHECK(ret);
+ /* Compute the shared secret both ways and compare with each other. */
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(ret);
+ ret = secp256k1_ellswift_xdh(ctx, share32b, ell64b, ell64a, sec32a, NULL, NULL);
+ CHECK(ret);
+ CHECK(secp256k1_memcmp_var(share32a, share32b, 32) == 0);
+ /* Verify that the shared secret doesn't match if a secret key or remote pubkey changes. */
+ secp256k1_testrand_flip(ell64a, 64);
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(ret);
+ CHECK(secp256k1_memcmp_var(share32a, share32b, 32) != 0);
+ secp256k1_testrand_flip(sec32a, 32);
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(!ret || secp256k1_memcmp_var(share32a, share32b, 32) != 0);
+ }
+}
+
+#endif
diff --git a/src/modules/extrakeys/tests_exhaustive_impl.h b/src/modules/extrakeys/tests_exhaustive_impl.h
index d4a2f5bdf4..5ecc90d50f 100644
--- a/src/modules/extrakeys/tests_exhaustive_impl.h
+++ b/src/modules/extrakeys/tests_exhaustive_impl.h
@@ -7,8 +7,8 @@
#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
#define SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
-#include "src/modules/extrakeys/main_impl.h"
#include "../../../include/secp256k1_extrakeys.h"
+#include "main_impl.h"
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) {
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
diff --git a/src/modules/recovery/bench_impl.h b/src/modules/recovery/bench_impl.h
index 4a9e886910..e1cf4924d3 100644
--- a/src/modules/recovery/bench_impl.h
+++ b/src/modules/recovery/bench_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_RECOVERY_BENCH_H
#define SECP256K1_MODULE_RECOVERY_BENCH_H
-#include "../include/secp256k1_recovery.h"
+#include "../../../include/secp256k1_recovery.h"
typedef struct {
secp256k1_context *ctx;
diff --git a/src/modules/recovery/tests_exhaustive_impl.h b/src/modules/recovery/tests_exhaustive_impl.h
index 590a972ed3..ed9386b6f8 100644
--- a/src/modules/recovery/tests_exhaustive_impl.h
+++ b/src/modules/recovery/tests_exhaustive_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
#define SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
-#include "src/modules/recovery/main_impl.h"
+#include "main_impl.h"
#include "../../../include/secp256k1_recovery.h"
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group) {
diff --git a/src/modules/schnorrsig/bench_impl.h b/src/modules/schnorrsig/bench_impl.h
index 41f393c84d..84a172742f 100644
--- a/src/modules/schnorrsig/bench_impl.h
+++ b/src/modules/schnorrsig/bench_impl.h
@@ -91,10 +91,12 @@ void run_schnorrsig_bench(int iters, int argc, char** argv) {
free((void *)data.msgs[i]);
free((void *)data.sigs[i]);
}
- free(data.keypairs);
- free(data.pk);
- free(data.msgs);
- free(data.sigs);
+
+ /* Casting to (void *) avoids a stupid warning in MSVC. */
+ free((void *)data.keypairs);
+ free((void *)data.pk);
+ free((void *)data.msgs);
+ free((void *)data.sigs);
secp256k1_context_destroy(data.ctx);
}
diff --git a/src/modules/schnorrsig/tests_exhaustive_impl.h b/src/modules/schnorrsig/tests_exhaustive_impl.h
index d8df9dd2df..55f9028a63 100644
--- a/src/modules/schnorrsig/tests_exhaustive_impl.h
+++ b/src/modules/schnorrsig/tests_exhaustive_impl.h
@@ -8,7 +8,7 @@
#define SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H
#include "../../../include/secp256k1_schnorrsig.h"
-#include "src/modules/schnorrsig/main_impl.h"
+#include "main_impl.h"
static const unsigned char invalid_pubkey_bytes[][32] = {
/* 0 */
diff --git a/src/scratch_impl.h b/src/scratch_impl.h
index 688e18eb66..f71a20b963 100644
--- a/src/scratch_impl.h
+++ b/src/scratch_impl.h
@@ -25,11 +25,11 @@ static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* err
static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback, secp256k1_scratch* scratch) {
if (scratch != NULL) {
- VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
secp256k1_callback_call(error_callback, "invalid scratch space");
return;
}
+ VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */
memset(scratch->magic, 0, sizeof(scratch->magic));
free(scratch);
}
diff --git a/src/secp256k1.c b/src/secp256k1.c
index 8f34c35283..df9bd1e5d7 100644
--- a/src/secp256k1.c
+++ b/src/secp256k1.c
@@ -4,6 +4,17 @@
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
+/* This is a C project. It should not be compiled with a C++ compiler,
+ * and we error out if we detect one.
