From 244eb87643279f7df9479a1ea68b607ff6397739 Mon Sep 17 00:00:00 2001
From: dhruv <856960+dhruv@users.noreply.github.com>
Date: Wed, 7 Dec 2022 10:31:29 -0800
Subject: [PATCH] Squashed 'src/secp256k1/' changes from 44c2452fd3..fad8b11539
fad8b11539 Add ellswift testing to CI
ea2da437fb Add ElligatorSwift ctime tests
dd5b2884dd Add tests for ElligatorSwift
a6379f4091 Add ElligatorSwift benchmarks
bc604c165d Add ellswift module implementing ElligatorSwift
f616ed2cc2 Add functions to test if X coordinate is valid
c4c1ba575c Add benchmark for key generation
96f32b18e4 Add x-only ecmult_const version for x=n/d
cd142afa59 doc: Describe Jacobi calculation in safegcd_implementation.md
ca417ae597 Native jacobi symbol algorithm
c2ee9175e9 Merge bitcoin-core/secp256k1#1146: ci: prevent "-v/--version: not found" irrelevant error
e13fae487e Merge bitcoin-core/secp256k1#1150: ci: always cat test_env.log
5c9f1a5c37 ci: always cat all logs_snippets
49ae843592 ci: mostly prevent "-v/--version: not found" irrelevant error
a43e982bca Merge bitcoin-core/secp256k1#1144: Cleanup `.gitignore` file
f5039cb66c Cleanup `.gitignore` file
798727ae1e Revert "Add test logs to gitignore"
694ce8fb2d Merge bitcoin-core/secp256k1#1131: readme: Misc improvements
88b00897e7 readme: Fix line break
78f5296da4 readme: Sell "no runtime dependencies"
ef48f088ad readme: Add IRC channel
9f8a13dc8e Merge bitcoin-core/secp256k1#1128: configure: Remove pkgconfig macros again (reintroduced by mismerge)
cabe085bb4 configure: Remove pkgconfig macros again (reintroduced by mismerge)
3efeb9da21 Merge bitcoin-core/secp256k1#1121: config: Set preprocessor defaults for ECMULT_* config values
6a873cc4a9 Merge bitcoin-core/secp256k1#1122: tests: Randomize the context with probability 15/16 instead of 1/4
17065f48ae tests: Randomize the context with probability 15/16 instead of 1/4
c27ae45144 config: Remove basic-config.h
da6514a04a config: Introduce DEBUG_CONFIG macro for debug output of config
63a3565e97 Merge bitcoin-core/secp256k1#1120: ecmult_gen: Skip RNG when creating blinding if no seed is available
d0cf55e13a config: Set preprocessor defaults for ECMULT_* config values
55f8bc99dc ecmult_gen: Improve comments about projective blinding
7a86955800 ecmult_gen: Simplify code (no observable change)
4cc0b1b669 ecmult_gen: Skip RNG when creating blinding if no seed is available
af65d30cc8 Merge bitcoin-core/secp256k1#1116: build: Fix #include "..." paths to get rid of further -I arguments
40a3473a9d build: Fix #include "..." paths to get rid of further -I arguments
43756da819 Merge bitcoin-core/secp256k1#1115: Fix sepc256k1 -> secp256k1 typo in group.h
069aba8125 Fix sepc256k1 -> secp256k1 typo in group.h
accadc94df Merge bitcoin-core/secp256k1#1114: `_scratch_destroy`: move `VERIFY_CHECK` after invalid scrach space check
cd47033335 Merge bitcoin-core/secp256k1#1084: ci: Add MSVC builds
1827c9bf2b scratch_destroy: move VERIFY_CHECK after invalid scrach space check
49e2acd927 configure: Improve rationale for WERROR_CFLAGS
8dc4b03341 ci: Add a C++ job that compiles the public headers without -fpermissive
51f296a46c ci: Run persistent wineserver to speed up wine
3fb3269c22 ci: Add 32-bit MinGW64 build
9efc2e5221 ci: Add MSVC builds
2be6ba0fed configure: Convince autotools to work with MSVC's archiver lib.exe
bd81f4140a schnorrsig bench: Suppress a stupid warning in MSVC
09f3d71c51 configure: Add a few CFLAGS for MSVC
3b4f3d0d46 build: Reject C++ compilers in the preprocessor
1cc0941414 configure: Don't abort if the compiler does not define __STDC__
cca8cbbac8 configure: Output message when checking for valgrind
1a6be5745f bench: Make benchmarks compile on MSVC
git-subtree-dir: src/secp256k1
git-subtree-split: fad8b11539e8bc22d2d941f5e2a2194b06be6157
---
.cirrus.yml | 80 ++-
.gitignore | 3 -
Makefile.am | 9 +-
README.md | 8 +-
build-aux/m4/bitcoin_secp.m4 | 2 +
ci/cirrus.sh | 25 +-
ci/linux-debian.Dockerfile | 31 +-
configure.ac | 69 ++-
doc/safegcd_implementation.md | 31 +-
include/secp256k1_ellswift.h | 170 +++++++
src/basic-config.h | 17 -
src/bench.c | 30 +-
src/bench.h | 18 +-
src/bench_internal.c | 12 +
src/ecmult.h | 11 +
src/ecmult_const.h | 19 +
src/ecmult_const_impl.h | 54 ++
src/ecmult_gen.h | 12 +
src/ecmult_gen_impl.h | 17 +-
src/field.h | 3 +
src/field_10x26_impl.h | 28 ++
src/field_5x52_impl.h | 28 ++
src/group.h | 8 +-
src/group_impl.h | 29 ++
src/modinv32.h | 4 +
src/modinv32_impl.h | 176 ++++++-
src/modinv64.h | 4 +
src/modinv64_impl.h | 157 +++++-
src/modules/ecdh/bench_impl.h | 2 +-
src/modules/ellswift/Makefile.am.include | 4 +
src/modules/ellswift/bench_impl.h | 100 ++++
src/modules/ellswift/main_impl.h | 462 ++++++++++++++++++
src/modules/ellswift/tests_impl.h | 292 +++++++++++
src/modules/extrakeys/tests_exhaustive_impl.h | 2 +-
src/modules/recovery/bench_impl.h | 2 +-
src/modules/recovery/tests_exhaustive_impl.h | 2 +-
src/modules/schnorrsig/bench_impl.h | 10 +-
.../schnorrsig/tests_exhaustive_impl.h | 2 +-
src/scratch_impl.h | 2 +-
src/secp256k1.c | 15 +
src/tests.c | 155 +++++-
src/tests_exhaustive.c | 6 +-
src/util.h | 5 +
src/valgrind_ctime_test.c | 25 +
44 files changed, 2022 insertions(+), 119 deletions(-)
create mode 100644 include/secp256k1_ellswift.h
delete mode 100644 src/basic-config.h
create mode 100644 src/modules/ellswift/Makefile.am.include
create mode 100644 src/modules/ellswift/bench_impl.h
create mode 100644 src/modules/ellswift/main_impl.h
create mode 100644 src/modules/ellswift/tests_impl.h
diff --git a/.cirrus.yml b/.cirrus.yml
index a2e7f36d1f..629f758e66 100644
--- a/.cirrus.yml
+++ b/.cirrus.yml
@@ -18,6 +18,7 @@ env:
ECDH: no
RECOVERY: no
SCHNORRSIG: no
+ ELLSWIFT: no
### test options
SECP256K1_TEST_ITERS:
BENCH: yes
@@ -36,7 +37,6 @@ cat_logs_snippet: &CAT_LOGS
- cat valgrind_ctime_test.log || true
cat_bench_log_script:
- cat bench.log || true
- on_failure:
cat_config_log_script:
- cat config.log || true
cat_test_env_script:
@@ -67,11 +67,11 @@ task:
<< : *LINUX_CONTAINER
matrix: &ENV_MATRIX
- env: {WIDEMUL: int64, RECOVERY: yes}
- - env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes}
+ - env: {WIDEMUL: int64, ECDH: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
- env: {WIDEMUL: int128}
- - env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes}
+ - env: {WIDEMUL: int128, RECOVERY: yes, SCHNORRSIG: yes, ELLSWIFT: yes}
- env: {WIDEMUL: int128, ECDH: yes, SCHNORRSIG: yes}
- - env: {WIDEMUL: int128, ASM: x86_64}
+ - env: {WIDEMUL: int128, ASM: x86_64 , ELLSWIFT: yes}
- env: { RECOVERY: yes, SCHNORRSIG: yes}
- env: {BUILD: distcheck, WITH_VALGRIND: no, CTIMETEST: no, BENCH: no}
- env: {CPPFLAGS: -DDETERMINISTIC}
@@ -178,6 +178,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -197,6 +198,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
matrix:
- env: {}
@@ -217,6 +219,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -234,6 +237,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
<< : *MERGE_BASE
test_script:
@@ -241,17 +245,58 @@ task:
<< : *CAT_LOGS
task:
- name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
<< : *LINUX_CONTAINER
env:
- WRAPPER_CMD: wine64-stable
- SECP256K1_TEST_ITERS: 16
- HOST: x86_64-w64-mingw32
+ WRAPPER_CMD: wine
+ WITH_VALGRIND: no
+ ECDH: yes
+ RECOVERY: yes
+ SCHNORRSIG: yes
+ CTIMETEST: no
+ matrix:
+ - name: "x86_64 (mingw32-w64): Windows (Debian stable, Wine)"
+ env:
+ HOST: x86_64-w64-mingw32
+ - name: "i686 (mingw32-w64): Windows (Debian stable, Wine)"
+ env:
+ HOST: i686-w64-mingw32
+ << : *MERGE_BASE
+ test_script:
+ - ./ci/cirrus.sh
+ << : *CAT_LOGS
+
+task:
+ << : *LINUX_CONTAINER
+ env:
+ WRAPPER_CMD: wine
+ WERROR_CFLAGS: -WX
WITH_VALGRIND: no
ECDH: yes
RECOVERY: yes
+ EXPERIMENTAL: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
+ # Set non-essential options that affect the CLI messages here.
+ # (They depend on the user's taste, so we don't want to set them automatically in configure.ac.)
+ CFLAGS: -nologo -diagnostics:caret
+ LDFLAGS: -XCClinker -nologo -XCClinker -diagnostics:caret
+ # Use a MinGW-w64 host to tell ./configure we're building for Windows.
+ # This will detect some MinGW-w64 tools but then make will need only
+ # the MSVC tools CC, AR and NM as specified below.
+ matrix:
+ - name: "x86_64 (MSVC): Windows (Debian stable, Wine)"
+ env:
+ HOST: x86_64-w64-mingw32
+ CC: /opt/msvc/bin/x64/cl
+ AR: /opt/msvc/bin/x64/lib
+ NM: /opt/msvc/bin/x64/dumpbin -symbols -headers
+ - name: "i686 (MSVC): Windows (Debian stable, Wine)"
+ env:
+ HOST: i686-w64-mingw32
+ CC: /opt/msvc/bin/x86/cl
+ AR: /opt/msvc/bin/x86/lib
+ NM: /opt/msvc/bin/x86/dumpbin -symbols -headers
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
@@ -264,6 +309,7 @@ task:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
CTIMETEST: no
matrix:
- name: "Valgrind (memcheck)"
@@ -302,22 +348,30 @@ task:
<< : *CAT_LOGS
task:
- name: "C++ -fpermissive"
+ name: "C++ -fpermissive (entire project)"
<< : *LINUX_CONTAINER
env:
- # ./configure correctly errors out when given CC=g++.
- # We hack around this by passing CC=g++ only to make.
- CC: gcc
- MAKEFLAGS: -j4 CC=g++ CFLAGS=-fpermissive\ -g
+ CC: g++
+ CFLAGS: -fpermissive -g
+ CPPFLAGS: -DSECP256K1_CPLUSPLUS_TEST_OVERRIDE
WERROR_CFLAGS:
ECDH: yes
RECOVERY: yes
SCHNORRSIG: yes
+ ELLSWIFT: yes
<< : *MERGE_BASE
test_script:
- ./ci/cirrus.sh
<< : *CAT_LOGS
+task:
+ name: "C++ (public headers)"
+ << : *LINUX_CONTAINER
+ test_script:
+ - g++ -Werror include/*.h
+ - clang -Werror -x c++-header include/*.h
+ - /opt/msvc/bin/x64/cl.exe -c -WX -TP include/*.h
+
task:
name: "sage prover"
<< : *LINUX_CONTAINER
diff --git a/.gitignore b/.gitignore
index d88627d72e..02265283a0 100644
--- a/.gitignore
+++ b/.gitignore
@@ -13,7 +13,6 @@ schnorr_example
*.so
*.a
*.csv
-!.gitignore
*.log
*.trs
@@ -34,8 +33,6 @@ libtool
*.lo
*.o
*~
-*.log
-*.trs
coverage/
coverage.html
diff --git a/Makefile.am b/Makefile.am
index 51c5960301..145baee617 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -58,7 +58,6 @@ noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
-noinst_HEADERS += src/basic-config.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
@@ -87,7 +86,7 @@ endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
-libsecp256k1_la_CPPFLAGS = -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
+libsecp256k1_la_CPPFLAGS = $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(SECP_LIBS) $(COMMON_LIB) $(PRECOMPUTED_LIB)
libsecp256k1_la_LDFLAGS = -no-undefined -version-info $(LIB_VERSION_CURRENT):$(LIB_VERSION_REVISION):$(LIB_VERSION_AGE)
@@ -112,7 +111,7 @@ TESTS =
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
-tests_CPPFLAGS = -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
+tests_CPPFLAGS = $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
if VALGRIND_ENABLED
tests_CPPFLAGS += -DVALGRIND
noinst_PROGRAMS += valgrind_ctime_test
@@ -228,3 +227,7 @@ endif
if ENABLE_MODULE_SCHNORRSIG
include src/modules/schnorrsig/Makefile.am.include
endif
+
+if ENABLE_MODULE_ELLSWIFT
+include src/modules/ellswift/Makefile.am.include
+endif
diff --git a/README.md b/README.md
index f5db915e83..ffdc9aeaee 100644
--- a/README.md
+++ b/README.md
@@ -2,6 +2,8 @@ libsecp256k1
============
[![Build Status](https://api.cirrus-ci.com/github/bitcoin-core/secp256k1.svg?branch=master)](https://cirrus-ci.com/github/bitcoin-core/secp256k1)
+![Dependencies: None](https://img.shields.io/badge/dependencies-none-success)
+[![irc.libera.chat #secp256k1](https://img.shields.io/badge/irc.libera.chat-%23secp256k1-success)](https://web.libera.chat/#secp256k1)
Optimized C library for ECDSA signatures and secret/public key operations on curve secp256k1.
@@ -15,6 +17,7 @@ Features:
* Derandomized ECDSA (via RFC6979 or with a caller provided function.)
* Very efficient implementation.
* Suitable for embedded systems.
+* No runtime dependencies.
* Optional module for public key recovery.
* Optional module for ECDH key exchange.
* Optional module for Schnorr signatures according to [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki).
@@ -72,11 +75,12 @@ To compile optional modules (such as Schnorr signatures), you need to run `./con
Usage examples
-----------
- Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
+Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
* [ECDSA example](examples/ecdsa.c)
* [Schnorr signatures example](examples/schnorr.c)
* [Deriving a shared secret (ECDH) example](examples/ecdh.c)
- To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
+
+To compile the Schnorr signature and ECDH examples, you also need to configure with `--enable-module-schnorrsig` and `--enable-module-ecdh`.
Test coverage
-----------
diff --git a/build-aux/m4/bitcoin_secp.m4 b/build-aux/m4/bitcoin_secp.m4
index 9cb54de098..98be915b67 100644
--- a/build-aux/m4/bitcoin_secp.m4
+++ b/build-aux/m4/bitcoin_secp.m4
@@ -10,6 +10,7 @@ AC_MSG_RESULT([$has_64bit_asm])
])
AC_DEFUN([SECP_VALGRIND_CHECK],[
+AC_MSG_CHECKING([for valgrind support])
if test x"$has_valgrind" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$VALGRIND_CPPFLAGS $CPPFLAGS"
@@ -21,6 +22,7 @@ if test x"$has_valgrind" != x"yes"; then
#endif
]])], [has_valgrind=yes; AC_DEFINE(HAVE_VALGRIND,1,[Define this symbol if valgrind is installed, and it supports the host platform])])
fi
+AC_MSG_RESULT($has_valgrind)
])
dnl SECP_TRY_APPEND_CFLAGS(flags, VAR)
diff --git a/ci/cirrus.sh b/ci/cirrus.sh
index b85f012d3f..02ddc8c5bf 100755
--- a/ci/cirrus.sh
+++ b/ci/cirrus.sh
@@ -5,10 +5,27 @@ set -x
export LC_ALL=C
+# Start persistent wineserver if necessary.
+# This speeds up jobs with many invocations of wine (e.g., ./configure with MSVC) tremendously.
+case "$WRAPPER_CMD" in
+ *wine*)
+ # This is apparently only reliable when we run a dummy command such as "hh.exe" afterwards.
+ wineserver -p && wine hh.exe
+ ;;
+esac
+
env >> test_env.log
-$CC -v || true
-valgrind --version || true
+if [ -n "$CC" ]; then
+ # The MSVC compiler "cl" doesn't understand "-v"
+ $CC -v || true
+fi
+if [ "$WITH_VALGRIND" = "yes" ]; then
+ valgrind --version
+fi
+if [ -n "$WRAPPER_CMD" ]; then
+ $WRAPPER_CMD --version
+fi
./autogen.sh
@@ -18,6 +35,7 @@ valgrind --version || true
--with-ecmult-window="$ECMULTWINDOW" \
--with-ecmult-gen-precision="$ECMULTGENPRECISION" \
--enable-module-ecdh="$ECDH" --enable-module-recovery="$RECOVERY" \
+ --enable-module-ellswift="$ELLSWIFT" \
--enable-module-schnorrsig="$SCHNORRSIG" \
--enable-examples="$EXAMPLES" \
--with-valgrind="$WITH_VALGRIND" \
@@ -63,6 +81,9 @@ then
make precomp
fi
+# Shutdown wineserver again
+wineserver -k || true
+
# Check that no repo files have been modified by the build.
# (This fails for example if the precomp files need to be updated in the repo.)
git diff --exit-code
diff --git a/ci/linux-debian.Dockerfile b/ci/linux-debian.Dockerfile
index 5cccbb5565..a83a4e36db 100644
--- a/ci/linux-debian.Dockerfile
+++ b/ci/linux-debian.Dockerfile
@@ -1,15 +1,14 @@
FROM debian:stable
-RUN dpkg --add-architecture i386
-RUN dpkg --add-architecture s390x
-RUN dpkg --add-architecture armhf
-RUN dpkg --add-architecture arm64
-RUN dpkg --add-architecture ppc64el
-RUN apt-get update
+RUN dpkg --add-architecture i386 && \
+ dpkg --add-architecture s390x && \
+ dpkg --add-architecture armhf && \
+ dpkg --add-architecture arm64 && \
+ dpkg --add-architecture ppc64el
# dkpg-dev: to make pkg-config work in cross-builds
# llvm: for llvm-symbolizer, which is used by clang's UBSan for symbolized stack traces
-RUN apt-get install --no-install-recommends --no-upgrade -y \
+RUN apt-get update && apt-get install --no-install-recommends -y \
git ca-certificates \
make automake libtool pkg-config dpkg-dev valgrind qemu-user \
gcc clang llvm libc6-dbg \
@@ -19,8 +18,20 @@ RUN apt-get install --no-install-recommends --no-upgrade -y \
gcc-arm-linux-gnueabihf libc6-dev-armhf-cross libc6-dbg:armhf \
gcc-aarch64-linux-gnu libc6-dev-arm64-cross libc6-dbg:arm64 \
gcc-powerpc64le-linux-gnu libc6-dev-ppc64el-cross libc6-dbg:ppc64el \
- wine gcc-mingw-w64-x86-64 \
+ gcc-mingw-w64-x86-64-win32 wine64 wine \
+ gcc-mingw-w64-i686-win32 wine32 \
sagemath
-# Run a dummy command in wine to make it set up configuration
-RUN wine64-stable xcopy || true
+WORKDIR /root
+# The "wine" package provides a convience wrapper that we need
+RUN apt-get update && apt-get install --no-install-recommends -y \
+ git ca-certificates wine64 wine python3-simplejson python3-six msitools winbind procps && \
+ git clone https://github.com/mstorsjo/msvc-wine && \
+ mkdir /opt/msvc && \
+ python3 msvc-wine/vsdownload.py --accept-license --dest /opt/msvc Microsoft.VisualStudio.Workload.VCTools && \
+ msvc-wine/install.sh /opt/msvc
+
+# Initialize the wine environment. Wait until the wineserver process has
+# exited before closing the session, to avoid corrupting the wine prefix.
+RUN wine64 wineboot --init && \
+ while (ps -A | grep wineserver) > /dev/null; do sleep 1; done
diff --git a/configure.ac b/configure.ac
index 2db59a8ff3..cf4019e06f 100644
--- a/configure.ac
+++ b/configure.ac
@@ -33,12 +33,14 @@ AM_INIT_AUTOMAKE([1.11.2 foreign subdir-objects])
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
AC_PROG_CC
-if test x"$ac_cv_prog_cc_c89" = x"no"; then
- AC_MSG_ERROR([c89 compiler support required])
-fi
AM_PROG_AS
AM_PROG_AR
+# Clear some cache variables as a workaround for a bug that appears due to a bad
+# interaction between AM_PROG_AR and LT_INIT when combining MSVC's archiver lib.exe.
+# https://debbugs.gnu.org/cgi/bugreport.cgi?bug=54421
+AS_UNSET(ac_cv_prog_AR)
+AS_UNSET(ac_cv_prog_ac_ct_AR)
LT_INIT([win32-dll])
build_windows=no
@@ -87,23 +89,35 @@ esac
#
# TODO We should analogously not touch CPPFLAGS and LDFLAGS but currently there are no issues.
AC_DEFUN([SECP_TRY_APPEND_DEFAULT_CFLAGS], [
- # Try to append -Werror=unknown-warning-option to CFLAGS temporarily. Otherwise clang will
- # not error out if it gets unknown warning flags and the checks here will always succeed
- # no matter if clang knows the flag or not.
- SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
- SECP_TRY_APPEND_CFLAGS([-Werror=unknown-warning-option], CFLAGS)
-
- SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
- SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
- SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
- SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
- SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
- SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
- SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
- SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
- SECP_TRY_APPEND_CFLAGS([-fvisibility=hidden], $1) # GCC >= 4.0
-
- CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
+ # GCC and compatible (incl. clang)
+ if test "x$GCC" = "xyes"; then
+ # Try to append -Werror=unknown-warning-option to CFLAGS temporarily. Otherwise clang will
+ # not error out if it gets unknown warning flags and the checks here will always succeed
+ # no matter if clang knows the flag or not.
+ SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS="$CFLAGS"
+ SECP_TRY_APPEND_CFLAGS([-Werror=unknown-warning-option], CFLAGS)
+
+ SECP_TRY_APPEND_CFLAGS([-std=c89 -pedantic -Wno-long-long -Wnested-externs -Wshadow -Wstrict-prototypes -Wundef], $1) # GCC >= 3.0, -Wlong-long is implied by -pedantic.
+ SECP_TRY_APPEND_CFLAGS([-Wno-overlength-strings], $1) # GCC >= 4.2, -Woverlength-strings is implied by -pedantic.
+ SECP_TRY_APPEND_CFLAGS([-Wall], $1) # GCC >= 2.95 and probably many other compilers
+ SECP_TRY_APPEND_CFLAGS([-Wno-unused-function], $1) # GCC >= 3.0, -Wunused-function is implied by -Wall.
+ SECP_TRY_APPEND_CFLAGS([-Wextra], $1) # GCC >= 3.4, this is the newer name of -W, which we don't use because older GCCs will warn about unused functions.
+ SECP_TRY_APPEND_CFLAGS([-Wcast-align], $1) # GCC >= 2.95
+ SECP_TRY_APPEND_CFLAGS([-Wcast-align=strict], $1) # GCC >= 8.0
+ SECP_TRY_APPEND_CFLAGS([-Wconditional-uninitialized], $1) # Clang >= 3.0 only
+ SECP_TRY_APPEND_CFLAGS([-fvisibility=hidden], $1) # GCC >= 4.0
+
+ CFLAGS="$SECP_TRY_APPEND_DEFAULT_CFLAGS_saved_CFLAGS"
+ fi
+
+ # MSVC
+ # Assume MSVC if we're building for Windows but not with GCC or compatible;
+ # libtool makes the same assumption internally.
+ # Note that "/opt" and "-opt" are equivalent for MSVC; we use "-opt" because "/opt" looks like a path.
+ if test x"$GCC" != x"yes" && test x"$build_windows" = x"yes"; then
+ SECP_TRY_APPEND_CFLAGS([-W2 -wd4146], $1) # Moderate warning level, disable warning C4146 "unary minus operator applied to unsigned type, result still unsigned"
+ SECP_TRY_APPEND_CFLAGS([-external:anglebrackets -external:W0], $1) # Suppress warnings from #include <...> files
+ fi
])
SECP_TRY_APPEND_DEFAULT_CFLAGS(SECP_CFLAGS)
@@ -156,6 +170,11 @@ AC_ARG_ENABLE(module_schnorrsig,
AS_HELP_STRING([--enable-module-schnorrsig],[enable schnorrsig module [default=no]]), [],
[SECP_SET_DEFAULT([enable_module_schnorrsig], [no], [yes])])
+AC_ARG_ENABLE(module_ellswift,
+ AS_HELP_STRING([--enable-module-ellswift],[enable ElligatorSwift module (experimental)]),
+ [enable_module_ellswift=$enableval],
+ [enable_module_ellswift=no])
+
AC_ARG_ENABLE(external_default_callbacks,
AS_HELP_STRING([--enable-external-default-callbacks],[enable external default callback functions [default=no]]), [],
[SECP_SET_DEFAULT([enable_external_default_callbacks], [no], [no])])
@@ -326,7 +345,9 @@ if test x"$enable_valgrind" = x"yes"; then
SECP_INCLUDES="$SECP_INCLUDES $VALGRIND_CPPFLAGS"
fi
-# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI)
+# Add -Werror and similar flags passed from the outside (for testing, e.g., in CI).
+# We don't want to set the user variable CFLAGS in CI because this would disable
+# autoconf's logic for setting default CFLAGS, which we would like to test in CI.
SECP_CFLAGS="$SECP_CFLAGS $WERROR_CFLAGS"
###
@@ -346,6 +367,10 @@ if test x"$enable_module_schnorrsig" = x"yes"; then
enable_module_extrakeys=yes
fi
+if test x"$enable_module_ellswift" = x"yes"; then
+ AC_DEFINE(ENABLE_MODULE_ELLSWIFT, 1, [Define this symbol to enable the ElligatorSwift module])
+fi
+
# Test if extrakeys is set after the schnorrsig module to allow the schnorrsig
# module to set enable_module_extrakeys=yes
if test x"$enable_module_extrakeys" = x"yes"; then
@@ -391,6 +416,7 @@ AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_EXTRAKEYS], [test x"$enable_module_extrakeys" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORRSIG], [test x"$enable_module_schnorrsig" = x"yes"])
+AM_CONDITIONAL([ENABLE_MODULE_ELLSWIFT], [test x"$enable_module_ellswift" = x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$enable_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
AM_CONDITIONAL([BUILD_WINDOWS], [test "$build_windows" = "yes"])
@@ -411,6 +437,7 @@ echo " module ecdh = $enable_module_ecdh"
echo " module recovery = $enable_module_recovery"
echo " module extrakeys = $enable_module_extrakeys"
echo " module schnorrsig = $enable_module_schnorrsig"
+echo " module ellswift = $enable_module_ellswift"
echo
echo " asm = $set_asm"
echo " ecmult window size = $set_ecmult_window"
diff --git a/doc/safegcd_implementation.md b/doc/safegcd_implementation.md
index 063aa8efae..c1cdd0cfe1 100644
--- a/doc/safegcd_implementation.md
+++ b/doc/safegcd_implementation.md
@@ -1,7 +1,7 @@
# The safegcd implementation in libsecp256k1 explained
-This document explains the modular inverse implementation in the `src/modinv*.h` files. It is based
-on the paper
+This document explains the modular inverse and Jacobi symbol implementations in the `src/modinv*.h` files.
+It is based on the paper
["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
@@ -769,3 +769,30 @@ def modinv_var(M, Mi, x):
d, e = update_de(d, e, t, M, Mi)
return normalize(f, d, Mi)
```
+
+## 8. From GCDs to Jacobi symbol
+
+We can also use a similar approach to calculate Jacobi symbol *(x | M)* by keeping track of an extra variable *j*, for which at every step *(x | M) = j (g | f)*. As we update *f* and *g*, we make corresponding updates to *j* using [properties of the Jacobi symbol](https://en.wikipedia.org/wiki/Jacobi_symbol#Properties). In particular, we update *j* whenever we divide *g* by *2* or swap *f* and *g*; these updates depend only on the values of *f* and *g* modulo *4* or *8*, and can thus be applied very quickly. Overall, this calculation is slightly simpler than the one for modular inverse because we no longer need to keep track of *d* and *e*.
+
+However, one difficulty of this approach is that the Jacobi symbol *(a | n)* is only defined for positive odd integers *n*, whereas in the original safegcd algorithm, *f, g* can take negative values. We resolve this by using the following modified steps:
+
+```python
+ # Before
+ if delta > 0 and g & 1:
+ delta, f, g = 1 - delta, g, (g - f) // 2
+
+ # After
+ if delta > 0 and g & 1:
+ delta, f, g = 1 - delta, g, (g + f) // 2
+```
+
+The algorithm is still correct, since the changed divstep, called a "posdivstep" (see section 8.4 and E.5 in the paper) preserves *gcd(f, g)*. However, there's no proof that the modified algorithm will converge. The justification for posdivsteps is completely empirical: in practice, it appears that the vast majority of inputs converge to *f=g=gcd(f0, g0)* in a number of steps proportional to their logarithm.
+
+Note that:
+- We require inputs to satisfy *gcd(x, M) = 1*.
+- We need to update the termination condition from *g=0* to *f=1*.
+- We deal with the case where *g=0* on input specially.
+
+We account for the possibility of nonconvergence by only performing a bounded number of posdivsteps, and then falling back to square-root based Jacobi calculation if a solution has not yet been found.
+
+The optimizations in sections 3-7 above are described in the context of the original divsteps, but in the C implementation we also adapt most of them (not including "avoiding modulus operations", since it's not necessary to track *d, e*, and "constant-time operation", since we never calculate Jacobi symbols for secret data) to the posdivsteps version.
diff --git a/include/secp256k1_ellswift.h b/include/secp256k1_ellswift.h
new file mode 100644
index 0000000000..995402cf97
--- /dev/null
+++ b/include/secp256k1_ellswift.h
@@ -0,0 +1,170 @@
+#ifndef SECP256K1_ELLSWIFT_H
+#define SECP256K1_ELLSWIFT_H
+
+#include "secp256k1.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* This module provides an implementation of ElligatorSwift as well as
+ * a version of x-only ECDH using it.
+ *
+ * ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
+ * Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
+ * public keys in 64-byte objects which are indistinguishable from
+ * uniformly random.
+ *
+ * Let f be the function from pairs of field elements to point X coordinates,
+ * defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
+ * f(u,t):
+ * - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
+ * a square root of -3.
+ * - If u=0, set u=1 instead.
+ * - If t=0, set t=1 instead.
+ * - If u^3 + t^2 + 7 = 0, multiply t by 2.
+ * - Let X = (u^3 + 7 - t^2) / (2 * t)
+ * - Let Y = (X + t) / (C * u)
+ * - Return the first of [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
+ * X coordinate on the curve (at least one of them is, for any inputs u and t).
+ *
+ * Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
+ * encodings of field elements u and t concatenated, where f(u,t) = x.
+ * The encoding algorithm is described in the paper, and effectively picks a
+ * uniformly random pair (u,t) among those which encode x.
+ *
+ * If the Y coordinate is relevant, it is given the same parity as t.
+ *
+ * Changes w.r.t. the the paper:
+ * - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
+ * at infinity in the paper. Here they are remapped to finite points.
+ * - The paper uses an additional encoding bit for the parity of y. Here the
+ * parity of t is used (negating t does not affect the decoded x coordinate,
+ * so this is possible).
+ */
+
+/** A pointer to a function used for hashing the shared X coordinate along
+ * with the encoded public keys to a uniform shared secret.
+ *
+ * Returns: 1 if a shared secret was was successfully computed.
+ * 0 will cause secp256k1_ellswift_xdh to fail and return 0.
+ * Other return values are not allowed, and the behaviour of
+ * secp256k1_ellswift_xdh is undefined for other return values.
+ * Out: output: pointer to an array to be filled by the function
+ * In: x32: pointer to the 32-byte serialized X coordinate
+ * of the resulting shared point
+ * ours64: pointer to the 64-byte encoded public key we sent
+ * to the other party
+ * theirs64: pointer to the 64-byte encoded public key we received
+ * from the other party
+ * data: arbitrary data pointer that is passed through
+ */
+typedef int (*secp256k1_ellswift_xdh_hash_function)(
+ unsigned char *output,
+ const unsigned char *x32,
+ const unsigned char *ours64,
+ const unsigned char *theirs64,
+ void *data
+);
+
+/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
+ * SHA256(key1 || key2 || x32), where (key1, key2) = sorted([ours64, theirs64]), and
+ * ignores data. The sorting is lexicographic. */
+SECP256K1_API extern const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_sha256;
+
+/** A default secp256k1_ellswift_xdh_hash_function, currently secp256k1_ellswift_xdh_hash_function_sha256. */
+SECP256K1_API extern const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_default;
+
+/* Construct a 64-byte ElligatorSwift encoding of a given pubkey.
+ *
+ * Returns: 1 when pubkey is valid.
+ * Args: ctx: pointer to a context object
+ * Out: ell64: pointer to a 64-byte array to be filled
+ * In: pubkey: a pointer to a secp256k1_pubkey containing an
+ * initialized public key
+ * rnd32: pointer to 32 bytes of entropy (must be unpredictable)
+ *
+ * This function runs in variable time.
+ */
+SECP256K1_API int secp256k1_ellswift_encode(
+ const secp256k1_context* ctx,
+ unsigned char *ell64,
+ const secp256k1_pubkey *pubkey,
+ const unsigned char *rnd32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
+
+/** Decode a 64-bytes ElligatorSwift encoded public key.
+ *
+ * Returns: always 1
+ * Args: ctx: pointer to a context object
+ * Out: pubkey: pointer to a secp256k1_pubkey that will be filled
+ * In: ell64: pointer to a 64-byte array to decode
+ *
+ * This function runs in variable time.
+ */
+SECP256K1_API int secp256k1_ellswift_decode(
+ const secp256k1_context* ctx,
+ secp256k1_pubkey *pubkey,
+ const unsigned char *ell64
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Compute an ElligatorSwift public key for a secret key.
+ *
+ * Returns: 1: secret was valid, public key was stored.
+ * 0: secret was invalid, try again.
+ * Args: ctx: pointer to a context object, initialized for signing.
+ * Out: ell64: pointer to a 64-byte area to receive the ElligatorSwift public key
+ * In: seckey32: pointer to a 32-byte secret key.
+ * auxrand32: (optional) pointer to 32 bytes of additional randomness
+ *
+ * Constant time in seckey and auxrand32, but not in the resulting public key.
+ *
+ * This function can be used instead of calling secp256k1_ec_pubkey_create followed
+ * by secp256k1_ellswift_encode. It is safer, as it can use the secret key as
+ * entropy for the encoding. That means that if the secret key itself is
+ * unpredictable, no additional auxrand32 is needed to achieve indistinguishability
+ * of the encoding.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
+ const secp256k1_context* ctx,
+ unsigned char *ell64,
+ const unsigned char *seckey32,
+ const unsigned char *auxrand32
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
+/** Given a private key, and ElligatorSwift public keys sent in both directions,
+ * compute a shared secret using x-only Diffie-Hellman.
+ *
+ * Returns: 1: shared secret was succesfully computed
+ * 0: secret was invalid or hashfp returned 0
+ * Args: ctx: pointer to a context object.
+ * Out: output: pointer to an array to be filled by hashfp.
+ * In: theirs64: a pointer to the 64-byte ElligatorSwift public key received from the other party.
+ * ours64: a pointer to the 64-byte ElligatorSwift public key sent to the other party.
+ * seckey32: a pointer to the 32-byte private key corresponding to ours64.
+ * hashfp: pointer to a hash function. If NULL,
+ * secp256k1_elswift_xdh_hash_function_default is used
+ * (in which case, 32 bytes will be written to output).
+ * data: arbitrary data pointer that is passed through to hashfp
+ * (ignored for secp256k1_ellswift_xdh_hash_function_default).
+ *
+ * Constant time in seckey32.
+ *
+ * This function is more efficient than decoding the public keys, and performing ECDH on them.
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
+ const secp256k1_context* ctx,
+ unsigned char *output,
+ const unsigned char* theirs64,
+ const unsigned char* ours64,
+ const unsigned char* seckey32,
+ secp256k1_ellswift_xdh_hash_function hashfp,
+ void *data
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* SECP256K1_ELLSWIFT_H */
diff --git a/src/basic-config.h b/src/basic-config.h
deleted file mode 100644
index 6f7693cb8f..0000000000
--- a/src/basic-config.h
+++ /dev/null
@@ -1,17 +0,0 @@
-/***********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
- ***********************************************************************/
-
-#ifndef SECP256K1_BASIC_CONFIG_H
-#define SECP256K1_BASIC_CONFIG_H
-
-#ifdef USE_BASIC_CONFIG
-
-#define ECMULT_WINDOW_SIZE 15
-#define ECMULT_GEN_PREC_BITS 4
-
-#endif /* USE_BASIC_CONFIG */
-
-#endif /* SECP256K1_BASIC_CONFIG_H */
diff --git a/src/bench.c b/src/bench.c
index d5937b763f..80b0692cd5 100644
--- a/src/bench.c
+++ b/src/bench.c
@@ -121,6 +121,22 @@ static void bench_sign_run(void* arg, int iters) {
}
}
+static void bench_keygen_run(void* arg, int iters) {
+ int i;
+ bench_sign_data *data = (bench_sign_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ unsigned char pub33[33];
+ size_t len = 33;
+ secp256k1_pubkey pubkey;
+ CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->key));
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pub33, &len, &pubkey, SECP256K1_EC_COMPRESSED));
+ memcpy(data->key, pub33 + 1, 32);
+ data->key[17] ^= i;
+ }
+}
+
+
#ifdef ENABLE_MODULE_ECDH
# include "modules/ecdh/bench_impl.h"
#endif
@@ -133,6 +149,10 @@ static void bench_sign_run(void* arg, int iters) {
# include "modules/schnorrsig/bench_impl.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/bench_impl.h"
+#endif
+
int main(int argc, char** argv) {
int i;
secp256k1_pubkey pubkey;
@@ -145,7 +165,9 @@ int main(int argc, char** argv) {
/* Check for invalid user arguments */
char* valid_args[] = {"ecdsa", "verify", "ecdsa_verify", "sign", "ecdsa_sign", "ecdh", "recover",
- "ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign"};
+ "ecdsa_recover", "schnorrsig", "schnorrsig_verify", "schnorrsig_sign", "ec",
+ "keygen", "ec_keygen", "ellswift", "encode", "ellswift_encode", "decode",
+ "ellswift_decode", "ellswift_keygen", "ellswift_ecdh"};
size_t valid_args_size = sizeof(valid_args)/sizeof(valid_args[0]);
int invalid_args = have_invalid_args(argc, argv, valid_args, valid_args_size);
@@ -212,6 +234,7 @@ int main(int argc, char** argv) {
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
if (d || have_flag(argc, argv, "ecdsa") || have_flag(argc, argv, "sign") || have_flag(argc, argv, "ecdsa_sign")) run_benchmark("ecdsa_sign", bench_sign_run, bench_sign_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ec") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ec_keygen")) run_benchmark("ec_keygen", bench_keygen_run, bench_sign_setup, NULL, &data, 10, iters);
secp256k1_context_destroy(data.ctx);
@@ -230,5 +253,10 @@ int main(int argc, char** argv) {
run_schnorrsig_bench(iters, argc, argv);
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ /* ElligatorSwift benchmarks */
+ run_ellswift_bench(iters, argc, argv);
+#endif
+
return 0;
}
diff --git a/src/bench.h b/src/bench.h
index aa275fe919..611ba11f04 100644
--- a/src/bench.h
+++ b/src/bench.h
@@ -7,15 +7,31 @@
#ifndef SECP256K1_BENCH_H
#define SECP256K1_BENCH_H
+#include
#include
#include
#include
-#include "sys/time.h"
+
+#if (defined(_MSC_VER) && _MSC_VER >= 1900)
+# include
+#else
+# include "sys/time.h"
+#endif
static int64_t gettime_i64(void) {
+#if (defined(_MSC_VER) && _MSC_VER >= 1900)
+ /* C11 way to get wallclock time */
+ struct timespec tv;
+ if (!timespec_get(&tv, TIME_UTC)) {
+ fputs("timespec_get failed!", stderr);
+ exit(1);
+ }
+ return (int64_t)tv.tv_nsec / 1000 + (int64_t)tv.tv_sec * 1000000LL;
+#else
struct timeval tv;
gettimeofday(&tv, NULL);
return (int64_t)tv.tv_usec + (int64_t)tv.tv_sec * 1000000LL;
+#endif
}
#define FP_EXP (6)
diff --git a/src/bench_internal.c b/src/bench_internal.c
index 7eb3af28d7..27af24b1a0 100644
--- a/src/bench_internal.c
+++ b/src/bench_internal.c
@@ -218,6 +218,17 @@ void bench_field_sqrt(void* arg, int iters) {
CHECK(j <= iters);
}
+void bench_field_jacobi_var(void* arg, int iters) {
+ int i, j = 0;
+ bench_inv *data = (bench_inv*)arg;
+
+ for (i = 0; i < iters; i++) {
+ j += secp256k1_fe_jacobi_var(&data->fe[0]);
+ secp256k1_fe_add(&data->fe[0], &data->fe[1]);
+ }
+ CHECK(j <= iters);
+}
+
void bench_group_double_var(void* arg, int iters) {
int i;
bench_inv *data = (bench_inv*)arg;
@@ -379,6 +390,7 @@ int main(int argc, char **argv) {
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "jacobi")) run_benchmark("field_jacobi_var", bench_field_jacobi_var, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
diff --git a/src/ecmult.h b/src/ecmult.h
index b47d8f494a..e28c602506 100644
--- a/src/ecmult.h
+++ b/src/ecmult.h
@@ -11,6 +11,17 @@
#include "scalar.h"
#include "scratch.h"
+#ifndef ECMULT_WINDOW_SIZE
+# define ECMULT_WINDOW_SIZE 15
+# ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_MSG("ECMULT_WINDOW_SIZE undefined, assuming default value")
+# endif
+#endif
+
+#ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_DEF(ECMULT_WINDOW_SIZE)
+#endif
+
/* Noone will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* tested.
diff --git a/src/ecmult_const.h b/src/ecmult_const.h
index f891f3f306..aae902743b 100644
--- a/src/ecmult_const.h
+++ b/src/ecmult_const.h
@@ -18,4 +18,23 @@
*/
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q, int bits);
+/**
+ * Same as secp256k1_ecmult_const, but takes in an x coordinate of the base point
+ * only, specified as fraction n/d. Only the x coordinate of the result is returned.
+ *
+ * If known_on_curve is 0, a verification is performed that n/d is a valid X
+ * coordinate, and 0 is returned if not. Otherwise, 1 is returned.
+ *
+ * d being NULL is interpreted as d=1.
+ *
+ * Constant time in the value of q, but not any other inputs.