+ *
+ * We still want to be able to test the project with a C++ compiler
+ * because it is still good to know if this will lead to real trouble, so
+ * there is a possibility to override the check. But be warned that
+ * compiling with a C++ compiler is not supported. */
+#if defined(__cplusplus) && !defined(SECP256K1_CPLUSPLUS_TEST_OVERRIDE)
+#error Trying to compile a C project with a C++ compiler.
+#endif
+
#define SECP256K1_BUILD
#include "../include/secp256k1.h"
@@ -765,3 +776,7 @@ int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32,
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/main_impl.h"
#endif
+
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/main_impl.h"
+#endif
diff --git a/src/tests.c b/src/tests.c
index dd53173930..c3c1c9ecd4 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -942,12 +942,32 @@ void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod
uint16_to_signed30(&x, in);
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0;
uint16_to_signed30(&m.modulus, mod);
- mutate_sign_signed30(&m.modulus);
/* compute 1/modulus mod 2^30 */
m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff;
CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1);
+ /* Test secp256k1_jacobi32_maybe_var. */
+ {
+ int jac;
+ uint16_t sqr[16], negone[16];
+ mulmod256(sqr, in, in, mod);
+ uint16_to_signed30(&x, sqr);
+ /* Compute jacobi symbol of in^2, which must be 0 or 1 (or uncomputable). */
+ jac = secp256k1_jacobi32_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == nonzero);
+ /* Then compute the jacobi symbol of -(in^2). x and -x have opposite
+ * jacobi symbols if and only if (mod % 4) == 3. */
+ negone[0] = mod[0] - 1;
+ for (i = 1; i < 16; ++i) negone[i] = mod[i];
+ mulmod256(sqr, sqr, negone, mod);
+ uint16_to_signed30(&x, sqr);
+ jac = secp256k1_jacobi32_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == (1 - (mod[0] & 2)) * nonzero);
+ }
+
+ uint16_to_signed30(&x, in);
+ mutate_sign_signed30(&m.modulus);
for (vartime = 0; vartime < 2; ++vartime) {
/* compute inverse */
(vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m);
@@ -1015,12 +1035,32 @@ void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod
uint16_to_signed62(&x, in);
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0;
uint16_to_signed62(&m.modulus, mod);
- mutate_sign_signed62(&m.modulus);
/* compute 1/modulus mod 2^62 */
m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62;
CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1);
+ /* Test secp256k1_jacobi64_maybe_var. */
+ {
+ int jac;
+ uint16_t sqr[16], negone[16];
+ mulmod256(sqr, in, in, mod);
+ uint16_to_signed62(&x, sqr);
+ /* Compute jacobi symbol of in^2, which must be 0 or 1 (or uncomputable). */
+ jac = secp256k1_jacobi64_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == nonzero);
+ /* Then compute the jacobi symbol of -(in^2). x and -x have opposite
+ * jacobi symbols if and only if (mod % 4) == 3. */
+ negone[0] = mod[0] - 1;
+ for (i = 1; i < 16; ++i) negone[i] = mod[i];
+ mulmod256(sqr, sqr, negone, mod);
+ uint16_to_signed62(&x, sqr);
+ jac = secp256k1_jacobi64_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == (1 - (mod[0] & 2)) * nonzero);
+ }
+
+ uint16_to_signed62(&x, in);
+ mutate_sign_signed62(&m.modulus);
for (vartime = 0; vartime < 2; ++vartime) {
/* compute inverse */
(vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m);
@@ -2854,8 +2894,10 @@ void run_sqrt(void) {
for (j = 0; j < count; j++) {
random_fe(&x);
secp256k1_fe_sqr(&s, &x);
+ CHECK(secp256k1_fe_jacobi_var(&s) == 1);
test_sqrt(&s, &x);
secp256k1_fe_negate(&t, &s, 1);
+ CHECK(secp256k1_fe_jacobi_var(&t) == -1);
test_sqrt(&t, NULL);