+ */
+static int secp256k1_ecmult_const_xonly(
+ secp256k1_fe* r,
+ const secp256k1_fe *n,
+ const secp256k1_fe *d,
+ const secp256k1_scalar *q,
+ int bits,
+ int known_on_curve);
+
#endif /* SECP256K1_ECMULT_CONST_H */
diff --git a/src/ecmult_const_impl.h b/src/ecmult_const_impl.h
index 12dbcc6c5b..1940ee7f08 100644
--- a/src/ecmult_const_impl.h
+++ b/src/ecmult_const_impl.h
@@ -228,4 +228,58 @@ static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, cons
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
+static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int bits, int known_on_curve) {
+
+ /* This algorithm is a generalization of Peter Dettman's technique for
+ * avoiding the square root in a random-basepoint x-only multiplication
+ * on a Weierstrass curve:
+ * https://mailarchive.ietf.org/arch/msg/cfrg/7DyYY6gg32wDgHAhgSb6XxMDlJA/
+ */
+ secp256k1_fe g, i;
+ secp256k1_ge p;
+ secp256k1_gej rj;
+
+ /* Compute g = (n^3 + B*d^3). */
+ secp256k1_fe_sqr(&g, n);
+ secp256k1_fe_mul(&g, &g, n);
+ if (d) {
+ secp256k1_fe b;
+ secp256k1_fe_sqr(&b, d);
+ secp256k1_fe_mul(&b, &b, d);
+ secp256k1_fe_mul(&b, &b, &secp256k1_fe_const_b);
+ secp256k1_fe_add(&g, &b);
+ if (!known_on_curve) {
+ secp256k1_fe c;
+ secp256k1_fe_mul(&c, &g, d);
+ if (secp256k1_fe_jacobi_var(&c) < 0) return 0;
+ }
+ } else {
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b);
+ if (!known_on_curve) {
+ if (secp256k1_fe_jacobi_var(&g) < 0) return 0;
+ }
+ }
+
+ /* Compute base point P = (n*g, g^2), the effective affine version of
+ * (n*g, g^2, sqrt(d*g)), which has corresponding affine X coordinate
+ * n/d. */
+ secp256k1_fe_mul(&p.x, &g, n);
+ secp256k1_fe_sqr(&p.y, &g);
+ p.infinity = 0;
+
+ /* Perform x-only EC multiplication of P with q. */
+ secp256k1_ecmult_const(&rj, &p, q, bits);
+
+ /* The resulting (X, Y, Z) point on the effective-affine isomorphic curve
+ * corresponds to (X, Y, Z*sqrt(d*g)) on the secp256k1 curve. The affine
+ * version of that has X coordinate (X / (Z^2*d*g)). */
+ secp256k1_fe_sqr(&i, &rj.z);
+ secp256k1_fe_mul(&i, &i, &g);
+ if (d) secp256k1_fe_mul(&i, &i, d);
+ secp256k1_fe_inv(&i, &i);
+ secp256k1_fe_mul(r, &rj.x, &i);
+
+ return 1;
+}
+
#endif /* SECP256K1_ECMULT_CONST_IMPL_H */
diff --git a/src/ecmult_gen.h b/src/ecmult_gen.h
index f48f266461..a430e8d5d9 100644
--- a/src/ecmult_gen.h
+++ b/src/ecmult_gen.h
@@ -10,9 +10,21 @@
#include "scalar.h"
#include "group.h"
+#ifndef ECMULT_GEN_PREC_BITS
+# define ECMULT_GEN_PREC_BITS 4
+# ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_MSG("ECMULT_GEN_PREC_BITS undefined, assuming default value")
+# endif
+#endif
+
+#ifdef DEBUG_CONFIG
+# pragma message DEBUG_CONFIG_DEF(ECMULT_GEN_PREC_BITS)
+#endif
+
#if ECMULT_GEN_PREC_BITS != 2 && ECMULT_GEN_PREC_BITS != 4 && ECMULT_GEN_PREC_BITS != 8
# error "Set ECMULT_GEN_PREC_BITS to 2, 4 or 8."
#endif
+
#define ECMULT_GEN_PREC_G(bits) (1 << bits)
#define ECMULT_GEN_PREC_N(bits) (256 / bits)
diff --git a/src/ecmult_gen_impl.h b/src/ecmult_gen_impl.h
index 2c8a503acc..4f5ea9f3c0 100644
--- a/src/ecmult_gen_impl.h
+++ b/src/ecmult_gen_impl.h
@@ -88,31 +88,31 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int overflow;
- unsigned char keydata[64] = {0};
+ unsigned char keydata[64];
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
+ return;
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
- secp256k1_scalar_get_b32(nonce32, &ctx->blind);
+ secp256k1_scalar_get_b32(keydata, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
- memcpy(keydata, nonce32, 32);
- if (seed32 != NULL) {
- memcpy(keydata + 32, seed32, 32);
- }
- secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
+ VERIFY_CHECK(seed32 != NULL);
+ memcpy(keydata + 32, seed32, 32);
+ secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64);
memset(keydata, 0, sizeof(keydata));
/* Accept unobservably small non-uniformity. */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
overflow = !secp256k1_fe_set_b32(&s, nonce32);
overflow |= secp256k1_fe_is_zero(&s);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
- /* Randomize the projection to defend against multiplier sidechannels. */
+ /* Randomize the projection to defend against multiplier sidechannels.
+ Do this before our own call to secp256k1_ecmult_gen below. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
@@ -121,6 +121,7 @@ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const
secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
+ /* The random projection in ctx->initial ensures that gb will have a random projection. */
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
diff --git a/src/field.h b/src/field.h
index 2584a494ee..c9bafeb481 100644
--- a/src/field.h
+++ b/src/field.h
@@ -139,4 +139,7 @@ static void secp256k1_fe_half(secp256k1_fe *r);
* magnitude set to 'm' and is normalized if (and only if) 'm' is zero. */
static void secp256k1_fe_get_bounds(secp256k1_fe *r, int m);
+/** Compute the Jacobi symbol of a / p. 0 if a=0; 1 if a square; -1 if a non-square. */
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *a);
+
#endif /* SECP256K1_FIELD_H */
diff --git a/src/field_10x26_impl.h b/src/field_10x26_impl.h
index 21742bf6eb..61a86190c5 100644
--- a/src/field_10x26_impl.h
+++ b/src/field_10x26_impl.h
@@ -1364,4 +1364,32 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == secp256k1_fe_normalizes_to_zero(&tmp));
}
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *x) {
+ secp256k1_fe tmp;
+ secp256k1_modinv32_signed30 s;
+ int ret;
+
+ tmp = *x;
+ secp256k1_fe_normalize_var(&tmp);
+ secp256k1_fe_to_signed30(&s, &tmp);
+ ret = secp256k1_jacobi32_maybe_var(&s, &secp256k1_const_modinfo_fe);
+ if (ret == -2) {
+ /* secp256k1_jacobi32_maybe_var failed to compute the Jacobi symbol. Fall back
+ * to computing a square root. This should be extremely rare with random
+ * input. */
+ secp256k1_fe dummy;
+ ret = 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1;
+#ifdef VERIFY
+ } else {
+ secp256k1_fe dummy;
+ if (secp256k1_fe_is_zero(&tmp)) {
+ VERIFY_CHECK(ret == 0);
+ } else {
+ VERIFY_CHECK(ret == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
+ }
+#endif
+ }
+ return ret;
+}
+
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
diff --git a/src/field_5x52_impl.h b/src/field_5x52_impl.h
index 6bd202f587..26e89123a0 100644
--- a/src/field_5x52_impl.h
+++ b/src/field_5x52_impl.h
@@ -667,4 +667,32 @@ static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
#endif
}
+static int secp256k1_fe_jacobi_var(const secp256k1_fe *x) {
+ secp256k1_fe tmp;
+ secp256k1_modinv64_signed62 s;
+ int ret;
+
+ tmp = *x;
+ secp256k1_fe_normalize_var(&tmp);
+ secp256k1_fe_to_signed62(&s, &tmp);
+ ret = secp256k1_jacobi64_maybe_var(&s, &secp256k1_const_modinfo_fe);
+ if (ret == -2) {
+ /* secp256k1_jacobi64_maybe_var failed to compute the Jacobi symbol. Fall back
+ * to computing a square root. This should be extremely rare with random
+ * input. */
+ secp256k1_fe dummy;
+ ret = 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1;
+#ifdef VERIFY
+ } else {
+ secp256k1_fe dummy;
+ if (secp256k1_fe_is_zero(&tmp)) {
+ VERIFY_CHECK(ret == 0);
+ } else {
+ VERIFY_CHECK(ret == 2*secp256k1_fe_sqrt(&dummy, &tmp) - 1);
+ }
+#endif
+ }
+ return ret;
+}
+
#endif /* SECP256K1_FIELD_REPR_IMPL_H */
diff --git a/src/group.h b/src/group.h
index bb7dae1cf7..92ac487143 100644
--- a/src/group.h
+++ b/src/group.h
@@ -23,7 +23,7 @@ typedef struct {
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates.
- * Note: For exhastive test mode, sepc256k1 is replaced by a small subgroup of a different curve.
+ * Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve.
*/
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
@@ -51,6 +51,12 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
+/** Determine whether x is a valid X coordinate on the curve. */
+static int secp256k1_ge_x_on_curve_var(const secp256k1_fe *x);
+
+/** Determine whether fraction xn/xd is a valid X coordinate on the curve. */
+static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe *xn, const secp256k1_fe *xd);
+
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
diff --git a/src/group_impl.h b/src/group_impl.h
index 63735ab682..b3e9fcf4d3 100644
--- a/src/group_impl.h
+++ b/src/group_impl.h
@@ -695,4 +695,33 @@ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) {
#endif
}
+static int secp256k1_ge_x_on_curve_var(const secp256k1_fe* x)
+{
+ secp256k1_fe c;
+ secp256k1_fe_sqr(&c, x);
+ secp256k1_fe_mul(&c, &c, x);
+ secp256k1_fe_add(&c, &secp256k1_fe_const_b);
+ return secp256k1_fe_jacobi_var(&c) >= 0;
+}
+
+static int secp256k1_ge_x_frac_on_curve_var(const secp256k1_fe* xn, const secp256k1_fe* xd) {
+ /* We want to determine whether (xn/xd) is on the curve.
+ *
+ * (xn/xd)^3 + 7 is square <=> xd*xn^3 + 7*xd^4 is square (multiplying by xd^4, a square).
+ */
+ secp256k1_fe r, t;
+ secp256k1_fe_mul(&r, xd, xn); /* r = xd*xn */
+ secp256k1_fe_sqr(&t, xn); /* t = xn^2 */
+ secp256k1_fe_mul(&r, &r, &t); /* r = xd*xn^3 */
+ secp256k1_fe_sqr(&t, xd); /* t = xd^2 */
+ secp256k1_fe_sqr(&t, &t); /* t = xd^4 */
+#if defined(EXHAUSTIVE_GROUP_ORDER)
+ secp256k1_fe_mul(&t, &t, &secp256k1_fe_const_b); /* t = 7*xd^4 */
+#else
+ secp256k1_fe_mul_int(&t, 7);
+#endif
+ secp256k1_fe_add(&r, &t); /* r = xd*xn^3 + 7*xd^4 */
+ return secp256k1_fe_jacobi_var(&r) >= 0;
+}
+
#endif /* SECP256K1_GROUP_IMPL_H */
diff --git a/src/modinv32.h b/src/modinv32.h
index 0efdda9ab5..263bda20b8 100644
--- a/src/modinv32.h
+++ b/src/modinv32.h
@@ -39,4 +39,8 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
/* Same as secp256k1_modinv32_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv32(secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
+/* Compute the Jacobi symbol for (x | modinfo->modulus). Either x must be 0, or x must be coprime with
+ * modulus. All limbs of x must be non-negative. Returns -2 if the result cannot be computed. */
+static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo);
+
#endif /* SECP256K1_MODINV32_H */
diff --git a/src/modinv32_impl.h b/src/modinv32_impl.h
index 661c5fc04c..d61424c4e8 100644
--- a/src/modinv32_impl.h
+++ b/src/modinv32_impl.h
@@ -232,6 +232,21 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
return zeta;
}
+/* inv256[i] = -(2*i+1)^-1 (mod 256) */
+static const uint8_t secp256k1_modinv32_inv256[128] = {
+ 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
+ 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
+ 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
+ 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
+ 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
+ 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
+ 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
+ 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
+ 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
+ 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
+ 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
+};
+
/* Compute the transition matrix and eta for 30 divsteps (variable time).
*
* Input: eta: initial eta
@@ -243,21 +258,6 @@ static int32_t secp256k1_modinv32_divsteps_30(int32_t zeta, uint32_t f0, uint32_
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t) {
- /* inv256[i] = -(2*i+1)^-1 (mod 256) */
- static const uint8_t inv256[128] = {
- 0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
- 0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
- 0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
- 0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
- 0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
- 0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
- 0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
- 0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
- 0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
- 0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
- 0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
- };
-
/* Transformation matrix; see comments in secp256k1_modinv32_divsteps_30. */
uint32_t u = 1, v = 0, q = 0, r = 1;
uint32_t f = f0, g = g0, m;
@@ -297,7 +297,7 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
VERIFY_CHECK(limit > 0 && limit <= 30);
m = (UINT32_MAX >> (32 - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
- w = (g * inv256[(f >> 1) & 127]) & m;
+ w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
@@ -317,6 +317,83 @@ static int32_t secp256k1_modinv32_divsteps_30_var(int32_t eta, uint32_t f0, uint
return eta;
}
+/* Compute the transition matrix and eta for 30 posdivsteps (variable time, eta=-delta), and keeps track
+ * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^32 rather than 2^30, because
+ * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
+ *
+ * Input: eta: initial eta
+ * f0: bottom limb of initial f
+ * g0: bottom limb of initial g
+ * Output: t: transition matrix
+ * Return: final eta
+ */
+static int32_t secp256k1_modinv32_posdivsteps_30_var(int32_t eta, uint32_t f0, uint32_t g0, secp256k1_modinv32_trans2x2 *t, int *jacp) {
+ /* Transformation matrix. */
+ uint32_t u = 1, v = 0, q = 0, r = 1;
+ uint32_t f = f0, g = g0, m;
+ uint16_t w;
+ int i = 30, limit, zeros;
+ int jac = *jacp;
+
+ for (;;) {
+ /* Use a sentinel bit to count zeros only up to i. */
+ zeros = secp256k1_ctz32_var(g | (UINT32_MAX << i));
+ /* Perform zeros divsteps at once; they all just divide g by two. */
+ g >>= zeros;
+ u <<= zeros;
+ v <<= zeros;
+ eta -= zeros;
+ i -= zeros;
+ /* Update the bottom bit of jac: when dividing g by an odd power of 2,
+ * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
+ jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
+ /* We're done once we've done 30 posdivsteps. */
+ if (i == 0) break;
+ VERIFY_CHECK((f & 1) == 1);
+ VERIFY_CHECK((g & 1) == 1);
+ VERIFY_CHECK((u * f0 + v * g0) == f << (30 - i));
+ VERIFY_CHECK((q * f0 + r * g0) == g << (30 - i));
+ /* If eta is negative, negate it and replace f,g with g,f. */
+ if (eta < 0) {
+ uint32_t tmp;
+ eta = -eta;
+ /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
+ * if both f and g are 3 mod 4. */
+ jac ^= ((f & g) >> 1);
+ tmp = f; f = g; g = tmp;
+ tmp = u; u = q; q = tmp;
+ tmp = v; v = r; r = tmp;
+ }
+ /* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
+ * than i can be cancelled out (as we'd be done before that point), and no more than eta+1
+ * can be done as its sign will flip once that happens. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ /* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
+ VERIFY_CHECK(limit > 0 && limit <= 30);
+ m = (UINT32_MAX >> (32 - limit)) & 255U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
+ w = (g * secp256k1_modinv32_inv256[(f >> 1) & 127]) & m;
+ /* Do so. */
+ g += f * w;
+ q += u * w;
+ r += v * w;
+ VERIFY_CHECK((g & m) == 0);
+ }
+ /* Return data in t and return value. */
+ t->u = (int32_t)u;
+ t->v = (int32_t)v;
+ t->q = (int32_t)q;
+ t->r = (int32_t)r;
+ /* The determinant of t must be a power of two. This guarantees that multiplication with t
+ * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
+ * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
+ * the aggregate of 30 of them will have determinant 2^30 or -2^30. */
+ VERIFY_CHECK((int64_t)t->u * t->r - (int64_t)t->v * t->q == ((int64_t)1) << 30 ||
+ (int64_t)t->u * t->r - (int64_t)t->v * t->q == -(((int64_t)1) << 30));
+ *jacp = jac;
+ return eta;
+}
+
/* Compute (t/2^30) * [d, e] mod modulus, where t is a transition matrix for 30 divsteps.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
@@ -584,4 +661,71 @@ static void secp256k1_modinv32_var(secp256k1_modinv32_signed30 *x, const secp256
*x = d;
}
+/* Do up to 50 iterations of 30 posdivsteps (up to 1500 steps; more is extremely rare) each until f=1.
+ * In VERIFY mode use a lower number of iterations (750, close to the median 756), so failure actually occurs. */
+#ifdef VERIFY
+#define JACOBI32_ITERATIONS 25
+#else
+#define JACOBI32_ITERATIONS 50
+#endif
+
+/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1, or x must be 0. */
+static int secp256k1_jacobi32_maybe_var(const secp256k1_modinv32_signed30 *x, const secp256k1_modinv32_modinfo *modinfo) {
+ /* Start with f=modulus, g=x, eta=-1. */
+ secp256k1_modinv32_signed30 f = modinfo->modulus;
+ secp256k1_modinv32_signed30 g = *x;
+ int j, len = 9;
+ int32_t eta = -1; /* eta = -delta; delta is initially 1 */
+ int32_t cond, fn, gn;
+ int jac = 0;
+ int count;
+
+ VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0 && g.v[5] >= 0 && g.v[6] >= 0 && g.v[7] >= 0 && g.v[8] >= 0);
+
+ /* The loop below does not converge for input g=0. Deal with this case specifically. */
+ if (!(g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4] | g.v[5] | g.v[6] | g.v[7] | g.v[8])) return 0;
+
+ for (count = 0; count < JACOBI32_ITERATIONS; ++count) {
+ /* Compute transition matrix and new eta after 30 posdivsteps. */
+ secp256k1_modinv32_trans2x2 t;
+ eta = secp256k1_modinv32_posdivsteps_30_var(eta, f.v[0] | ((uint32_t)f.v[1] << 30), g.v[0] | ((uint32_t)g.v[1] << 30), &t, &jac);
+ /* Update f,g using that transition matrix. */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ secp256k1_modinv32_update_fg_30_var(len, &f, &g, &t);
+ /* If the bottom limb of f is 1, there is a chance that f=1. */
+ if (f.v[0] == 1) {
+ cond = 0;
+ /* Check if the other limbs are also 0. */
+ for (j = 1; j < len; ++j) {
+ cond |= f.v[j];
+ }
+ /* If so, we're done. */
+ if (cond == 0) return 1 - 2*(jac & 1);
+ }
+
+ /* Determine if len>1 and limb (len-1) of both f and g is 0. */
+ fn = f.v[len - 1];
+ gn = g.v[len - 1];
+ cond = ((int32_t)len - 2) >> 31;
+ cond |= fn;
+ cond |= gn;
+ /* If so, reduce length. */
+ if (cond == 0) --len;
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv32_mul_cmp_30(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ }
+
+ /* The loop failed to converge to f=g after 1500 iterations. Return -2, indicating unknown result. */
+ return -2;
+}
+
#endif /* SECP256K1_MODINV32_IMPL_H */
diff --git a/src/modinv64.h b/src/modinv64.h
index da506dfa9f..e432fcbe8d 100644
--- a/src/modinv64.h
+++ b/src/modinv64.h
@@ -43,4 +43,8 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
/* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */
static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
+/* Compute the Jacobi symbol for (x | modinfo->modulus). Either x must be 0, or x must be coprime with
+ * modulus. All limbs of x must be non-negative. Returns -2 if the result cannot be computed. */
+static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo);
+
#endif /* SECP256K1_MODINV64_H */
diff --git a/src/modinv64_impl.h b/src/modinv64_impl.h
index 0743a9c821..198599a52a 100644
--- a/src/modinv64_impl.h
+++ b/src/modinv64_impl.h
@@ -256,7 +256,7 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
tmp = v; v = r; r = -tmp;
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
* out (as we'd be done before that point), and no more than eta+1 can be done as its
- * will flip again once that happens. */
+ * sign will flip again once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 6) bits. */
@@ -294,6 +294,94 @@ static int64_t secp256k1_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint
return eta;
}
+/* Compute the transition matrix and eta for 62 posdivsteps (variable time, eta=-delta), and keeps track
+ * of the Jacobi symbol along the way. f0 and g0 must be f and g mod 2^64 rather than 2^62, because
+ * Jacobi tracking requires knowing (f mod 8) rather than just (f mod 2).
+ *
+ * Input: eta: initial eta
+ * f0: bottom limb of initial f
+ * g0: bottom limb of initial g
+ * Output: t: transition matrix
+ * Return: final eta
+ */
+static int64_t secp256k1_modinv64_posdivsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, secp256k1_modinv64_trans2x2 *t, int *jacp) {
+ /* Transformation matrix; see comments in secp256k1_modinv64_divsteps_62. */
+ uint64_t u = 1, v = 0, q = 0, r = 1;
+ uint64_t f = f0, g = g0, m;
+ uint32_t w;
+ int i = 62, limit, zeros;
+ int jac = *jacp;
+
+ for (;;) {
+ /* Use a sentinel bit to count zeros only up to i. */
+ zeros = secp256k1_ctz64_var(g | (UINT64_MAX << i));
+ /* Perform zeros divsteps at once; they all just divide g by two. */
+ g >>= zeros;
+ u <<= zeros;
+ v <<= zeros;
+ eta -= zeros;
+ i -= zeros;
+ /* Update the bottom bit of jac: when dividing g by an odd power of 2,
+ * if (f mod 8) is 3 or 5, the Jacobi symbol changes sign. */
+ jac ^= (zeros & ((f >> 1) ^ (f >> 2)));
+ /* We're done once we've done 62 posdivsteps. */
+ if (i == 0) break;
+ VERIFY_CHECK((f & 1) == 1);
+ VERIFY_CHECK((g & 1) == 1);
+ VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
+ VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
+ /* If eta is negative, negate it and replace f,g with g,f. */
+ if (eta < 0) {
+ uint64_t tmp;
+ eta = -eta;
+ tmp = f; f = g; g = tmp;
+ tmp = u; u = q; q = tmp;
+ tmp = v; v = r; r = tmp;
+ /* Update bottom bit of jac: when swapping f and g, the Jacobi symbol changes sign
+ * if both f and g are 3 mod 4. */
+ jac ^= ((f & g) >> 1);
+ /* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
+ * out (as we'd be done before that point), and no more than eta+1 can be done as its
+ * sign will flip again once that happens. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ VERIFY_CHECK(limit > 0 && limit <= 62);
+ /* m is a mask for the bottom min(limit, 6) bits. */
+ m = (UINT64_MAX >> (64 - limit)) & 63U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
+ * bits. */
+ w = (f * g * (f * f - 2)) & m;
+ } else {
+ /* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
+ * eta tends to be smaller here. */
+ limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
+ VERIFY_CHECK(limit > 0 && limit <= 62);
+ /* m is a mask for the bottom min(limit, 4) bits. */
+ m = (UINT64_MAX >> (64 - limit)) & 15U;
+ /* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
+ * bits. */
+ w = f + (((f + 1) & 4) << 1);
+ w = (-w * g) & m;
+ }
+ g += f * w;
+ q += u * w;
+ r += v * w;
+ VERIFY_CHECK((g & m) == 0);
+ }
+ /* Return data in t and return value. */
+ t->u = (int64_t)u;
+ t->v = (int64_t)v;
+ t->q = (int64_t)q;
+ t->r = (int64_t)r;
+ /* The determinant of t must be a power of two. This guarantees that multiplication with t
+ * does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
+ * will be divided out again). As each divstep's individual matrix has determinant 2 or -2,
+ * the aggregate of 62 of them will have determinant 2^62 or -2^62. */
+ VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62 ||
+ (int128_t)t->u * t->r - (int128_t)t->v * t->q == -(((int128_t)1) << 62));
+ *jacp = jac;
+ return eta;
+}
+
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
@@ -590,4 +678,71 @@ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256
*x = d;
}
+/* Do up to 25 iterations of 62 posdivsteps (up to 1550 steps; more is extremely rare) each until f=1.
+ * In VERIFY mode use a lower number of iterations (744, close to the median 756), so failure actually occurs. */
+#ifdef VERIFY
+#define JACOBI64_ITERATIONS 12
+#else
+#define JACOBI64_ITERATIONS 25
+#endif
+
+/* Compute the Jacobi symbol of x modulo modinfo->modulus (variable time). gcd(x,modulus) must be 1, or x must be 0. */
+static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo) {
+ /* Start with f=modulus, g=x, eta=-1. */
+ secp256k1_modinv64_signed62 f = modinfo->modulus;
+ secp256k1_modinv64_signed62 g = *x;
+ int j, len = 5;
+ int64_t eta = -1; /* eta = -delta; delta is initially 1 */
+ int64_t cond, fn, gn;
+ int jac = 0;
+ int count;
+
+ VERIFY_CHECK(g.v[0] >= 0 && g.v[1] >= 0 && g.v[2] >= 0 && g.v[3] >= 0 && g.v[4] >= 0);
+
+ /* The loop below does not converge for input g=0. Deal with this case specifically. */
+ if (!(g.v[0] | g.v[1] | g.v[2] | g.v[3] | g.v[4])) return 0;
+
+ for (count = 0; count < JACOBI64_ITERATIONS; ++count) {
+ /* Compute transition matrix and new eta after 62 posdivsteps. */
+ secp256k1_modinv64_trans2x2 t;
+ eta = secp256k1_modinv64_posdivsteps_62_var(eta, f.v[0] | ((uint64_t)f.v[1] << 62), g.v[0] | ((uint64_t)g.v[1] << 62), &t, &jac);
+ /* Update f,g using that transition matrix. */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ secp256k1_modinv64_update_fg_62_var(len, &f, &g, &t);
+ /* If the bottom limb of f is 1, there is a chance that f=1. */
+ if (f.v[0] == 1) {
+ cond = 0;
+ /* Check if the other limbs are also 0. */
+ for (j = 1; j < len; ++j) {
+ cond |= f.v[j];
+ }
+ /* If so, we're done. */
+ if (cond == 0) return 1 - 2*(jac & 1);
+ }
+
+ /* Determine if len>1 and limb (len-1) of both f and g is 0. */
+ fn = f.v[len - 1];
+ gn = g.v[len - 1];
+ cond = ((int64_t)len - 2) >> 63;
+ cond |= fn;
+ cond |= gn;
+ /* If so, reduce length. */
+ if (cond == 0) --len;
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 0) > 0); /* f > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 0) > 0); /* g > 0 */
+ VERIFY_CHECK(secp256k1_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
+#endif
+ }
+
+ /* The loop failed to converge to f=g after 1550 iterations. Return -2, indicating unknown result. */
+ return -2;
+}
+
#endif /* SECP256K1_MODINV64_IMPL_H */
diff --git a/src/modules/ecdh/bench_impl.h b/src/modules/ecdh/bench_impl.h
index 94d833462f..8df15bcf43 100644
--- a/src/modules/ecdh/bench_impl.h
+++ b/src/modules/ecdh/bench_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_ECDH_BENCH_H
#define SECP256K1_MODULE_ECDH_BENCH_H
-#include "../include/secp256k1_ecdh.h"
+#include "../../../include/secp256k1_ecdh.h"
typedef struct {
secp256k1_context *ctx;
diff --git a/src/modules/ellswift/Makefile.am.include b/src/modules/ellswift/Makefile.am.include
new file mode 100644
index 0000000000..e7efea2981
--- /dev/null
+++ b/src/modules/ellswift/Makefile.am.include
@@ -0,0 +1,4 @@
+include_HEADERS += include/secp256k1_ellswift.h
+noinst_HEADERS += src/modules/ellswift/bench_impl.h
+noinst_HEADERS += src/modules/ellswift/main_impl.h
+noinst_HEADERS += src/modules/ellswift/tests_impl.h
diff --git a/src/modules/ellswift/bench_impl.h b/src/modules/ellswift/bench_impl.h
new file mode 100644
index 0000000000..0345511e12
--- /dev/null
+++ b/src/modules/ellswift/bench_impl.h
@@ -0,0 +1,100 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_BENCH_H
+#define SECP256K1_MODULE_ELLSWIFT_BENCH_H
+
+#include "../include/secp256k1_ellswift.h"
+
+typedef struct {
+ secp256k1_context *ctx;
+ secp256k1_pubkey point[256];
+ unsigned char rnd64[64];
+} bench_ellswift_data;
+
+static void bench_ellswift_setup(void* arg) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+ static const unsigned char init[64] = {
+ 0x78, 0x1f, 0xb7, 0xd4, 0x67, 0x7f, 0x08, 0x68,
+ 0xdb, 0xe3, 0x1d, 0x7f, 0x1b, 0xb0, 0xf6, 0x9e,
+ 0x0a, 0x64, 0xca, 0x32, 0x9e, 0xc6, 0x20, 0x79,
+ 0x03, 0xf3, 0xd0, 0x46, 0x7a, 0x0f, 0xd2, 0x21,
+ 0xb0, 0x2c, 0x46, 0xd8, 0xba, 0xca, 0x26, 0x4f,
+ 0x8f, 0x8c, 0xd4, 0xdd, 0x2d, 0x04, 0xbe, 0x30,
+ 0x48, 0x51, 0x1e, 0xd4, 0x16, 0xfd, 0x42, 0x85,
+ 0x62, 0xc9, 0x02, 0xf9, 0x89, 0x84, 0xff, 0xdc
+ };
+ memcpy(data->rnd64, init, 64);
+ for (i = 0; i < 256; ++i) {
+ int j;
+ CHECK(secp256k1_ellswift_decode(data->ctx, &data->point[i], data->rnd64));
+ for (j = 0; j < 64; ++j) {
+ data->rnd64[j] += 1;
+ }
+ }
+ CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[255], init + 16));
+}
+
+static void bench_ellswift_encode(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_encode(data->ctx, data->rnd64, &data->point[i & 255], data->rnd64 + 16));
+ }
+}
+
+static void bench_ellswift_create(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ unsigned char buf[64];
+ CHECK(secp256k1_ellswift_create(data->ctx, buf, data->rnd64, data->rnd64 + 32));
+ memcpy(data->rnd64, buf, 64);
+ }
+}
+
+static void bench_ellswift_decode(void* arg, int iters) {
+ int i;
+ secp256k1_pubkey out;
+ size_t len;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_decode(data->ctx, &out, data->rnd64) == 1);
+ len = 33;
+ CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->rnd64 + (i % 32), &len, &out, SECP256K1_EC_COMPRESSED));
+ }
+}
+
+static void bench_ellswift_xdh(void* arg, int iters) {
+ int i;
+ bench_ellswift_data *data = (bench_ellswift_data*)arg;
+
+ for (i = 0; i < iters; i++) {
+ CHECK(secp256k1_ellswift_xdh(data->ctx, data->rnd64 + (i % 33), data->rnd64, data->rnd64, data->rnd64 + ((i + 16) % 33), NULL, NULL) == 1);
+ }
+}
+
+void run_ellswift_bench(int iters, int argc, char** argv) {
+ bench_ellswift_data data;
+ int d = argc == 1;
+
+ /* create a context with signing capabilities */
+ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ memset(data.rnd64, 11, sizeof(data.rnd64));
+
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "encode") || have_flag(argc, argv, "ellswift_encode")) run_benchmark("ellswift_encode", bench_ellswift_encode, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "decode") || have_flag(argc, argv, "ellswift_decode")) run_benchmark("ellswift_decode", bench_ellswift_decode, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "keygen") || have_flag(argc, argv, "ellswift_keygen")) run_benchmark("ellswift_keygen", bench_ellswift_create, bench_ellswift_setup, NULL, &data, 10, iters);
+ if (d || have_flag(argc, argv, "ellswift") || have_flag(argc, argv, "ecdh") || have_flag(argc, argv, "ellswift_ecdh")) run_benchmark("ellswift_ecdh", bench_ellswift_xdh, bench_ellswift_setup, NULL, &data, 10, iters);
+
+ secp256k1_context_destroy(data.ctx);
+}
+
+#endif /* SECP256K1_MODULE_ellswift_BENCH_H */
diff --git a/src/modules/ellswift/main_impl.h b/src/modules/ellswift/main_impl.h
new file mode 100644
index 0000000000..5795b717a9
--- /dev/null
+++ b/src/modules/ellswift/main_impl.h
@@ -0,0 +1,462 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
+#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
+
+#include "../../../include/secp256k1.h"
+#include "../../../include/secp256k1_ellswift.h"
+#include "../../hash.h"
+
+/** c1 = (sqrt(-3)-1)/2 */
+static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
+/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
+static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
+/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
+static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
+
+/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
+static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe* xn, secp256k1_fe* xd, const secp256k1_fe* u, const secp256k1_fe* t) {
+ /* The implemented algorithm is the following (all operations in GF(p)):
+ *
+ * - c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852
+ * - If u=0, set u=1.
+ * - If t=0, set t=1.
+ * - If u^3+7+t^2 = 0, set t=2*t.
+ * - Let X=(u^3+7-t^2)/(2*t)
+ * - Let Y=(X+t)/(c0*u)
+ * - If x3=u+4*Y^2 is a valid x coordinate, return x3.
+ * - If x2=(-X/Y-u)/2 is a valid x coordinare, return x2.
+ * - Return x1=(X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
+ *
+ * Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
+ *
+ * - ...
+ * - Let s=t^2
+ * - Let g=u^3+7
+ * - If g+s=0, set t=2*t, s=4*s
+ * - Let X=(g-s)/(2*t)
+ * - Let Y=(X+t)/(c0*u) = (g+s)/(2*c0*t*u)
+ * - If x3=u+4*Y^2 is a valid x coordinate, return x3.
+ * - If x2=(-X/Y-u)/2 is a valid x coordinate, return it.
+ * - Return x1=-(x2+u).
+ *
+ * Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s)
+ *
+ * - ...
+ * - If g+s=0, set s=4*s
+ * - If x3=u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
+ * - If x2=(-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
+ * - Return x1=(c0*u*(g-s)/(g+s)-u)/2.
+ *
+ * Simplifying x2 using 2 additional constants:
+ *
+ * - c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40
+ * - c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
+ * - ...
+ * - If x2=u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
+ * - ...
+ *
+ * Writing x3 as a fraction:
+ *
+ * - ...
+ * - If x3=(3*s*u^3-(g+s)^2)/(3*s*u^2)
+ * - ...
+
+ * Overall, we get:
+ *
+ * - c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40
+ * - c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee
+ * - If u=0, set u=1.
+ * - If t=0, set s=1, else set s=t^2
+ * - Let g=u^3+7
+ * - If g+s=0, set s=4*s
+ * - If x3=(3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
+ * - If x2=u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
+ * - Return x1=-(x2+u)
+ */
+ secp256k1_fe u1, s, g, p, d, n, l;
+ u1 = *u;
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
+ secp256k1_fe_sqr(&s, t);
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
+ secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
+ secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b); /* g = u^3 + 7 */
+ p = g; /* p = g */
+ secp256k1_fe_add(&p, &s); /* p = g+s */
+ if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
+ secp256k1_fe_mul_int(&s, 4); /* s = 4*s */
+ /* recompute p = g+s */
+ p = g; /* p = g */
+ secp256k1_fe_add(&p, &s); /* p = g+s */
+ }
+ secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
+ secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
+ secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
+ secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
+ secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
+ secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
+ if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
+ /* Return n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
+ *xn = n;
+ *xd = d;
+ return;
+ }
+ *xd = p;
+ secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
+ secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
+ secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
+ secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
+ /* Possible optimization: in the invocation below, d^2 = (g+s)^2 is computed,
+ * which we already have computed above. This could be deduplicated. */
+ if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
+ /* Return n/p = u*(c1*s+c2*g)/(g+s) */
+ *xn = n;
+ return;
+ }
+ secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
+ secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*g*s */
+ secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)+u*g*s */
+#ifdef VERIFY
+ VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
+#endif
+ /* Return n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
+}
+
+/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
+static void secp256k1_ellswift_xswiftec_var(secp256k1_fe* x, const secp256k1_fe* u, const secp256k1_fe* t) {
+ secp256k1_fe xn, xd;
+ secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
+ secp256k1_fe_inv_var(&xd, &xd);
+ secp256k1_fe_mul(x, &xn, &xd);
+}
+
+/** Decode ElligatorSwift encoding (u, t) to point P. */
+static void secp256k1_ellswift_swiftec_var(secp256k1_ge* p, const secp256k1_fe* u, const secp256k1_fe* t) {
+ secp256k1_fe x;
+ secp256k1_ellswift_xswiftec_var(&x, u, t);
+ secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
+}
+
+/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
+ *
+ * There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
+ * fewer, or none at all. Each such partial inverse can be accessed individually using a
+ * distinct input argument c (in range 0-7), and some or all of these may return failure.
+ * The following guarantees exist:
+ * - Given (x, u), no two distinct c values give the same successful result t.
+ * - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
+ * - Given (x, u), all t values that map back to x can be reached by combining the
+ * successful results from this function over all c values, with the exception of:
+ * - this function cannot be called with u=0
+ * - no result with t=0 will be returned
+ * - no result for which u^3 + t^2 + 7 = 0 will be returned.
+ */
+static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe* t, const secp256k1_fe* x, const secp256k1_fe* u, int c) {
+ /* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
+ *
+ * - If (c & 2) = 0:
+ * - If (-x-u) is a valid X coordinate, fail.
+ * - If (c & 1) = 0, let v=x; otherwise, let v=-x-u.
+ * - Let s=-(u^3+7)/(u^2+u*v+v^2)
+ * - If (c & 2) = 2:
+ * - Let s=x-u
+ * - If s=0, fail.
+ * - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist
+ * - If (c & 1) = 1:
+ * - If r=0, fail.
+ * - Let r=-r.
+ * - Let v=(r/s-u)/2.
+ * - Let w=sqrt(s); fail if it doesn't exist.
+ * - If (c & 4) = 4, let w=-w.
+ * - Return w*(c1*u-v).
+ */
+ secp256k1_fe v = *x, um = *u; /* v = x; um = u */
+ secp256k1_fe g, m, s, w;
+ secp256k1_fe_normalize_weak(&v);
+ secp256k1_fe_normalize_weak(&um);
+ secp256k1_fe_sqr(&g, u); /* g = u^2 */
+ secp256k1_fe_mul(&g, &g, u); /* g = u^3 */
+ secp256k1_fe_add(&g, &secp256k1_fe_const_b); /* g = u^3+7 */
+ if (!(c & 2)) {
+ secp256k1_fe o;
+ m = v; /* m = x */
+ secp256k1_fe_add(&m, &um); /* m = x+u */
+ secp256k1_fe_negate(&m, &m, 2); /* m = -(x+u) */
+ if (secp256k1_ge_x_on_curve_var(&m)) return 0; /* test if -(x+u) on curve */
+ if (c & 1) v = m; /* if c&1, v = -x-u */
+ /* v = algorithm v */
+ o = um; /* o = u */
+ secp256k1_fe_add(&o, &v); /* o = u+v */
+ secp256k1_fe_sqr(&o, &o); /* o = (u+v)^2 */
+ secp256k1_fe_negate(&o, &o, 1); /* o = -(u+v)^2 */
+ secp256k1_fe_mul(&s, &um, &v); /* s = u*v */
+ secp256k1_fe_add(&s, &o); /* s = u*v-(u+v)^2 = -(u^2+u*v+v^2) */
+ secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3+7)*(u^2+u*v+v^2) [= algorithm s*(u^2+u*v+v^2)^2] */
+ if (secp256k1_fe_jacobi_var(&m) < 0) return 0; /* algorithm s is square iff m is square */
+ secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2+u*v+v^2) */
+ secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3+7)/(u^2+u*v+v^2) [= algorithm s] */
+ } else {
+ secp256k1_fe r2, r;
+ secp256k1_fe_negate(&m, &um, 1); /* m = -u */
+ s = m;
+ secp256k1_fe_add(&s, &v); /* s = x-u [= algorithm s] */
+ if (secp256k1_fe_normalizes_to_zero_var(&s)) return 0; /* test s=0 */
+ if (secp256k1_fe_jacobi_var(&s) < 0) return 0; /* early squareness check of s */
+ secp256k1_fe_normalize_weak(&g);
+ secp256k1_fe_mul_int(&g, 4); /* g = 4*(u^3+7) */
+ secp256k1_fe_sqr(&r2, &um); /* r2 = u^2 */
+ secp256k1_fe_mul_int(&r2, 3); /* r2 = 3*u^2 */
+ secp256k1_fe_mul(&r2, &r2, &s); /* r2 = 3*u^2*s */
+ secp256k1_fe_add(&r2, &g); /* r2 = 4*(u^3+7)+3*u^2*s */
+ secp256k1_fe_mul(&r2, &r2, &s); /* r2 = s*(4*(u^3+7)+3*u^2*s) */
+ secp256k1_fe_negate(&r2, &r2, 1); /* r2 = -s*(4*(u^3+7)+3*u^2*s) */
+ if (secp256k1_fe_jacobi_var(&r2) < 0) return 0;
+ VERIFY_CHECK(secp256k1_fe_sqrt(&r, &r2)); /* r = sqrt(r2) [= algorithm r] */
+ if (c & 1) {
+ if (secp256k1_fe_normalizes_to_zero_var(&r)) return 0; /* test r=0 */
+ secp256k1_fe_negate(&r, &r, 1); /* r=-r [= algorithm r] */
+ }
+ secp256k1_fe_inv_var(&v, &s); /* v = 1/s */
+ secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
+ secp256k1_fe_add(&v, &m); /* v = r/s-u */
+ secp256k1_fe_half(&v); /* v = (r/s-u)/2 [= algorithm v] */
+ }
+ VERIFY_CHECK(secp256k1_fe_sqrt(&w, &s)); /* w = sqrt(s) [= algorithm w] */
+ if (!(c & 4)) secp256k1_fe_negate(&w, &w, 1); /* w = -w [= algorithm -w] */
+ secp256k1_fe_mul(&um, &um, &secp256k1_ellswift_c3); /* um = c3*u = -c1*u */
+ secp256k1_fe_add(&um, &v); /* um = v-c1*u */
+ secp256k1_fe_mul(t, &w, &um); /* t = -w*(v-c1*u) = w*(c1-u) */
+ return 1;
+}
+
+/** Find an ElligatorSwift encoding (u, t) for X coordinate x.
+ *
+ * hasher is a SHA256 object which a incrementing 4-byte counter is added to to
+ * generate randomness for the rejection sampling in this function. Its size plus
+ * 4 (for the counter) plus 9 (for the SHA256 padding) must be a multiple of 64
+ * for efficiency reasons.