secp256k1_fe_mul(&t, &s, &ns);
test_sqrt(&t, NULL);
@@ -3236,7 +3278,7 @@ void test_ge(void) {
*/
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
- secp256k1_fe zf;
+ secp256k1_fe zf, r;
secp256k1_fe zfi2, zfi3;
secp256k1_gej_set_infinity(&gej[0]);
@@ -3278,6 +3320,11 @@ void test_ge(void) {
secp256k1_fe_sqr(&zfi2, &zfi3);
secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
+ /* Generate random r */
+ do {
+ random_field_element_test(&r);
+ } while(secp256k1_fe_is_zero(&r));
+
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
int i2;
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
@@ -3390,6 +3437,29 @@ void test_ge(void) {
free(ge_set_all);
}
+ /* Test all elements have X coordinates on the curve. */
+ for (i = 1; i < 4 * runs + 1; i++) {
+ secp256k1_fe n;
+ CHECK(secp256k1_ge_x_on_curve_var(&ge[i].x));
+ /* And the same holds after random rescaling. */
+ secp256k1_fe_mul(&n, &zf, &ge[i].x);
+ CHECK(secp256k1_ge_x_frac_on_curve_var(&n, &zf));
+ }
+
+ /* Test correspondence secp256k1_ge_x{,_frac}_on_curve_var with ge_set_xo. */
+ {
+ secp256k1_fe n;
+ secp256k1_ge q;
+ int ret_on_curve, ret_frac_on_curve, ret_set_xo;
+ secp256k1_fe_mul(&n, &zf, &r);
+ ret_on_curve = secp256k1_ge_x_on_curve_var(&r);
+ ret_frac_on_curve = secp256k1_ge_x_frac_on_curve_var(&n, &zf);
+ ret_set_xo = secp256k1_ge_set_xo_var(&q, &r, 0);
+ CHECK(ret_on_curve == ret_frac_on_curve);
+ CHECK(ret_on_curve == ret_set_xo);
+ if (ret_set_xo) CHECK(secp256k1_fe_equal_var(&r, &q.x));
+ }
+
/* Test batch gej -> ge conversion with many infinities. */
for (i = 0; i < 4 * runs + 1; i++) {
int odd;
@@ -3986,6 +4056,68 @@ void ecmult_const_mult_zero_one(void) {
ge_equals_ge(&res2, &point);
}
+void ecmult_const_mult_xonly(void) {
+ int i;
+
+ /* Test correspondence between secp256k1_ecmult_const and secp256k1_ecmult_const_xonly. */
+ for (i = 0; i < 2*count; ++i) {
+ secp256k1_ge base;
+ secp256k1_gej basej, resj;
+ secp256k1_fe n, d, resx, v;
+ secp256k1_scalar q;
+ int res;
+ /* Random base point. */
+ random_group_element_test(&base);
+ /* Random scalar to multiply it with. */
+ random_scalar_order_test(&q);
+ /* If i is odd, n=d*base.x for random non-zero d */
+ if (i & 1) {
+ do {
+ random_field_element_test(&d);
+ } while (secp256k1_fe_normalizes_to_zero_var(&d));
+ secp256k1_fe_mul(&n, &base.x, &d);
+ } else {
+ n = base.x;
+ }
+ /* Perform x-only multiplication. */
+ res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, 256, i & 2);
+ CHECK(res);
+ /* Perform normal multiplication. */
+ secp256k1_gej_set_ge(&basej, &base);
+ secp256k1_ecmult(&resj, &basej, &q, NULL);
+ /* Check that resj's X coordinate corresponds with resx. */
+ secp256k1_fe_sqr(&v, &resj.z);
+ secp256k1_fe_mul(&v, &v, &resx);
+ CHECK(check_fe_equal(&v, &resj.x));
+ }
+
+ /* Test that secp256k1_ecmult_const_xonly correctly rejects X coordinates not on curve. */
+ for (i = 0; i < 2*count; ++i) {
+ secp256k1_fe x, n, d, c, r;
+ int res;
+ secp256k1_scalar q;
+ random_scalar_order_test(&q);
+ /* Generate random X coordinate not on the curve. */
+ do {
+ random_field_element_test(&x);
+ secp256k1_fe_sqr(&c, &x);
+ secp256k1_fe_mul(&c, &c, &x);
+ secp256k1_fe_add(&c, &secp256k1_fe_const_b);
+ } while (secp256k1_fe_jacobi_var(&c) >= 0);
+ /* If i is odd, n=d*x for random non-zero d. */
+ if (i & 1) {
+ do {
+ random_field_element_test(&d);
+ } while (secp256k1_fe_normalizes_to_zero_var(&d));
+ secp256k1_fe_mul(&n, &x, &d);
+ } else {
+ n = x;
+ }
+ res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 256, 0);
+ CHECK(res == 0);
+ }
+}
+
void ecmult_const_chain_multiply(void) {
/* Check known result (randomly generated test problem from sage) */