+ */
+static void secp256k1_ellswift_xelligatorswift_var(secp256k1_fe* u, secp256k1_fe* t, const secp256k1_fe* x, const secp256k1_sha256* hasher) {
+ /* Pool of 3-bit branch values. */
+ unsigned char branch_hash[32];
+ /* Number of 3-bit values in branch_hash left. */
+ int branches_left = 0;
+ /* Field elements u and branch values are extracted from
+ * SHA256(hasher || cnt) for consecutive values of cnt. cnt==0
+ * is first used to populate a pool of 64 4-bit branch values. The 64 cnt
+ * values that follow are used to generate field elements u. cnt==65 (and
+ * multiples thereof) are used to repopulate the pool and start over, if
+ * that were ever necessary. */
+ uint32_t cnt = 0;
+ VERIFY_CHECK((hasher->bytes + 4 + 9) % 64 == 0);
+ while (1) {
+ int branch;
+ /* If the pool of branch values is empty, populate it. */
+ if (branches_left == 0) {
+ secp256k1_sha256 hash = *hasher;
+ unsigned char buf4[4];
+ buf4[0] = cnt;
+ buf4[1] = cnt >> 8;
+ buf4[2] = cnt >> 16;
+ buf4[3] = cnt >> 24;
+ ++cnt;
+ secp256k1_sha256_write(&hash, buf4, 4);
+ secp256k1_sha256_finalize(&hash, branch_hash);
+ branches_left = 64;
+ }
+ /* Take a 3-bit branch value from the branch pool (top bit is discarded). */
+ --branches_left;
+ branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
+ /* Compute a new u value by hashing. */
+ {
+ secp256k1_sha256 hash = *hasher;
+ unsigned char buf4[4];
+ unsigned char u32[32];
+ buf4[0] = cnt;
+ buf4[1] = cnt >> 8;
+ buf4[2] = cnt >> 16;
+ buf4[3] = cnt >> 24;
+ ++cnt;
+ secp256k1_sha256_write(&hash, buf4, 4);
+ secp256k1_sha256_finalize(&hash, u32);
+ if (!secp256k1_fe_set_b32(u, u32)) continue;
+ if (secp256k1_fe_is_zero(u)) continue;
+ }
+ /* Find a remainder t, and return it if found. */
+ if (secp256k1_ellswift_xswiftec_inv_var(t, x, u, branch)) {
+ secp256k1_fe_normalize_var(t);
+ break;
+ }
+ }
+}
+
+/** Find an ElligatorSwift encoding (u, t) for point P. */
+static void secp256k1_ellswift_elligatorswift_var(secp256k1_fe* u, secp256k1_fe* t, const secp256k1_ge* p, const secp256k1_sha256* hasher) {
+ secp256k1_ellswift_xelligatorswift_var(u, t, &p->x, hasher);
+ if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
+ secp256k1_fe_negate(t, t, 1);
+ secp256k1_fe_normalize_var(t);
+ }
+}
+
+int secp256k1_ellswift_encode(const secp256k1_context* ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
+ secp256k1_ge p;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(ell64 != NULL);
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(rnd32 != NULL);
+
+ if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
+ static const unsigned char PREFIX[128 - 9 - 4 - 32 - 33] = "secp256k1_ellswift_encode";
+ secp256k1_fe u, t;
+ unsigned char p33[33];
+ secp256k1_sha256 hash;
+
+ /* Set up hasher state */
+ secp256k1_sha256_initialize(&hash);
+ secp256k1_sha256_write(&hash, PREFIX, sizeof(PREFIX));
+ secp256k1_sha256_write(&hash, rnd32, 32);
+ secp256k1_fe_get_b32(p33, &p.x);
+ p33[32] = secp256k1_fe_is_odd(&p.y);
+ secp256k1_sha256_write(&hash, p33, sizeof(p33));
+ VERIFY_CHECK(hash.bytes == 128 - 9 - 4);
+
+ /* Compute ElligatorSwift encoding and construct output. */
+ secp256k1_ellswift_elligatorswift_var(&u, &t, &p, &hash);
+ secp256k1_fe_get_b32(ell64, &u);
+ secp256k1_fe_get_b32(ell64 + 32, &t);
+ return 1;
+ }
+ /* Only returned in case the provided pubkey is invalid. */
+ return 0;
+}
+
+int secp256k1_ellswift_create(const secp256k1_context* ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *rnd32) {
+ secp256k1_ge p;
+ secp256k1_fe u, t;
+ secp256k1_sha256 hash;
+ secp256k1_scalar seckey_scalar;
+ static const unsigned char PREFIX[32] = "secp256k1_ellswift_create";
+ static const unsigned char ZERO[32] = {0};
+ int ret = 0;
+
+ /* Sanity check inputs. */
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(ell64 != NULL);
+ memset(ell64, 0, 64);
+ ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
+ ARG_CHECK(seckey32 != NULL);
+
+ /* Compute (affine) public key */
+ ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
+ secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
+ secp256k1_fe_normalize_var(&p.x);
+ secp256k1_fe_normalize_var(&p.y);
+
+ /* Set up hasher state */
+ secp256k1_sha256_initialize(&hash);
+ secp256k1_sha256_write(&hash, PREFIX, sizeof(PREFIX));
+ secp256k1_sha256_write(&hash, seckey32, 32);
+ secp256k1_sha256_write(&hash, rnd32 ? rnd32 : ZERO, 32);
+ secp256k1_sha256_write(&hash, ZERO, 32 - 9 - 4);
+ secp256k1_declassify(ctx, &hash, sizeof(hash)); /* hasher gets to declassify private key */
+
+ /* Compute ElligatorSwift encoding and construct output. */
+ secp256k1_ellswift_elligatorswift_var(&u, &t, &p, &hash);
+ secp256k1_fe_get_b32(ell64, &u);
+ secp256k1_fe_get_b32(ell64 + 32, &t);
+
+ secp256k1_memczero(ell64, 64, !ret);
+ secp256k1_scalar_clear(&seckey_scalar);
+
+ return ret;
+}
+
+int secp256k1_ellswift_decode(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
+ secp256k1_fe u, t;
+ secp256k1_ge p;
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(pubkey != NULL);
+ ARG_CHECK(ell64 != NULL);
+
+ secp256k1_fe_set_b32(&u, ell64);
+ secp256k1_fe_normalize_var(&u);
+ secp256k1_fe_set_b32(&t, ell64 + 32);
+ secp256k1_fe_normalize_var(&t);
+ secp256k1_ellswift_swiftec_var(&p, &u, &t);
+ secp256k1_pubkey_save(pubkey, &p);
+ return 1;
+}
+
+static int ellswift_xdh_hash_function_sha256(unsigned char *output, const unsigned char *x32, const unsigned char *ours64, const unsigned char *theirs64, void *data) {
+ secp256k1_sha256 sha;
+
+ (void)data;
+
+ secp256k1_sha256_initialize(&sha);
+ if (secp256k1_memcmp_var(ours64, theirs64, 64) <= 0) {
+ secp256k1_sha256_write(&sha, ours64, 64);
+ secp256k1_sha256_write(&sha, theirs64, 64);
+ } else {
+ secp256k1_sha256_write(&sha, theirs64, 64);
+ secp256k1_sha256_write(&sha, ours64, 64);
+ }
+ secp256k1_sha256_write(&sha, x32, 32);
+ secp256k1_sha256_finalize(&sha, output);
+
+ return 1;
+}
+
+const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_sha256 = ellswift_xdh_hash_function_sha256;
+const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_default = ellswift_xdh_hash_function_sha256;
+
+int secp256k1_ellswift_xdh(const secp256k1_context* ctx, unsigned char *output, const unsigned char* theirs64, const unsigned char* ours64, const unsigned char* seckey32, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
+ int ret = 0;
+ int overflow;
+ secp256k1_scalar s;
+ secp256k1_fe xn, xd, px, u, t;
+ unsigned char sx[32];
+
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(output != NULL);
+ ARG_CHECK(theirs64 != NULL);
+ ARG_CHECK(ours64 != NULL);
+ ARG_CHECK(seckey32 != NULL);
+
+ if (hashfp == NULL) {
+ hashfp = secp256k1_ellswift_xdh_hash_function_default;
+ }
+
+ /* Load remote public key (as fraction). */
+ secp256k1_fe_set_b32(&u, theirs64);
+ secp256k1_fe_normalize_var(&u);
+ secp256k1_fe_set_b32(&t, theirs64 + 32);
+ secp256k1_fe_normalize_var(&t);
+ secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
+
+ /* Load private key (using one if invalid). */
+ secp256k1_scalar_set_b32(&s, seckey32, &overflow);
+ overflow = secp256k1_scalar_is_zero(&s);
+ secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
+
+ /* Compute shared X coordinate. */
+ secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 256, 1);
+ secp256k1_fe_normalize(&px);
+ secp256k1_fe_get_b32(sx, &px);
+
+ /* Invoke hasher */
+ ret = hashfp(output, sx, ours64, theirs64, data);
+
+ memset(sx, 0, 32);
+ secp256k1_fe_clear(&px);
+ secp256k1_scalar_clear(&s);
+
+ return !!ret & !overflow;
+}
+
+#endif
diff --git a/src/modules/ellswift/tests_impl.h b/src/modules/ellswift/tests_impl.h
new file mode 100644
index 0000000000..cd73eb03cf
--- /dev/null
+++ b/src/modules/ellswift/tests_impl.h
@@ -0,0 +1,292 @@
+/***********************************************************************
+ * Copyright (c) 2022 Pieter Wuile *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
+ ***********************************************************************/
+
+#ifndef SECP256K1_MODULE_ELLSWIFT_TESTS_H
+#define SECP256K1_MODULE_ELLSWIFT_TESTS_H
+
+#include "../../../include/secp256k1_ellswift.h"
+
+struct ellswift_xswiftec_inv_test {
+ int enc_bitmap;
+ secp256k1_fe u;
+ secp256k1_fe x;
+ secp256k1_fe encs[8];
+};
+
+struct ellswift_decode_test {
+ unsigned char enc[64];
+ secp256k1_fe x;
+ int odd_y;
+};
+
+/* Set of (point, encodings) test vectors, selected to maximize branch coverage.
+ * Created using an independent implementation, and tested against paper author's code. */
+static const struct ellswift_xswiftec_inv_test ellswift_xswiftec_inv_tests[] = {
+ {0xcc, SECP256K1_FE_CONST(0x05ff6bda, 0xd900fc32, 0x61bc7fe3, 0x4e2fb0f5, 0x69f06e09, 0x1ae437d3, 0xa52e9da0, 0xcbfb9590), SECP256K1_FE_CONST(0x80cdf637, 0x74ec7022, 0xc89a5a85, 0x58e373a2, 0x79170285, 0xe0ab2741, 0x2dbce510, 0xbdfe23fc), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x45654798, 0xece071ba, 0x79286d04, 0xf7f3eb1c, 0x3f1d17dd, 0x883610f2, 0xad2efd82, 0xa287466b), SECP256K1_FE_CONST(0x0aeaa886, 0xf6b76c71, 0x58452418, 0xcbf5033a, 0xdc5747e9, 0xe9b5d3b2, 0x303db969, 0x36528557), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xba9ab867, 0x131f8e45, 0x86d792fb, 0x080c14e3, 0xc0e2e822, 0x77c9ef0d, 0x52d1027c, 0x5d78b5c4), SECP256K1_FE_CONST(0xf5155779, 0x0948938e, 0xa7badbe7, 0x340afcc5, 0x23a8b816, 0x164a2c4d, 0xcfc24695, 0xc9ad76d8)}},
+ {0x33, SECP256K1_FE_CONST(0x1737a85f, 0x4c8d146c, 0xec96e3ff, 0xdca76d99, 0x03dcf3bd, 0x53061868, 0xd478c78c, 0x63c2aa9e), SECP256K1_FE_CONST(0x39e48dd1, 0x50d2f429, 0xbe088dfd, 0x5b61882e, 0x7e840748, 0x3702ae9a, 0x5ab35927, 0xb15f85ea), {SECP256K1_FE_CONST(0x1be8cc0b, 0x04be0c68, 0x1d0c6a68, 0xf733f82c, 0x6c896e0c, 0x8a262fcd, 0x392918e3, 0x03a7abf4), SECP256K1_FE_CONST(0x605b5814, 0xbf9b8cb0, 0x66667c9e, 0x5480d22d, 0xc5b6c92f, 0x14b4af3e, 0xe0a9eb83, 0xb03685e3), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xe41733f4, 0xfb41f397, 0xe2f39597, 0x08cc07d3, 0x937691f3, 0x75d9d032, 0xc6d6e71b, 0xfc58503b), SECP256K1_FE_CONST(0x9fa4a7eb, 0x4064734f, 0x99998361, 0xab7f2dd2, 0x3a4936d0, 0xeb4b50c1, 0x1f56147b, 0x4fc9764c), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x1aaa1cce, 0xbf9c7241, 0x91033df3, 0x66b36f69, 0x1c4d902c, 0x228033ff, 0x4516d122, 0xb2564f68), SECP256K1_FE_CONST(0xc7554125, 0x9d3ba98f, 0x207eaa30, 0xc69634d1, 0x87d0b6da, 0x594e719e, 0x420f4898, 0x638fc5b0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x2323a1d0, 0x79b0fd72, 0xfc8bb62e, 0xc34230a8, 0x15cb0596, 0xc2bfac99, 0x8bd6b842, 0x60f5dc26), SECP256K1_FE_CONST(0x239342df, 0xb675500a, 0x34a19631, 0x0b8d87d5, 0x4f49dcac, 0x9da50c17, 0x43ceab41, 0xa7b249ff), {SECP256K1_FE_CONST(0xf63580b8, 0xaa49c484, 0x6de56e39, 0xe1b3e73f, 0x171e881e, 0xba8c66f6, 0x14e67e5c, 0x975dfc07), SECP256K1_FE_CONST(0xb6307b33, 0x2e699f1c, 0xf77841d9, 0x0af25365, 0x404deb7f, 0xed5edb30, 0x90db49e6, 0x42a156b6), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x09ca7f47, 0x55b63b7b, 0x921a91c6, 0x1e4c18c0, 0xe8e177e1, 0x45739909, 0xeb1981a2, 0x68a20028), SECP256K1_FE_CONST(0x49cf84cc, 0xd19660e3, 0x0887be26, 0xf50dac9a, 0xbfb21480, 0x12a124cf, 0x6f24b618, 0xbd5ea579), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x2dc90e64, 0x0cb646ae, 0x9164c0b5, 0xa9ef0169, 0xfebe34dc, 0x4437d6e4, 0x6acb0e27, 0xe219d1e8), SECP256K1_FE_CONST(0xd236f19b, 0xf349b951, 0x6e9b3f4a, 0x5610fe96, 0x0141cb23, 0xbbc8291b, 0x9534f1d7, 0x1de62a47), {SECP256K1_FE_CONST(0xe69df7d9, 0xc026c366, 0x00ebdf58, 0x80726758, 0x47c0c431, 0xc8eb7306, 0x82533e96, 0x4b6252c9), SECP256K1_FE_CONST(0x4f18bbdf, 0x7c2d6c5f, 0x818c1880, 0x2fa35cd0, 0x69eaa79f, 0xff74e4fc, 0x837c80d9, 0x3fece2f8), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x19620826, 0x3fd93c99, 0xff1420a7, 0x7f8d98a7, 0xb83f3bce, 0x37148cf9, 0x7dacc168, 0xb49da966), SECP256K1_FE_CONST(0xb0e74420, 0x83d293a0, 0x7e73e77f, 0xd05ca32f, 0x96155860, 0x008b1b03, 0x7c837f25, 0xc0131937), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0x3edd7b39, 0x80e2f2f3, 0x4d1409a2, 0x07069f88, 0x1fda5f96, 0xf08027ac, 0x4465b63d, 0xc278d672), SECP256K1_FE_CONST(0x053a98de, 0x4a27b196, 0x1155822b, 0x3a3121f0, 0x3b2a1445, 0x8bd80eb4, 0xa560c4c7, 0xa85c149c), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb3dae4b7, 0xdcf858e4, 0xc6968057, 0xcef2b156, 0x46543152, 0x6538199c, 0xf52dc1b2, 0xd62fda30), SECP256K1_FE_CONST(0x4aa77dd5, 0x5d6b6d3c, 0xfa10cc9d, 0x0fe42f79, 0x232e4575, 0x661049ae, 0x36779c1d, 0x0c666d88), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x4c251b48, 0x2307a71b, 0x39697fa8, 0x310d4ea9, 0xb9abcead, 0x9ac7e663, 0x0ad23e4c, 0x29d021ff), SECP256K1_FE_CONST(0xb558822a, 0xa29492c3, 0x05ef3362, 0xf01bd086, 0xdcd1ba8a, 0x99efb651, 0xc98863e1, 0xf3998ea7)}},
+ {0x00, SECP256K1_FE_CONST(0x4295737e, 0xfcb1da6f, 0xb1d96b9c, 0xa7dcd1e3, 0x20024b37, 0xa736c494, 0x8b625981, 0x73069f70), SECP256K1_FE_CONST(0xfa7ffe4f, 0x25f88362, 0x831c087a, 0xfe2e8a9b, 0x0713e2ca, 0xc1ddca6a, 0x383205a2, 0x66f14307), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0x587c1a0c, 0xee91939e, 0x7f784d23, 0xb963004a, 0x3bf44f5d, 0x4e32a008, 0x1995ba20, 0xb0fca59e), SECP256K1_FE_CONST(0x2ea98853, 0x0715e8d1, 0x0363907f, 0xf2512452, 0x4d471ba2, 0x454d5ce3, 0xbe3f0419, 0x4dfd3a3c), {SECP256K1_FE_CONST(0xcfd5a094, 0xaa0b9b88, 0x91b76c6a, 0xb9438f66, 0xaa1c095a, 0x65f9f701, 0x35e81712, 0x92245e74), SECP256K1_FE_CONST(0xa89057d7, 0xc6563f0d, 0x6efa19ae, 0x84412b8a, 0x7b47e791, 0xa191ecdf, 0xdf2af84f, 0xd97bc339), SECP256K1_FE_CONST(0x475d0ae9, 0xef46920d, 0xf07b3411, 0x7be5a081, 0x7de1023e, 0x3cc32689, 0xe9be145b, 0x406b0aef), SECP256K1_FE_CONST(0xa0759178, 0xad802324, 0x54f827ef, 0x05ea3e72, 0xad8d7541, 0x8e6d4cc1, 0xcd4f5306, 0xc5e7c453), SECP256K1_FE_CONST(0x302a5f6b, 0x55f46477, 0x6e489395, 0x46bc7099, 0x55e3f6a5, 0x9a0608fe, 0xca17e8ec, 0x6ddb9dbb), SECP256K1_FE_CONST(0x576fa828, 0x39a9c0f2, 0x9105e651, 0x7bbed475, 0x84b8186e, 0x5e6e1320, 0x20d507af, 0x268438f6), SECP256K1_FE_CONST(0xb8a2f516, 0x10b96df2, 0x0f84cbee, 0x841a5f7e, 0x821efdc1, 0xc33cd976, 0x1641eba3, 0xbf94f140), SECP256K1_FE_CONST(0x5f8a6e87, 0x527fdcdb, 0xab07d810, 0xfa15c18d, 0x52728abe, 0x7192b33e, 0x32b0acf8, 0x3a1837dc)}},
+ {0xcc, SECP256K1_FE_CONST(0x5fa88b33, 0x65a635cb, 0xbcee003c, 0xce9ef51d, 0xd1a310de, 0x277e441a, 0xbccdb7be, 0x1e4ba249), SECP256K1_FE_CONST(0x79461ff6, 0x2bfcbcac, 0x4249ba84, 0xdd040f2c, 0xec3c63f7, 0x25204dc7, 0xf464c16b, 0xf0ff3170), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x6bb700e1, 0xf4d7e236, 0xe8d193ff, 0x4a76c1b3, 0xbcd4e2b2, 0x5acac3d5, 0x1c8dac65, 0x3fe909a0), SECP256K1_FE_CONST(0xf4c73410, 0x633da7f6, 0x3a4f1d55, 0xaec6dd32, 0xc4c6d89e, 0xe74075ed, 0xb5515ed9, 0x0da9e683), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x9448ff1e, 0x0b281dc9, 0x172e6c00, 0xb5893e4c, 0x432b1d4d, 0xa5353c2a, 0xe3725399, 0xc016f28f), SECP256K1_FE_CONST(0x0b38cbef, 0x9cc25809, 0xc5b0e2aa, 0x513922cd, 0x3b392761, 0x18bf8a12, 0x4aaea125, 0xf25615ac)}},
+ {0xcc, SECP256K1_FE_CONST(0x6fb31c75, 0x31f03130, 0xb42b155b, 0x952779ef, 0xbb46087d, 0xd9807d24, 0x1a48eac6, 0x3c3d96d6), SECP256K1_FE_CONST(0x56f81be7, 0x53e8d4ae, 0x4940ea6f, 0x46f6ec9f, 0xda66a6f9, 0x6cc95f50, 0x6cb2b574, 0x90e94260), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x59059774, 0x795bdb7a, 0x837fbe11, 0x40a5fa59, 0x984f48af, 0x8df95d57, 0xdd6d1c05, 0x437dcec1), SECP256K1_FE_CONST(0x22a644db, 0x79376ad4, 0xe7b3a009, 0xe58b3f13, 0x137c54fd, 0xf911122c, 0xc93667c4, 0x7077d784), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xa6fa688b, 0x86a42485, 0x7c8041ee, 0xbf5a05a6, 0x67b0b750, 0x7206a2a8, 0x2292e3f9, 0xbc822d6e), SECP256K1_FE_CONST(0xdd59bb24, 0x86c8952b, 0x184c5ff6, 0x1a74c0ec, 0xec83ab02, 0x06eeedd3, 0x36c9983a, 0x8f8824ab)}},
+ {0x00, SECP256K1_FE_CONST(0x704cd226, 0xe71cb682, 0x6a590e80, 0xdac90f2d, 0x2f5830f0, 0xfdf135a3, 0xeae3965b, 0xff25ff12), SECP256K1_FE_CONST(0x138e0afa, 0x68936ee6, 0x70bd2b8d, 0xb53aedbb, 0x7bea2a85, 0x97388b24, 0xd0518edd, 0x22ad66ec), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x725e9147, 0x92cb8c89, 0x49e7e116, 0x8b7cdd8a, 0x8094c91c, 0x6ec2202c, 0xcd53a6a1, 0x8771edeb), SECP256K1_FE_CONST(0x8da16eb8, 0x6d347376, 0xb6181ee9, 0x74832275, 0x7f6b36e3, 0x913ddfd3, 0x32ac595d, 0x788e0e44), {SECP256K1_FE_CONST(0xdd357786, 0xb9f68733, 0x30391aa5, 0x62580965, 0x4e43116e, 0x82a5a5d8, 0x2ffd1d66, 0x24101fc4), SECP256K1_FE_CONST(0xa0b7efca, 0x01814594, 0xc59c9aae, 0x8e497001, 0x86ca5d95, 0xe88bcc80, 0x399044d9, 0xc2d8613d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x22ca8879, 0x460978cc, 0xcfc6e55a, 0x9da7f69a, 0xb1bcee91, 0x7d5a5a27, 0xd002e298, 0xdbefdc6b), SECP256K1_FE_CONST(0x5f481035, 0xfe7eba6b, 0x3a636551, 0x71b68ffe, 0x7935a26a, 0x1774337f, 0xc66fbb25, 0x3d279af2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x78fe6b71, 0x7f2ea4a3, 0x2708d79c, 0x151bf503, 0xa5312a18, 0xc0963437, 0xe865cc6e, 0xd3f6ae97), SECP256K1_FE_CONST(0x8701948e, 0x80d15b5c, 0xd8f72863, 0xeae40afc, 0x5aced5e7, 0x3f69cbc8, 0x179a3390, 0x2c094d98), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x44, SECP256K1_FE_CONST(0x7c37bb9c, 0x5061dc07, 0x413f11ac, 0xd5a34006, 0xe64c5c45, 0x7fdb9a43, 0x8f217255, 0xa961f50d), SECP256K1_FE_CONST(0x5c1a76b4, 0x4568eb59, 0xd6789a74, 0x42d9ed7c, 0xdc6226b7, 0x752b4ff8, 0xeaf8e1a9, 0x5736e507), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb94d30cd, 0x7dbff60b, 0x64620c17, 0xca0fafaa, 0x40b3d1f5, 0x2d077a60, 0xa2e0cafd, 0x145086c2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x46b2cf32, 0x824009f4, 0x9b9df3e8, 0x35f05055, 0xbf4c2e0a, 0xd2f8859f, 0x5d1f3501, 0xebaf756d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0x82388888, 0x967f82a6, 0xb444438a, 0x7d44838e, 0x13c0d478, 0xb9ca060d, 0xa95a41fb, 0x94303de6), SECP256K1_FE_CONST(0x29e96541, 0x70628fec, 0x8b497289, 0x8b113cf9, 0x8807f460, 0x9274f4f3, 0x140d0674, 0x157c90a0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0x91298f57, 0x70af7a27, 0xf0a47188, 0xd24c3b7b, 0xf98ab299, 0x0d84b0b8, 0x98507e3c, 0x561d6472), SECP256K1_FE_CONST(0x144f4ccb, 0xd9a74698, 0xa88cbf6f, 0xd00ad886, 0xd339d29e, 0xa19448f2, 0xc572cac0, 0xa07d5562), {SECP256K1_FE_CONST(0xe6a0ffa3, 0x807f09da, 0xdbe71e0f, 0x4be4725f, 0x2832e76c, 0xad8dc1d9, 0x43ce8393, 0x75eff248), SECP256K1_FE_CONST(0x837b8e68, 0xd4917544, 0x764ad090, 0x3cb11f86, 0x15d2823c, 0xefbb06d8, 0x9049dbab, 0xc69befda), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x195f005c, 0x7f80f625, 0x2418e1f0, 0xb41b8da0, 0xd7cd1893, 0x52723e26, 0xbc317c6b, 0x8a1009e7), SECP256K1_FE_CONST(0x7c847197, 0x2b6e8abb, 0x89b52f6f, 0xc34ee079, 0xea2d7dc3, 0x1044f927, 0x6fb62453, 0x39640c55), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xb682f3d0, 0x3bbb5dee, 0x4f54b5eb, 0xfba931b4, 0xf52f6a19, 0x1e5c2f48, 0x3c73c66e, 0x9ace97e1), SECP256K1_FE_CONST(0x904717bf, 0x0bc0cb78, 0x73fcdc38, 0xaa97f19e, 0x3a626309, 0x72acff92, 0xb24cc6dd, 0xa197cb96), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x77, SECP256K1_FE_CONST(0xc17ec69e, 0x665f0fb0, 0xdbab48d9, 0xc2f94d12, 0xec8a9d7e, 0xacb58084, 0x83309180, 0x1eb0b80b), SECP256K1_FE_CONST(0x147756e6, 0x6d96e31c, 0x426d3cc8, 0x5ed0c4cf, 0xbef6341d, 0xd8b28558, 0x5aa574ea, 0x0204b55e), {SECP256K1_FE_CONST(0x6f4aea43, 0x1a0043bd, 0xd03134d6, 0xd9159119, 0xce034b88, 0xc32e50e8, 0xe36c4ee4, 0x5eac7ae9), SECP256K1_FE_CONST(0xfd5be16d, 0x4ffa2690, 0x126c67c3, 0xef7cb9d2, 0x9b74d397, 0xc78b06b3, 0x605fda34, 0xdc9696a6), SECP256K1_FE_CONST(0x5e9c6079, 0x2a2f000e, 0x45c6250f, 0x296f875e, 0x174efc0e, 0x9703e628, 0x706103a9, 0xdd2d82c7), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x90b515bc, 0xe5ffbc42, 0x2fcecb29, 0x26ea6ee6, 0x31fcb477, 0x3cd1af17, 0x1c93b11a, 0xa1538146), SECP256K1_FE_CONST(0x02a41e92, 0xb005d96f, 0xed93983c, 0x1083462d, 0x648b2c68, 0x3874f94c, 0x9fa025ca, 0x23696589), SECP256K1_FE_CONST(0xa1639f86, 0xd5d0fff1, 0xba39daf0, 0xd69078a1, 0xe8b103f1, 0x68fc19d7, 0x8f9efc55, 0x22d27968), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xc25172fc, 0x3f29b6fc, 0x4a1155b8, 0x57523315, 0x5486b274, 0x64b74b8b, 0x260b499a, 0x3f53cb14), SECP256K1_FE_CONST(0x1ea9cbdb, 0x35cf6e03, 0x29aa31b0, 0xbb0a702a, 0x65123ed0, 0x08655a93, 0xb7dcd528, 0x0e52e1ab), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x7422edc7, 0x843136af, 0x0053bb88, 0x54448a82, 0x99994f9d, 0xdcefd3a9, 0xa92d4546, 0x2c59298a), SECP256K1_FE_CONST(0x78c7774a, 0x266f8b97, 0xea23d05d, 0x064f033c, 0x77319f92, 0x3f6b78bc, 0xe4e20bf0, 0x5fa5398d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x8bdd1238, 0x7bcec950, 0xffac4477, 0xabbb757d, 0x6666b062, 0x23102c56, 0x56d2bab8, 0xd3a6d2a5), SECP256K1_FE_CONST(0x873888b5, 0xd9907468, 0x15dc2fa2, 0xf9b0fcc3, 0x88ce606d, 0xc0948743, 0x1b1df40e, 0xa05ac2a2)}},
+ {0x00, SECP256K1_FE_CONST(0xcab6626f, 0x832a4b12, 0x80ba7add, 0x2fc5322f, 0xf011caed, 0xedf7ff4d, 0xb6735d50, 0x26dc0367), SECP256K1_FE_CONST(0x2b2bef08, 0x52c6f7c9, 0x5d72ac99, 0xa23802b8, 0x75029cd5, 0x73b248d1, 0xf1b3fc80, 0x33788eb6), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x33, SECP256K1_FE_CONST(0xd8621b4f, 0xfc85b9ed, 0x56e99d8d, 0xd1dd24ae, 0xdcecb147, 0x63b861a1, 0x7112dc77, 0x1a104fd2), SECP256K1_FE_CONST(0x812cabe9, 0x72a22aa6, 0x7c7da0c9, 0x4d8a9362, 0x96eb9949, 0xd70c37cb, 0x2b248757, 0x4cb3ce58), {SECP256K1_FE_CONST(0xfbc5febc, 0x6fdbc9ae, 0x3eb88a93, 0xb982196e, 0x8b6275a6, 0xd5a73c17, 0x387e000c, 0x711bd0e3), SECP256K1_FE_CONST(0x8724c96b, 0xd4e5527f, 0x2dd195a5, 0x1c468d2d, 0x211ba2fa, 0xc7cbe0b4, 0xb3434253, 0x409fb42d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x043a0143, 0x90243651, 0xc147756c, 0x467de691, 0x749d8a59, 0x2a58c3e8, 0xc781fff2, 0x8ee42b4c), SECP256K1_FE_CONST(0x78db3694, 0x2b1aad80, 0xd22e6a5a, 0xe3b972d2, 0xdee45d05, 0x38341f4b, 0x4cbcbdab, 0xbf604802), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xda463164, 0xc6f4bf71, 0x29ee5f0e, 0xc00f65a6, 0x75a8adf1, 0xbd931b39, 0xb64806af, 0xdcda9a22), SECP256K1_FE_CONST(0x25b9ce9b, 0x390b408e, 0xd611a0f1, 0x3ff09a59, 0x8a57520e, 0x426ce4c6, 0x49b7f94f, 0x2325620d), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xdafc971e, 0x4a3a7b6d, 0xcfb42a08, 0xd9692d82, 0xad9e7838, 0x523fcbda, 0x1d4827e1, 0x4481ae2d), SECP256K1_FE_CONST(0x250368e1, 0xb5c58492, 0x304bd5f7, 0x2696d27d, 0x526187c7, 0xadc03425, 0xe2b7d81d, 0xbb7e4e02), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x370c28f1, 0xbe665efa, 0xcde6aa43, 0x6bf86fe2, 0x1e6e314c, 0x1e53dd04, 0x0e6c73a4, 0x6b4c8c49), SECP256K1_FE_CONST(0xcd8acee9, 0x8ffe5653, 0x1a84d7eb, 0x3e48fa40, 0x34206ce8, 0x25ace907, 0xd0edf0ea, 0xeb5e9ca2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xc8f3d70e, 0x4199a105, 0x321955bc, 0x9407901d, 0xe191ceb3, 0xe1ac22fb, 0xf1938c5a, 0x94b36fe6), SECP256K1_FE_CONST(0x32753116, 0x7001a9ac, 0xe57b2814, 0xc1b705bf, 0xcbdf9317, 0xda5316f8, 0x2f120f14, 0x14a15f8d)}},
+ {0x44, SECP256K1_FE_CONST(0xe0294c8b, 0xc1a36b41, 0x66ee92bf, 0xa70a5c34, 0x976fa982, 0x9405efea, 0x8f9cd54d, 0xcb29b99e), SECP256K1_FE_CONST(0xae9690d1, 0x3b8d20a0, 0xfbbf37be, 0xd8474f67, 0xa04e142f, 0x56efd787, 0x70a76b35, 0x9165d8a1), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xdcd45d93, 0x5613916a, 0xf167b029, 0x058ba3a7, 0x00d37150, 0xb9df3472, 0x8cb05412, 0xc16d4182), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x232ba26c, 0xa9ec6e95, 0x0e984fd6, 0xfa745c58, 0xff2c8eaf, 0x4620cb8d, 0x734fabec, 0x3e92baad), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0x00, SECP256K1_FE_CONST(0xe148441c, 0xd7b92b8b, 0x0e4fa3bd, 0x68712cfd, 0x0d709ad1, 0x98cace61, 0x1493c10e, 0x97f5394e), SECP256K1_FE_CONST(0x164a6397, 0x94d74c53, 0xafc4d329, 0x4e79cdb3, 0xcd25f99f, 0x6df45c00, 0x0f758aba, 0x54d699c0), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0xe4b00ec9, 0x7aadcca9, 0x7644d3b0, 0xc8a931b1, 0x4ce7bcf7, 0xbc877954, 0x6d6e35aa, 0x5937381c), SECP256K1_FE_CONST(0x94e9588d, 0x41647b3f, 0xcc772dc8, 0xd83c67ce, 0x3be00353, 0x8517c834, 0x103d2cd4, 0x9d62ef4d), {SECP256K1_FE_CONST(0xc88d25f4, 0x1407376b, 0xb2c03a7f, 0xffeb3ec7, 0x811cc434, 0x91a0c3aa, 0xc0378cdc, 0x78357bee), SECP256K1_FE_CONST(0x51c02636, 0xce00c234, 0x5ecd89ad, 0xb6089fe4, 0xd5e18ac9, 0x24e3145e, 0x6669501c, 0xd37a00d4), SECP256K1_FE_CONST(0x205b3512, 0xdb40521c, 0xb200952e, 0x67b46f67, 0xe09e7839, 0xe0de4400, 0x4138329e, 0xbd9138c5), SECP256K1_FE_CONST(0x58aab390, 0xab6fb55c, 0x1d1b8089, 0x7a207ce9, 0x4a78fa5b, 0x4aa61a33, 0x398bcae9, 0xadb20d3e), SECP256K1_FE_CONST(0x3772da0b, 0xebf8c894, 0x4d3fc580, 0x0014c138, 0x7ee33bcb, 0x6e5f3c55, 0x3fc87322, 0x87ca8041), SECP256K1_FE_CONST(0xae3fd9c9, 0x31ff3dcb, 0xa1327652, 0x49f7601b, 0x2a1e7536, 0xdb1ceba1, 0x9996afe2, 0x2c85fb5b), SECP256K1_FE_CONST(0xdfa4caed, 0x24bfade3, 0x4dff6ad1, 0x984b9098, 0x1f6187c6, 0x1f21bbff, 0xbec7cd60, 0x426ec36a), SECP256K1_FE_CONST(0xa7554c6f, 0x54904aa3, 0xe2e47f76, 0x85df8316, 0xb58705a4, 0xb559e5cc, 0xc6743515, 0x524deef1)}},
+ {0x00, SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), SECP256K1_FE_CONST(0xe5bbb9ef, 0x360d0a50, 0x1618f006, 0x7d36dceb, 0x75f5be9a, 0x620232aa, 0x9fd5139d, 0x0863fde5), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xff, SECP256K1_FE_CONST(0xe6bcb5c3, 0xd63467d4, 0x90bfa54f, 0xbbc6092a, 0x7248c25e, 0x11b248dc, 0x2964a6e1, 0x5edb1457), SECP256K1_FE_CONST(0x19434a3c, 0x29cb982b, 0x6f405ab0, 0x4439f6d5, 0x8db73da1, 0xee4db723, 0xd69b591d, 0xa124e7d8), {SECP256K1_FE_CONST(0x67119877, 0x832ab8f4, 0x59a82165, 0x6d8261f5, 0x44a553b8, 0x9ae4f25c, 0x52a97134, 0xb70f3426), SECP256K1_FE_CONST(0xffee02f5, 0xe649c07f, 0x0560eff1, 0x867ec7b3, 0x2d0e595e, 0x9b1c0ea6, 0xe2a4fc70, 0xc97cd71f), SECP256K1_FE_CONST(0xb5e0c189, 0xeb5b4bac, 0xd025b744, 0x4d74178b, 0xe8d5246c, 0xfa4a9a20, 0x7964a057, 0xee969992), SECP256K1_FE_CONST(0x5746e459, 0x1bf7f4c3, 0x044609ea, 0x372e9086, 0x03975d27, 0x9fdef834, 0x9f0b08d3, 0x2f07619d), SECP256K1_FE_CONST(0x98ee6788, 0x7cd5470b, 0xa657de9a, 0x927d9e0a, 0xbb5aac47, 0x651b0da3, 0xad568eca, 0x48f0c809), SECP256K1_FE_CONST(0x0011fd0a, 0x19b63f80, 0xfa9f100e, 0x7981384c, 0xd2f1a6a1, 0x64e3f159, 0x1d5b038e, 0x36832510), SECP256K1_FE_CONST(0x4a1f3e76, 0x14a4b453, 0x2fda48bb, 0xb28be874, 0x172adb93, 0x05b565df, 0x869b5fa7, 0x1169629d), SECP256K1_FE_CONST(0xa8b91ba6, 0xe4080b3c, 0xfbb9f615, 0xc8d16f79, 0xfc68a2d8, 0x602107cb, 0x60f4f72b, 0xd0f89a92)}},
+ {0x33, SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), SECP256K1_FE_CONST(0xf28fba64, 0xaf766845, 0xeb2f4302, 0x456e2b9f, 0x8d80affe, 0x57e7aae4, 0x2738d7cd, 0xdb1c2ce6), {SECP256K1_FE_CONST(0x4f867ad8, 0xbb3d8404, 0x09d26b67, 0x307e6210, 0x0153273f, 0x72fa4b74, 0x84becfa1, 0x4ebe7408), SECP256K1_FE_CONST(0x5bbc4f59, 0xe452cc5f, 0x22a99144, 0xb10ce898, 0x9a89a995, 0xec3cea1c, 0x91ae10e8, 0xf721bb5d), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xb0798527, 0x44c27bfb, 0xf62d9498, 0xcf819def, 0xfeacd8c0, 0x8d05b48b, 0x7b41305d, 0xb1418827), SECP256K1_FE_CONST(0xa443b0a6, 0x1bad33a0, 0xdd566ebb, 0x4ef31767, 0x6576566a, 0x13c315e3, 0x6e51ef16, 0x08de40d2), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+ {0xcc, SECP256K1_FE_CONST(0xf455605b, 0xc85bf48e, 0x3a908c31, 0x023faf98, 0x381504c6, 0xc6d3aeb9, 0xede55f8d, 0xd528924d), SECP256K1_FE_CONST(0xd31fbcd5, 0xcdb798f6, 0xc00db669, 0x2f8fe896, 0x7fa9c79d, 0xd10958f4, 0xa194f013, 0x74905e99), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0x0c00c571, 0x5b56fe63, 0x2d814ad8, 0xa77f8e66, 0x628ea47a, 0x6116834f, 0x8c1218f3, 0xa03cbd50), SECP256K1_FE_CONST(0xdf88e44f, 0xac84fa52, 0xdf4d59f4, 0x8819f18f, 0x6a8cd415, 0x1d162afa, 0xf773166f, 0x57c7ff46), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0xf3ff3a8e, 0xa4a9019c, 0xd27eb527, 0x58807199, 0x9d715b85, 0x9ee97cb0, 0x73ede70b, 0x5fc33edf), SECP256K1_FE_CONST(0x20771bb0, 0x537b05ad, 0x20b2a60b, 0x77e60e70, 0x95732bea, 0xe2e9d505, 0x088ce98f, 0xa837fce9)}},
+ {0xff, SECP256K1_FE_CONST(0xf58cd4d9, 0x830bad32, 0x2699035e, 0x8246007d, 0x4be27e19, 0xb6f53621, 0x317b4f30, 0x9b3daa9d), SECP256K1_FE_CONST(0x78ec2b3d, 0xc0948de5, 0x60148bbc, 0x7c6dc963, 0x3ad5df70, 0xa5a5750c, 0xbed72180, 0x4f082a3b), {SECP256K1_FE_CONST(0x6c4c580b, 0x76c75940, 0x43569f9d, 0xae16dc28, 0x01c16a1f, 0xbe128608, 0x81b75f8e, 0xf929bce5), SECP256K1_FE_CONST(0x94231355, 0xe7385c5f, 0x25ca436a, 0xa6419147, 0x1aea4393, 0xd6e86ab7, 0xa35fe2af, 0xacaefd0d), SECP256K1_FE_CONST(0xdff2a195, 0x1ada6db5, 0x74df8340, 0x48149da3, 0x397a75b8, 0x29abf58c, 0x7e69db1b, 0x41ac0989), SECP256K1_FE_CONST(0xa52b66d3, 0xc9070355, 0x48028bf8, 0x04711bf4, 0x22aba95f, 0x1a666fc8, 0x6f4648e0, 0x5f29caae), SECP256K1_FE_CONST(0x93b3a7f4, 0x8938a6bf, 0xbca96062, 0x51e923d7, 0xfe3e95e0, 0x41ed79f7, 0x7e48a070, 0x06d63f4a), SECP256K1_FE_CONST(0x6bdcecaa, 0x18c7a3a0, 0xda35bc95, 0x59be6eb8, 0xe515bc6c, 0x29179548, 0x5ca01d4f, 0x5350ff22), SECP256K1_FE_CONST(0x200d5e6a, 0xe525924a, 0x8b207cbf, 0xb7eb625c, 0xc6858a47, 0xd6540a73, 0x819624e3, 0xbe53f2a6), SECP256K1_FE_CONST(0x5ad4992c, 0x36f8fcaa, 0xb7fd7407, 0xfb8ee40b, 0xdd5456a0, 0xe5999037, 0x90b9b71e, 0xa0d63181)}},
+ {0x00, SECP256K1_FE_CONST(0xfd7d912a, 0x40f182a3, 0x588800d6, 0x9ebfb504, 0x8766da20, 0x6fd7ebc8, 0xd2436c81, 0xcbef6421), SECP256K1_FE_CONST(0x8d37c862, 0x054debe7, 0x31694536, 0xff46b273, 0xec122b35, 0xa9bf1445, 0xac3c4ff9, 0xf262c952), {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0)}},
+};
+
+/* Set of (encoding, xcoord) test vectors, selected to maximize branch coverage.