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
@@ -4017,6 +4149,7 @@ void run_ecmult_const_tests(void) {
ecmult_const_random_mult();
ecmult_const_commutativity();
ecmult_const_chain_multiply();
+ ecmult_const_mult_xonly();
}
typedef struct {
@@ -6872,6 +7005,10 @@ void run_ecdsa_edge_cases(void) {
# include "modules/schnorrsig/tests_impl.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/tests_impl.h"
+#endif
+
void run_secp256k1_memczero_test(void) {
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
unsigned char buf2[sizeof(buf1)];
@@ -7086,11 +7223,15 @@ int main(int argc, char **argv) {
run_context_tests(0);
run_context_tests(1);
run_scratch_tests();
+
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
- if (secp256k1_testrand_bits(1)) {
+ /* Randomize the context only with probability 15/16
+ to make sure we test without context randomization from time to time.
+ TODO Reconsider this when recalibrating the tests. */
+ if (secp256k1_testrand_bits(4)) {
unsigned char rand32[32];
secp256k1_testrand256(rand32);
- CHECK(secp256k1_context_randomize(ctx, secp256k1_testrand_bits(1) ? rand32 : NULL));
+ CHECK(secp256k1_context_randomize(ctx, rand32));
}
run_rand_bits();
@@ -7172,6 +7313,10 @@ int main(int argc, char **argv) {
run_schnorrsig_tests();
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ run_ellswift_tests();
+#endif
+
/* util tests */
run_secp256k1_memczero_test();
run_secp256k1_byteorder_tests();
diff --git a/src/tests_exhaustive.c b/src/tests_exhaustive.c
index 6a4e2340f2..225bbddffc 100644
--- a/src/tests_exhaustive.c
+++ b/src/tests_exhaustive.c
@@ -342,15 +342,15 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou
}
#ifdef ENABLE_MODULE_RECOVERY
-#include "src/modules/recovery/tests_exhaustive_impl.h"
+#include "modules/recovery/tests_exhaustive_impl.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
-#include "src/modules/extrakeys/tests_exhaustive_impl.h"
+#include "modules/extrakeys/tests_exhaustive_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
-#include "src/modules/schnorrsig/tests_exhaustive_impl.h"
+#include "modules/schnorrsig/tests_exhaustive_impl.h"
#endif
int main(int argc, char** argv) {
diff --git a/src/util.h b/src/util.h
index dac86bd77f..0921e34f16 100644
--- a/src/util.h
+++ b/src/util.h
@@ -16,6 +16,11 @@
#include
#include
+#define STR_(x) #x
+#define STR(x) STR_(x)
+#define DEBUG_CONFIG_MSG(x) "DEBUG_CONFIG: " x
+#define DEBUG_CONFIG_DEF(x) DEBUG_CONFIG_MSG(#x "=" STR(x))
+
typedef struct {
void (*fn)(const char *text, void* data);
const void* data;
diff --git a/src/valgrind_ctime_test.c b/src/valgrind_ctime_test.c
index 6ff0085d34..b9e7937a1c 100644
--- a/src/valgrind_ctime_test.c
+++ b/src/valgrind_ctime_test.c
@@ -27,6 +27,10 @@
#include "../include/secp256k1_schnorrsig.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+#include "../include/secp256k1_ellswift.h"
+#endif
+
void run_tests(secp256k1_context *ctx, unsigned char *key);
int main(void) {
@@ -79,6 +83,9 @@ void run_tests(secp256k1_context *ctx, unsigned char *key) {
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ unsigned char ellswift[64];
+#endif
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
@@ -170,4 +177,22 @@ void run_tests(secp256k1_context *ctx, unsigned char *key) {
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
+
+#ifdef ENABLE_MODULE_ELLSWIFT
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_ellswift_create(ctx, ellswift, key, key);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
+ ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, NULL, NULL);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+#endif
}