+ * Created using an independent implementation, and tested against paper author's code. */
+static const struct ellswift_decode_test ellswift_decode_tests[] = {
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbd, 0xe7, 0x0d, 0xf5, 0x19, 0x39, 0xb9, 0x4c, 0x9c, 0x24, 0x97, 0x9f, 0xa7, 0xdd, 0x04, 0xeb, 0xd9, 0xb3, 0x57, 0x2d, 0xa7, 0x80, 0x22, 0x90, 0x43, 0x8a, 0xf2, 0xa6, 0x81, 0x89, 0x54, 0x41}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 1},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
+ {{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
+ {{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
+ {{0x0a, 0x2d, 0x2b, 0xa9, 0x35, 0x07, 0xf1, 0xdf, 0x23, 0x37, 0x70, 0xc2, 0xa7, 0x97, 0x96, 0x2c, 0xc6, 0x1f, 0x6d, 0x15, 0xda, 0x14, 0xec, 0xd4, 0x7d, 0x8d, 0x27, 0xae, 0x1c, 0xd5, 0xf8, 0x53, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x532167c1, 0x1200b08c, 0x0e84a354, 0xe74dcc40, 0xf8b25f4f, 0xe686e308, 0x69526366, 0x278a0688), 0},
+ {{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x74e880b3, 0xffd18fe3, 0xcddf7902, 0x522551dd, 0xf97fa4a3, 0x5a3cfda8, 0x197f9470, 0x81a57b8f), 0},
+ {{0x0f, 0xfd, 0xe9, 0xca, 0x81, 0xd7, 0x51, 0xe9, 0xcd, 0xaf, 0xfc, 0x1a, 0x50, 0x77, 0x92, 0x45, 0x32, 0x0b, 0x28, 0x99, 0x6d, 0xba, 0xf3, 0x2f, 0x82, 0x2f, 0x20, 0x11, 0x7c, 0x22, 0xfb, 0xd6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x377b643f, 0xce2271f6, 0x4e5c8101, 0x566107c1, 0xbe498074, 0x50917838, 0x04f65478, 0x1ac9217c), 1},
+ {{0x12, 0x36, 0x58, 0x44, 0x4f, 0x32, 0xbe, 0x8f, 0x02, 0xea, 0x20, 0x34, 0xaf, 0xa7, 0xef, 0x4b, 0xbe, 0x8a, 0xdc, 0x91, 0x8c, 0xeb, 0x49, 0xb1, 0x27, 0x73, 0xb6, 0x25, 0xf4, 0x90, 0xb3, 0x68, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8d, 0xc5, 0xfe, 0x11}, SECP256K1_FE_CONST(0xed16d65c, 0xf3a9538f, 0xcb2c139f, 0x1ecbc143, 0xee148271, 0x20cbc265, 0x9e667256, 0x800b8142), 0},
+ {{0x14, 0x6f, 0x92, 0x46, 0x4d, 0x15, 0xd3, 0x6e, 0x35, 0x38, 0x2b, 0xd3, 0xca, 0x5b, 0x0f, 0x97, 0x6c, 0x95, 0xcb, 0x08, 0xac, 0xdc, 0xf2, 0xd5, 0xb3, 0x57, 0x06, 0x17, 0x99, 0x08, 0x39, 0xd7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x45, 0xe9, 0x3b}, SECP256K1_FE_CONST(0x0d5cd840, 0x427f941f, 0x65193079, 0xab8e2e83, 0x024ef2ee, 0x7ca558d8, 0x8879ffd8, 0x79fb6657), 0},
+ {{0x15, 0xfd, 0xf5, 0xcf, 0x09, 0xc9, 0x07, 0x59, 0xad, 0xd2, 0x27, 0x2d, 0x57, 0x4d, 0x2b, 0xb5, 0xfe, 0x14, 0x29, 0xf9, 0xf3, 0xc1, 0x4c, 0x65, 0xe3, 0x19, 0x4b, 0xf6, 0x1b, 0x82, 0xaa, 0x73, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x04, 0xcf, 0xd9, 0x06}, SECP256K1_FE_CONST(0x16d0e439, 0x46aec93f, 0x62d57eb8, 0xcde68951, 0xaf136cf4, 0xb307938d, 0xd1447411, 0xe07bffe1), 1},
+ {{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
+ {{0x1f, 0x67, 0xed, 0xf7, 0x79, 0xa8, 0xa6, 0x49, 0xd6, 0xde, 0xf6, 0x00, 0x35, 0xf2, 0xfa, 0x22, 0xd0, 0x22, 0xdd, 0x35, 0x90, 0x79, 0xa1, 0xa1, 0x44, 0x07, 0x3d, 0x84, 0xf1, 0x9b, 0x92, 0xd5, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x025661f9, 0xaba9d15c, 0x3118456b, 0xbe980e3e, 0x1b8ba2e0, 0x47c737a4, 0xeb48a040, 0xbb566f6c), 0},
+ {{0x1f, 0xe1, 0xe5, 0xef, 0x3f, 0xce, 0xb5, 0xc1, 0x35, 0xab, 0x77, 0x41, 0x33, 0x3c, 0xe5, 0xa6, 0xe8, 0x0d, 0x68, 0x16, 0x76, 0x53, 0xf6, 0xb2, 0xb2, 0x4b, 0xcb, 0xcf, 0xaa, 0xaf, 0xf5, 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x98bec3b2, 0xa351fa96, 0xcfd191c1, 0x77835193, 0x1b9e9ba9, 0xad1149f6, 0xd9eadca8, 0x0981b801), 0},
+ {{0x40, 0x56, 0xa3, 0x4a, 0x21, 0x0e, 0xec, 0x78, 0x92, 0xe8, 0x82, 0x06, 0x75, 0xc8, 0x60, 0x09, 0x9f, 0x85, 0x7b, 0x26, 0xaa, 0xd8, 0x54, 0x70, 0xee, 0x6d, 0x3c, 0xf1, 0x30, 0x4a, 0x9d, 0xcf, 0x37, 0x5e, 0x70, 0x37, 0x42, 0x71, 0xf2, 0x0b, 0x13, 0xc9, 0x98, 0x6e, 0xd7, 0xd3, 0xc1, 0x77, 0x99, 0x69, 0x8c, 0xfc, 0x43, 0x5d, 0xbe, 0xd3, 0xa9, 0xf3, 0x4b, 0x38, 0xc8, 0x23, 0xc2, 0xb4}, SECP256K1_FE_CONST(0x868aac20, 0x03b29dbc, 0xad1a3e80, 0x3855e078, 0xa89d1654, 0x3ac64392, 0xd1224172, 0x98cec76e), 0},
+ {{0x41, 0x97, 0xec, 0x37, 0x23, 0xc6, 0x54, 0xcf, 0xdd, 0x32, 0xab, 0x07, 0x55, 0x06, 0x64, 0x8b, 0x2f, 0xf5, 0x07, 0x03, 0x62, 0xd0, 0x1a, 0x4f, 0xff, 0x14, 0xb3, 0x36, 0xb7, 0x8f, 0x96, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb3, 0xab, 0x1e, 0x95}, SECP256K1_FE_CONST(0xba5a6314, 0x502a8952, 0xb8f456e0, 0x85928105, 0xf665377a, 0x8ce27726, 0xa5b0eb7e, 0xc1ac0286), 0},
+ {{0x47, 0xeb, 0x3e, 0x20, 0x8f, 0xed, 0xcd, 0xf8, 0x23, 0x4c, 0x94, 0x21, 0xe9, 0xcd, 0x9a, 0x7a, 0xe8, 0x73, 0xbf, 0xbd, 0xbc, 0x39, 0x37, 0x23, 0xd1, 0xba, 0x1e, 0x1e, 0x6a, 0x8e, 0x6b, 0x24, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7c, 0xd1, 0x2c, 0xb1}, SECP256K1_FE_CONST(0xd192d520, 0x07e541c9, 0x807006ed, 0x0468df77, 0xfd214af0, 0xa795fe11, 0x9359666f, 0xdcf08f7c), 0},
+ {{0x5e, 0xb9, 0x69, 0x6a, 0x23, 0x36, 0xfe, 0x2c, 0x3c, 0x66, 0x6b, 0x02, 0xc7, 0x55, 0xdb, 0x4c, 0x0c, 0xfd, 0x62, 0x82, 0x5c, 0x7b, 0x58, 0x9a, 0x7b, 0x7b, 0xb4, 0x42, 0xe1, 0x41, 0xc1, 0xd6, 0x93, 0x41, 0x3f, 0x00, 0x52, 0xd4, 0x9e, 0x64, 0xab, 0xec, 0x6d, 0x58, 0x31, 0xd6, 0x6c, 0x43, 0x61, 0x28, 0x30, 0xa1, 0x7d, 0xf1, 0xfe, 0x43, 0x83, 0xdb, 0x89, 0x64, 0x68, 0x10, 0x02, 0x21}, SECP256K1_FE_CONST(0xef6e1da6, 0xd6c7627e, 0x80f7a723, 0x4cb08a02, 0x2c1ee1cf, 0x29e4d0f9, 0x642ae924, 0xcef9eb38), 1},
+ {{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
+ {{0x7b, 0xf9, 0x6b, 0x7b, 0x6d, 0xa1, 0x5d, 0x34, 0x76, 0xa2, 0xb1, 0x95, 0x93, 0x4b, 0x69, 0x0a, 0x3a, 0x3d, 0xe3, 0xe8, 0xab, 0x84, 0x74, 0x85, 0x68, 0x63, 0xb0, 0xde, 0x3a, 0xf9, 0x0b, 0x0e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x50851dfc, 0x9f418c31, 0x4a437295, 0xb24feeea, 0x27af3d0c, 0xd2308348, 0xfda6e21c, 0x463e46ff), 0},
+ {{0x85, 0x1b, 0x1c, 0xa9, 0x45, 0x49, 0x37, 0x1c, 0x4f, 0x1f, 0x71, 0x87, 0x32, 0x1d, 0x39, 0xbf, 0x51, 0xc6, 0xb7, 0xfb, 0x61, 0xf7, 0xcb, 0xf0, 0x27, 0xc9, 0xda, 0x62, 0x02, 0x1b, 0x7a, 0x65, 0xfc, 0x54, 0xc9, 0x68, 0x37, 0xfb, 0x22, 0xb3, 0x62, 0xed, 0xa6, 0x3e, 0xc5, 0x2e, 0xc8, 0x3d, 0x81, 0xbe, 0xdd, 0x16, 0x0c, 0x11, 0xb2, 0x2d, 0x96, 0x5d, 0x9f, 0x4a, 0x6d, 0x64, 0xd2, 0x51}, SECP256K1_FE_CONST(0x3e731051, 0xe12d3323, 0x7eb324f2, 0xaa5b16bb, 0x868eb49a, 0x1aa1fadc, 0x19b6e876, 0x1b5a5f7b), 1},
+ {{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
+ {{0x94, 0x3c, 0x2f, 0x77, 0x51, 0x08, 0xb7, 0x37, 0xfe, 0x65, 0xa9, 0x53, 0x1e, 0x19, 0xf2, 0xfc, 0x2a, 0x19, 0x7f, 0x56, 0x03, 0xe3, 0xa2, 0x88, 0x1d, 0x1d, 0x83, 0xe4, 0x00, 0x8f, 0x91, 0x25, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x311c61f0, 0xab2f32b7, 0xb1f0223f, 0xa72f0a78, 0x752b8146, 0xe46107f8, 0x876dd9c4, 0xf92b2942), 0},
+ {{0xa0, 0xf1, 0x84, 0x92, 0x18, 0x3e, 0x61, 0xe8, 0x06, 0x3e, 0x57, 0x36, 0x06, 0x59, 0x14, 0x21, 0xb0, 0x6b, 0xc3, 0x51, 0x36, 0x31, 0x57, 0x8a, 0x73, 0xa3, 0x9c, 0x1c, 0x33, 0x06, 0x23, 0x9f, 0x2f, 0x32, 0x90, 0x4f, 0x0d, 0x2a, 0x33, 0xec, 0xca, 0x8a, 0x54, 0x51, 0x70, 0x5b, 0xb5, 0x37, 0xd3, 0xbf, 0x44, 0xe0, 0x71, 0x22, 0x60, 0x25, 0xcd, 0xbf, 0xd2, 0x49, 0xfe, 0x0f, 0x7a, 0xd6}, SECP256K1_FE_CONST(0x97a09cf1, 0xa2eae7c4, 0x94df3c6f, 0x8a9445bf, 0xb8c09d60, 0x832f9b0b, 0x9d5eabe2, 0x5fbd14b9), 0},
+ {{0xa1, 0xed, 0x0a, 0x0b, 0xd7, 0x9d, 0x8a, 0x23, 0xcf, 0xe4, 0xec, 0x5f, 0xef, 0x5b, 0xa5, 0xcc, 0xcf, 0xd8, 0x44, 0xe4, 0xff, 0x5c, 0xb4, 0xb0, 0xf2, 0xe7, 0x16, 0x27, 0x34, 0x1f, 0x1c, 0x5b, 0x17, 0xc4, 0x99, 0x24, 0x9e, 0x0a, 0xc0, 0x8d, 0x5d, 0x11, 0xea, 0x1c, 0x2c, 0x8c, 0xa7, 0x00, 0x16, 0x16, 0x55, 0x9a, 0x79, 0x94, 0xea, 0xde, 0xc9, 0xca, 0x10, 0xfb, 0x4b, 0x85, 0x16, 0xdc}, SECP256K1_FE_CONST(0x65a89640, 0x744192cd, 0xac64b2d2, 0x1ddf989c, 0xdac75007, 0x25b645be, 0xf8e2200a, 0xe39691f2), 0},
+ {{0xba, 0x94, 0x59, 0x4a, 0x43, 0x27, 0x21, 0xaa, 0x35, 0x80, 0xb8, 0x4c, 0x16, 0x1d, 0x0d, 0x13, 0x4b, 0xc3, 0x54, 0xb6, 0x90, 0x40, 0x4d, 0x7c, 0xd4, 0xec, 0x57, 0xc1, 0x6d, 0x3f, 0xbe, 0x98, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0x50, 0x7d, 0xd7}, SECP256K1_FE_CONST(0x5e0d7656, 0x4aae92cb, 0x347e01a6, 0x2afd389a, 0x9aa401c7, 0x6c8dd227, 0x543dc9cd, 0x0efe685a), 0},
+ {{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x2d97f96c, 0xac882dfe, 0x73dc44db, 0x6ce0f1d3, 0x1d624135, 0x8dd5d74e, 0xb3d3b500, 0x03d24c2b), 0},
+ {{0xbc, 0xaf, 0x72, 0x19, 0xf2, 0xf6, 0xfb, 0xf5, 0x5f, 0xe5, 0xe0, 0x62, 0xdc, 0xe0, 0xe4, 0x8c, 0x18, 0xf6, 0x81, 0x03, 0xf1, 0x0b, 0x81, 0x98, 0xe9, 0x74, 0xc1, 0x84, 0x75, 0x0e, 0x1b, 0xe3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x65, 0x07, 0xd0, 0x9a}, SECP256K1_FE_CONST(0xe7008afe, 0x6e8cbd50, 0x55df120b, 0xd748757c, 0x686dadb4, 0x1cce75e4, 0xaddcc5e0, 0x2ec02b44), 1},
+ {{0xc5, 0x98, 0x1b, 0xae, 0x27, 0xfd, 0x84, 0x40, 0x1c, 0x72, 0xa1, 0x55, 0xe5, 0x70, 0x7f, 0xbb, 0x81, 0x1b, 0x2b, 0x62, 0x06, 0x45, 0xd1, 0x02, 0x8e, 0xa2, 0x70, 0xcb, 0xe0, 0xee, 0x22, 0x5d, 0x4b, 0x62, 0xaa, 0x4d, 0xca, 0x65, 0x06, 0xc1, 0xac, 0xdb, 0xec, 0xc0, 0x55, 0x25, 0x69, 0xb4, 0xb2, 0x14, 0x36, 0xa5, 0x69, 0x2e, 0x25, 0xd9, 0x0d, 0x3b, 0xc2, 0xeb, 0x7c, 0xe2, 0x40, 0x78}, SECP256K1_FE_CONST(0x948b40e7, 0x181713bc, 0x018ec170, 0x2d3d054d, 0x15746c59, 0xa7020730, 0xdd13ecf9, 0x85a010d7), 0},
+ {{0xc8, 0x94, 0xce, 0x48, 0xbf, 0xec, 0x43, 0x30, 0x14, 0xb9, 0x31, 0xa6, 0xad, 0x42, 0x26, 0xd7, 0xdb, 0xd8, 0xea, 0xa7, 0xb6, 0xe3, 0xfa, 0xa8, 0xd0, 0xef, 0x94, 0x05, 0x2b, 0xcf, 0x8c, 0xff, 0x33, 0x6e, 0xeb, 0x39, 0x19, 0xe2, 0xb4, 0xef, 0xb7, 0x46, 0xc7, 0xf7, 0x1b, 0xbc, 0xa7, 0xe9, 0x38, 0x32, 0x30, 0xfb, 0xbc, 0x48, 0xff, 0xaf, 0xe7, 0x7e, 0x8b, 0xcc, 0x69, 0x54, 0x24, 0x71}, SECP256K1_FE_CONST(0xf1c91acd, 0xc2525330, 0xf9b53158, 0x434a4d43, 0xa1c547cf, 0xf29f1550, 0x6f5da4eb, 0x4fe8fa5a), 1},
+ {{0xcb, 0xb0, 0xde, 0xab, 0x12, 0x57, 0x54, 0xf1, 0xfd, 0xb2, 0x03, 0x8b, 0x04, 0x34, 0xed, 0x9c, 0xb3, 0xfb, 0x53, 0xab, 0x73, 0x53, 0x91, 0x12, 0x99, 0x94, 0xa5, 0x35, 0xd9, 0x25, 0xf6, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x872d81ed, 0x8831d999, 0x8b67cb71, 0x05243edb, 0xf86c10ed, 0xfebb786c, 0x110b02d0, 0x7b2e67cd), 0},
+ {{0xd9, 0x17, 0xb7, 0x86, 0xda, 0xc3, 0x56, 0x70, 0xc3, 0x30, 0xc9, 0xc5, 0xae, 0x59, 0x71, 0xdf, 0xb4, 0x95, 0xc8, 0xae, 0x52, 0x3e, 0xd9, 0x7e, 0xe2, 0x42, 0x01, 0x17, 0xb1, 0x71, 0xf4, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x20, 0x01, 0xf6, 0xf6}, SECP256K1_FE_CONST(0xe45b71e1, 0x10b831f2, 0xbdad8651, 0x994526e5, 0x8393fde4, 0x328b1ec0, 0x4d598971, 0x42584691), 1},
+ {{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
+ {{0xe2, 0x8b, 0xd8, 0xf5, 0x92, 0x9b, 0x46, 0x7e, 0xb7, 0x0e, 0x04, 0x33, 0x23, 0x74, 0xff, 0xb7, 0xe7, 0x18, 0x02, 0x18, 0xad, 0x16, 0xea, 0xa4, 0x6b, 0x71, 0x61, 0xaa, 0x67, 0x9e, 0xb4, 0x26, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x66b8c980, 0xa75c72e5, 0x98d383a3, 0x5a62879f, 0x844242ad, 0x1e73ff12, 0xedaa59f4, 0xe58632b5), 0},
+ {{0xe7, 0xee, 0x58, 0x14, 0xc1, 0x70, 0x6b, 0xf8, 0xa8, 0x93, 0x96, 0xa9, 0xb0, 0x32, 0xbc, 0x01, 0x4c, 0x2c, 0xac, 0x9c, 0x12, 0x11, 0x27, 0xdb, 0xf6, 0xc9, 0x92, 0x78, 0xf8, 0xbb, 0x53, 0xd1, 0xdf, 0xd0, 0x4d, 0xbc, 0xda, 0x8e, 0x35, 0x24, 0x66, 0xb6, 0xfc, 0xd5, 0xf2, 0xde, 0xa3, 0xe1, 0x7d, 0x5e, 0x13, 0x31, 0x15, 0x88, 0x6e, 0xda, 0x20, 0xdb, 0x8a, 0x12, 0xb5, 0x4d, 0xe7, 0x1b}, SECP256K1_FE_CONST(0xe842c6e3, 0x529b2342, 0x70a5e977, 0x44edc34a, 0x04d7ba94, 0xe44b6d25, 0x23c9cf01, 0x95730a50), 1},
+ {{0xf2, 0x92, 0xe4, 0x68, 0x25, 0xf9, 0x22, 0x5a, 0xd2, 0x3d, 0xc0, 0x57, 0xc1, 0xd9, 0x1c, 0x4f, 0x57, 0xfc, 0xb1, 0x38, 0x6f, 0x29, 0xef, 0x10, 0x48, 0x1c, 0xb1, 0xd2, 0x25, 0x18, 0x59, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x11, 0xc9, 0x89}, SECP256K1_FE_CONST(0x3cea2c53, 0xb8b01701, 0x66ac7da6, 0x7194694a, 0xdacc84d5, 0x6389225e, 0x330134da, 0xb85a4d55), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x01, 0xd3, 0x47, 0x5b, 0xf7, 0x65, 0x5b, 0x0f, 0xb2, 0xd8, 0x52, 0x92, 0x10, 0x35, 0xb2, 0xef, 0x60, 0x7f, 0x49, 0x06, 0x9b, 0x97, 0x45, 0x4e, 0x67, 0x95, 0x25, 0x10, 0x62, 0x74, 0x17, 0x71}, SECP256K1_FE_CONST(0xb5da00b7, 0x3cd65605, 0x20e7c364, 0x086e7cd2, 0x3a34bf60, 0xd0e707be, 0x9fc34d4c, 0xd5fdfa2c), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x42, 0x18, 0xf2, 0x0a, 0xe6, 0xc6, 0x46, 0xb3, 0x63, 0xdb, 0x68, 0x60, 0x58, 0x22, 0xfb, 0x14, 0x26, 0x4c, 0xa8, 0xd2, 0x58, 0x7f, 0xdd, 0x6f, 0xbc, 0x75, 0x0d, 0x58, 0x7e, 0x76, 0xa7, 0xee}, SECP256K1_FE_CONST(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaa9, 0xfffffd6b), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x82, 0x27, 0x7c, 0x4a, 0x71, 0xf9, 0xd2, 0x2e, 0x66, 0xec, 0xe5, 0x23, 0xf8, 0xfa, 0x08, 0x74, 0x1a, 0x7c, 0x09, 0x12, 0xc6, 0x6a, 0x69, 0xce, 0x68, 0x51, 0x4b, 0xfd, 0x35, 0x15, 0xb4, 0x9f}, SECP256K1_FE_CONST(0xf482f2e2, 0x41753ad0, 0xfb89150d, 0x8491dc1e, 0x34ff0b8a, 0xcfbb442c, 0xfe999e2e, 0x5e6fd1d2), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0x84, 0x21, 0xcc, 0x93, 0x0e, 0x77, 0xc9, 0xf5, 0x14, 0xb6, 0x91, 0x5c, 0x3d, 0xbe, 0x2a, 0x94, 0xc6, 0xd8, 0xf6, 0x90, 0xb5, 0xb7, 0x39, 0x86, 0x4b, 0xa6, 0x78, 0x9f, 0xb8, 0xa5, 0x5d, 0xd0}, SECP256K1_FE_CONST(0x9f59c402, 0x75f5085a, 0x006f05da, 0xe77eb98c, 0x6fd0db1a, 0xb4a72ac4, 0x7eae90a4, 0xfc9e57e0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xd1, 0x9c, 0x18, 0x2d, 0x27, 0x59, 0xcd, 0x99, 0x82, 0x42, 0x28, 0xd9, 0x47, 0x99, 0xf8, 0xc6, 0x55, 0x7c, 0x38, 0xa1, 0xc0, 0xd6, 0x77, 0x9b, 0x9d, 0x4b, 0x72, 0x9c, 0x6f, 0x1c, 0xcc, 0x42}, SECP256K1_FE_CONST(0x70720db7, 0xe238d041, 0x21f5b1af, 0xd8cc5ad9, 0xd18944c6, 0xbdc94881, 0xf502b7a3, 0xaf3aecff), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0xedd1fd3e, 0x327ce90c, 0xc7a35426, 0x14289aee, 0x9682003e, 0x9cf7dcc9, 0xcf2ca974, 0x3be5aa0c), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x64, 0xbb, 0xd5}, SECP256K1_FE_CONST(0x50873db3, 0x1badcc71, 0x890e4f67, 0x753a6575, 0x7f97aaa7, 0xdd5f1e82, 0xb753ace3, 0x2219064b), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x70, 0x28, 0xde, 0x7d}, SECP256K1_FE_CONST(0x1eea9cc5, 0x9cfcf2fa, 0x151ac6c2, 0x74eea411, 0x0feb4f7b, 0x68c59657, 0x32e9992e, 0x976ef68e), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xcb, 0xcf, 0xb7, 0xe7}, SECP256K1_FE_CONST(0x12303941, 0xaedc2088, 0x80735b1f, 0x1795c8e5, 0x5be520ea, 0x93e10335, 0x7b5d2adb, 0x7ed59b8e), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf3, 0x11, 0x3a, 0xd9}, SECP256K1_FE_CONST(0x7eed6b70, 0xe7b0767c, 0x7d7feac0, 0x4e57aa2a, 0x12fef5e0, 0xf48f878f, 0xcbb88b3b, 0x6b5e0783), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x13, 0xce, 0xa4, 0xa7, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x64998443, 0x5b62b4a2, 0x5d40c613, 0x3e8d9ab8, 0xc53d4b05, 0x9ee8a154, 0xa3be0fcf, 0x4e892edb), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x02, 0x8c, 0x59, 0x00, 0x63, 0xf6, 0x4d, 0x5a, 0x7f, 0x1c, 0x14, 0x91, 0x5c, 0xd6, 0x1e, 0xac, 0x88, 0x6a, 0xb2, 0x95, 0xbe, 0xbd, 0x91, 0x99, 0x25, 0x04, 0xcf, 0x77, 0xed, 0xb0, 0x28, 0xbd, 0xd6, 0x26, 0x7f}, SECP256K1_FE_CONST(0x3fde5713, 0xf8282eea, 0xd7d39d42, 0x01f44a7c, 0x85a5ac8a, 0x0681f35e, 0x54085c6b, 0x69543374), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x27, 0x15, 0xde, 0x86, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x3524f77f, 0xa3a6eb43, 0x89c3cb5d, 0x27f1f914, 0x62086429, 0xcd6c0cb0, 0xdf43ea8f, 0x1e7b3fb4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x2c, 0x2c, 0x57, 0x09, 0xe7, 0x15, 0x6c, 0x41, 0x77, 0x17, 0xf2, 0xfe, 0xab, 0x14, 0x71, 0x41, 0xec, 0x3d, 0xa1, 0x9f, 0xb7, 0x59, 0x57, 0x5c, 0xc6, 0xe3, 0x7b, 0x2e, 0xa5, 0xac, 0x93, 0x09, 0xf2, 0x6f, 0x0f, 0x66}, SECP256K1_FE_CONST(0xd2469ab3, 0xe04acbb2, 0x1c65a180, 0x9f39caaf, 0xe7a77c13, 0xd10f9dd3, 0x8f391c01, 0xdc499c52), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3a, 0x08, 0xcc, 0x1e, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf7, 0x60, 0xe9, 0xf0}, SECP256K1_FE_CONST(0x38e2a5ce, 0x6a93e795, 0xe16d2c39, 0x8bc99f03, 0x69202ce2, 0x1e8f09d5, 0x6777b40f, 0xc512bccc), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x3e, 0x91, 0x25, 0x7d, 0x93, 0x20, 0x16, 0xcb, 0xf6, 0x9c, 0x44, 0x71, 0xbd, 0x1f, 0x65, 0x6c, 0x6a, 0x10, 0x7f, 0x19, 0x73, 0xde, 0x4a, 0xf7, 0x08, 0x6d, 0xb8, 0x97, 0x27, 0x70, 0x60, 0xe2, 0x56, 0x77, 0xf1, 0x9a}, SECP256K1_FE_CONST(0x864b3dc9, 0x02c37670, 0x9c10a93a, 0xd4bbe29f, 0xce0012f3, 0xdc8672c6, 0x286bba28, 0xd7d6d6fc), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79, 0x5d, 0x6c, 0x1c, 0x32, 0x2c, 0xad, 0xf5, 0x99, 0xdb, 0xb8, 0x64, 0x81, 0x52, 0x2b, 0x3c, 0xc5, 0x5f, 0x15, 0xa6, 0x79, 0x32, 0xdb, 0x2a, 0xfa, 0x01, 0x11, 0xd9, 0xed, 0x69, 0x81, 0xbc, 0xd1, 0x24, 0xbf, 0x44}, SECP256K1_FE_CONST(0x766dfe4a, 0x700d9bee, 0x288b903a, 0xd58870e3, 0xd4fe2f0e, 0xf780bcac, 0x5c823f32, 0x0d9a9bef), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x8e, 0x42, 0x6f, 0x03, 0x92, 0x38, 0x90, 0x78, 0xc1, 0x2b, 0x1a, 0x89, 0xe9, 0x54, 0x2f, 0x05, 0x93, 0xbc, 0x96, 0xb6, 0xbf, 0xde, 0x82, 0x24, 0xf8, 0x65, 0x4e, 0xf5, 0xd5, 0xcd, 0xa9, 0x35, 0xa3, 0x58, 0x21, 0x94}, SECP256K1_FE_CONST(0xfaec7bc1, 0x987b6323, 0x3fbc5f95, 0x6edbf37d, 0x54404e74, 0x61c58ab8, 0x631bc68e, 0x451a0478), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x91, 0x19, 0x21, 0x39, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x45, 0xf0, 0xf1, 0xeb}, SECP256K1_FE_CONST(0xec29a50b, 0xae138dbf, 0x7d8e2482, 0x5006bb5f, 0xc1a2cc12, 0x43ba335b, 0xc6116fb9, 0xe498ec1f), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x98, 0xeb, 0x9a, 0xb7, 0x6e, 0x84, 0x49, 0x9c, 0x48, 0x3b, 0x3b, 0xf0, 0x62, 0x14, 0xab, 0xfe, 0x06, 0x5d, 0xdd, 0xf4, 0x3b, 0x86, 0x01, 0xde, 0x59, 0x6d, 0x63, 0xb9, 0xe4, 0x5a, 0x16, 0x6a, 0x58, 0x05, 0x41, 0xfe}, SECP256K1_FE_CONST(0x1e0ff2de, 0xe9b09b13, 0x6292a9e9, 0x10f0d6ac, 0x3e552a64, 0x4bba39e6, 0x4e9dd3e3, 0xbbd3d4d4), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xc7, 0x4d, 0x99, 0xef, 0xce, 0xaa, 0x55, 0x0f, 0x1a, 0xd1, 0xc0, 0xf4, 0x3f, 0x46, 0xe7, 0xff, 0x1e, 0xe3, 0xbd, 0x01, 0x62, 0xb7, 0xbf, 0x55, 0xf2, 0x96, 0x5d, 0xa9, 0xc3, 0x45, 0x06, 0x46}, SECP256K1_FE_CONST(0x8b7dd5c3, 0xedba9ee9, 0x7b70eff4, 0x38f22dca, 0x9849c825, 0x4a2f3345, 0xa0a572ff, 0xeaae0928), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x9b, 0x77, 0xb7, 0xf2, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x15, 0x6c, 0xa8, 0x96}, SECP256K1_FE_CONST(0x0881950c, 0x8f51d6b9, 0xa6387465, 0xd5f12609, 0xef1bb254, 0x12a08a74, 0xcb2dfb20, 0x0c74bfbf), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa2, 0xf5, 0xcd, 0x83, 0x88, 0x16, 0xc1, 0x6c, 0x4f, 0xe8, 0xa1, 0x66, 0x1d, 0x60, 0x6f, 0xdb, 0x13, 0xcf, 0x9a, 0xf0, 0x4b, 0x97, 0x9a, 0x2e, 0x15, 0x9a, 0x09, 0x40, 0x9e, 0xbc, 0x86, 0x45, 0xd5, 0x8f, 0xde, 0x02}, SECP256K1_FE_CONST(0x2f083207, 0xb9fd9b55, 0x0063c31c, 0xd62b8746, 0xbd543bdc, 0x5bbf10e3, 0xa35563e9, 0x27f440c8), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xb1, 0x3f, 0x75, 0xc0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x4f51e0be, 0x078e0cdd, 0xab274215, 0x6adba7e7, 0xa148e731, 0x57072fd6, 0x18cd6094, 0x2b146bd0), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xe7, 0xbc, 0x1f, 0x8d, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xfc, 0x2f}, SECP256K1_FE_CONST(0x16c2ccb5, 0x4352ff4b, 0xd794f6ef, 0xd613c721, 0x97ab7082, 0xda5b563b, 0xdf9cb3ed, 0xaafe74c2), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xef, 0x64, 0xd1, 0x62, 0x75, 0x05, 0x46, 0xce, 0x42, 0xb0, 0x43, 0x13, 0x61, 0xe5, 0x2d, 0x4f, 0x52, 0x42, 0xd8, 0xf2, 0x4f, 0x33, 0xe6, 0xb1, 0xf9, 0x9b, 0x59, 0x16, 0x47, 0xcb, 0xc8, 0x08, 0xf4, 0x62, 0xaf, 0x51}, SECP256K1_FE_CONST(0xd41244d1, 0x1ca4f652, 0x40687759, 0xf95ca9ef, 0xbab767ed, 0xedb38fd1, 0x8c36e18c, 0xd3b6f6a9), 1},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf0, 0xe5, 0xbe, 0x52, 0x37, 0x2d, 0xd6, 0xe8, 0x94, 0xb2, 0xa3, 0x26, 0xfc, 0x36, 0x05, 0xa6, 0xe8, 0xf3, 0xc6, 0x9c, 0x71, 0x0b, 0xf2, 0x7d, 0x63, 0x0d, 0xfe, 0x20, 0x04, 0x98, 0x8b, 0x78, 0xeb, 0x6e, 0xab, 0x36}, SECP256K1_FE_CONST(0x64bf84dd, 0x5e03670f, 0xdb24c0f5, 0xd3c2c365, 0x736f51db, 0x6c92d950, 0x10716ad2, 0xd36134c8), 0},
+ {{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfb, 0xb9, 0x82, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf6, 0xd6, 0xdb, 0x1f}, SECP256K1_FE_CONST(0x1c92ccdf, 0xcf4ac550, 0xc28db57c, 0xff0c8515, 0xcb26936c, 0x786584a7, 0x0114008d, 0x6c33a34b), 0},
+};
+
+/** This is a hasher for ellswift_xdh which just returns the shared X coordinate.
+ *
+ * This is generally a bad idea as it means changes to the encoding of the
+ * exchanged public keys do not affect the shared secret. However, it's used here
+ * in tests to be able to verify the X coordinate through other means.
+ */
+static int ellswift_xdh_hash_x32(unsigned char *output, const unsigned char *x32, const unsigned char *ours64, const unsigned char *theirs64, void *data) {
+ (void)ours64;
+ (void)theirs64;
+ (void)data;
+ memcpy(output, x32, 32);
+ return 1;
+}
+
+void run_ellswift_tests(void) {
+ int i = 0;
+ /* Test vectors. */
+ for (i = 0; (unsigned)i < sizeof(ellswift_xswiftec_inv_tests) / sizeof(ellswift_xswiftec_inv_tests[0]); ++i) {
+ const struct ellswift_xswiftec_inv_test* testcase = &ellswift_xswiftec_inv_tests[i];
+ int c;
+ for (c = 0; c < 8; ++c) {
+ secp256k1_fe t;
+ int ret = secp256k1_ellswift_xswiftec_inv_var(&t, &testcase->x, &testcase->u, c);
+ CHECK(ret == ((testcase->enc_bitmap >> c) & 1));
+ if (ret) {
+ secp256k1_fe x2;
+ CHECK(check_fe_equal(&t, &testcase->encs[c]));
+ secp256k1_ellswift_xswiftec_var(&x2, &testcase->u, &testcase->encs[c]);
+ CHECK(check_fe_equal(&testcase->x, &x2));
+ }
+ }
+ }
+ for (i = 0; (unsigned)i < sizeof(ellswift_decode_tests) / sizeof(ellswift_decode_tests[0]); ++i) {
+ const struct ellswift_decode_test* testcase = &ellswift_decode_tests[i];
+ secp256k1_pubkey pubkey;
+ secp256k1_ge ge;
+ int ret;
+ ret = secp256k1_ellswift_decode(ctx, &pubkey, testcase->enc);
+ CHECK(ret);
+ ret = secp256k1_pubkey_load(ctx, &ge, &pubkey);
+ CHECK(ret);
+ CHECK(check_fe_equal(&testcase->x, &ge.x));
+ CHECK(secp256k1_fe_is_odd(&ge.y) == testcase->odd_y);
+ }
+ /* Verify that secp256k1_ellswift_encode + decode roundtrips. */
+ for (i = 0; i < 1000 * count; i++) {
+ unsigned char rnd32[32];
+ unsigned char ell64[64];
+ secp256k1_ge g, g2;
+ secp256k1_pubkey pubkey, pubkey2;
+ /* Generate random public key and random randomizer. */
+ random_group_element_test(&g);
+ secp256k1_pubkey_save(&pubkey, &g);
+ secp256k1_testrand256(rnd32);
+ /* Convert the public key to ElligatorSwift and back. */
+ secp256k1_ellswift_encode(ctx, ell64, &pubkey, rnd32);
+ secp256k1_ellswift_decode(ctx, &pubkey2, ell64);
+ secp256k1_pubkey_load(ctx, &g2, &pubkey2);
+ /* Compare with original. */
+ ge_equals_ge(&g, &g2);
+ }
+ /* Verify the behavior of secp256k1_ellswift_create */
+ for (i = 0; i < 400 * count; i++) {
+ unsigned char rnd32[32], sec32[32];
+ secp256k1_scalar sec;
+ secp256k1_gej res;
+ secp256k1_ge dec;
+ secp256k1_pubkey pub;
+ unsigned char ell64[64];
+ int ret;
+ /* Generate random secret key and random randomizer. */
+ secp256k1_testrand256_test(rnd32);
+ random_scalar_order_test(&sec);
+ secp256k1_scalar_get_b32(sec32, &sec);
+ /* Construct ElligatorSwift-encoded public keys for that key. */
+ ret = secp256k1_ellswift_create(ctx, ell64, sec32, rnd32);
+ CHECK(ret);
+ /* Decode it, and compare with traditionally-computed public key. */
+ secp256k1_ellswift_decode(ctx, &pub, ell64);
+ secp256k1_pubkey_load(ctx, &dec, &pub);
+ secp256k1_ecmult(&res, NULL, &secp256k1_scalar_zero, &sec);
+ ge_equals_gej(&dec, &res);
+ }
+ /* Verify that secp256k1_ellswift_xdh computes the right shared X coordinate. */
+ for (i = 0; i < 800 * count; i++) {
+ unsigned char ell64[64], sec32[32], share32[32];
+ secp256k1_scalar sec;
+ secp256k1_ge dec, res;
+ secp256k1_fe share_x;
+ secp256k1_gej decj, resj;
+ secp256k1_pubkey pub;
+ int ret;
+ /* Generate random secret key. */
+ random_scalar_order_test(&sec);
+ secp256k1_scalar_get_b32(sec32, &sec);
+ /* Generate random ElligatorSwift encoding for the remote key and decode it. */
+ secp256k1_testrand256_test(ell64);
+ secp256k1_testrand256_test(ell64 + 32);
+ secp256k1_ellswift_decode(ctx, &pub, ell64);
+ secp256k1_pubkey_load(ctx, &dec, &pub);
+ secp256k1_gej_set_ge(&decj, &dec);
+ /* Compute the X coordinate of seckey*pubkey using ellswift_xdh. Note that we
+ * pass ell64 as claimed (but incorrect) encoding for sec32 here; this works
+ * because the "hasher" function we use here ignores the ours64 argument. */
+ ret = secp256k1_ellswift_xdh(ctx, share32, ell64, ell64, sec32, &ellswift_xdh_hash_x32, NULL);
+ CHECK(ret);
+ secp256k1_fe_set_b32(&share_x, share32);
+ /* Compute seckey*pubkey directly. */
+ secp256k1_ecmult(&resj, &decj, &sec, NULL);
+ secp256k1_ge_set_gej(&res, &resj);
+ /* Compare. */
+ CHECK(check_fe_equal(&res.x, &share_x));
+ }
+ /* Verify the joint behavior of secp256k1_ellswift_xdh */
+ for (i = 0; i < 200 * count; i++) {
+ unsigned char rnd32a[32], rnd32b[32], sec32a[32], sec32b[32];
+ secp256k1_scalar seca, secb;
+ unsigned char ell64a[64], ell64b[64];
+ unsigned char share32a[32], share32b[32];
+ int ret;
+ /* Generate random secret keys and random randomizers. */
+ secp256k1_testrand256_test(rnd32a);
+ secp256k1_testrand256_test(rnd32b);
+ random_scalar_order_test(&seca);
+ random_scalar_order_test(&secb);
+ secp256k1_scalar_get_b32(sec32a, &seca);
+ secp256k1_scalar_get_b32(sec32b, &secb);
+ /* Construct ElligatorSwift-encoded public keys for those keys. */
+ ret = secp256k1_ellswift_create(ctx, ell64a, sec32a, rnd32a);
+ CHECK(ret);
+ ret = secp256k1_ellswift_create(ctx, ell64b, sec32b, rnd32b);
+ CHECK(ret);
+ /* Compute the shared secret both ways and compare with each other. */
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(ret);
+ ret = secp256k1_ellswift_xdh(ctx, share32b, ell64b, ell64a, sec32a, NULL, NULL);
+ CHECK(ret);
+ CHECK(secp256k1_memcmp_var(share32a, share32b, 32) == 0);
+ /* Verify that the shared secret doesn't match if a secret key or remote pubkey changes. */
+ secp256k1_testrand_flip(ell64a, 64);
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(ret);
+ CHECK(secp256k1_memcmp_var(share32a, share32b, 32) != 0);
+ secp256k1_testrand_flip(sec32a, 32);
+ ret = secp256k1_ellswift_xdh(ctx, share32a, ell64a, ell64b, sec32b, NULL, NULL);
+ CHECK(!ret || secp256k1_memcmp_var(share32a, share32b, 32) != 0);
+ }
+}
+
+#endif
diff --git a/src/modules/extrakeys/tests_exhaustive_impl.h b/src/modules/extrakeys/tests_exhaustive_impl.h
index d4a2f5bdf4..5ecc90d50f 100644
--- a/src/modules/extrakeys/tests_exhaustive_impl.h
+++ b/src/modules/extrakeys/tests_exhaustive_impl.h
@@ -7,8 +7,8 @@
#ifndef SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
#define SECP256K1_MODULE_EXTRAKEYS_TESTS_EXHAUSTIVE_H
-#include "src/modules/extrakeys/main_impl.h"
#include "../../../include/secp256k1_extrakeys.h"
+#include "main_impl.h"
static void test_exhaustive_extrakeys(const secp256k1_context *ctx, const secp256k1_ge* group) {
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
diff --git a/src/modules/recovery/bench_impl.h b/src/modules/recovery/bench_impl.h
index 4a9e886910..e1cf4924d3 100644
--- a/src/modules/recovery/bench_impl.h
+++ b/src/modules/recovery/bench_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_RECOVERY_BENCH_H
#define SECP256K1_MODULE_RECOVERY_BENCH_H
-#include "../include/secp256k1_recovery.h"
+#include "../../../include/secp256k1_recovery.h"
typedef struct {
secp256k1_context *ctx;
diff --git a/src/modules/recovery/tests_exhaustive_impl.h b/src/modules/recovery/tests_exhaustive_impl.h
index 590a972ed3..ed9386b6f8 100644
--- a/src/modules/recovery/tests_exhaustive_impl.h
+++ b/src/modules/recovery/tests_exhaustive_impl.h
@@ -7,7 +7,7 @@
#ifndef SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
#define SECP256K1_MODULE_RECOVERY_EXHAUSTIVE_TESTS_H
-#include "src/modules/recovery/main_impl.h"
+#include "main_impl.h"
#include "../../../include/secp256k1_recovery.h"
void test_exhaustive_recovery_sign(const secp256k1_context *ctx, const secp256k1_ge *group) {
diff --git a/src/modules/schnorrsig/bench_impl.h b/src/modules/schnorrsig/bench_impl.h
index 41f393c84d..84a172742f 100644
--- a/src/modules/schnorrsig/bench_impl.h
+++ b/src/modules/schnorrsig/bench_impl.h
@@ -91,10 +91,12 @@ void run_schnorrsig_bench(int iters, int argc, char** argv) {
free((void *)data.msgs[i]);
free((void *)data.sigs[i]);
}
- free(data.keypairs);
- free(data.pk);
- free(data.msgs);
- free(data.sigs);
+
+ /* Casting to (void *) avoids a stupid warning in MSVC. */
+ free((void *)data.keypairs);
+ free((void *)data.pk);
+ free((void *)data.msgs);
+ free((void *)data.sigs);
secp256k1_context_destroy(data.ctx);
}
diff --git a/src/modules/schnorrsig/tests_exhaustive_impl.h b/src/modules/schnorrsig/tests_exhaustive_impl.h
index d8df9dd2df..55f9028a63 100644
--- a/src/modules/schnorrsig/tests_exhaustive_impl.h
+++ b/src/modules/schnorrsig/tests_exhaustive_impl.h
@@ -8,7 +8,7 @@
#define SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H
#include "../../../include/secp256k1_schnorrsig.h"
-#include "src/modules/schnorrsig/main_impl.h"
+#include "main_impl.h"
static const unsigned char invalid_pubkey_bytes[][32] = {
/* 0 */
diff --git a/src/scratch_impl.h b/src/scratch_impl.h
index 688e18eb66..f71a20b963 100644
--- a/src/scratch_impl.h
+++ b/src/scratch_impl.h
@@ -25,11 +25,11 @@ static secp256k1_scratch* secp256k1_scratch_create(const secp256k1_callback* err
static void secp256k1_scratch_destroy(const secp256k1_callback* error_callback, secp256k1_scratch* scratch) {
if (scratch != NULL) {
- VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */
if (secp256k1_memcmp_var(scratch->magic, "scratch", 8) != 0) {
secp256k1_callback_call(error_callback, "invalid scratch space");
return;
}
+ VERIFY_CHECK(scratch->alloc_size == 0); /* all checkpoints should be applied */
memset(scratch->magic, 0, sizeof(scratch->magic));
free(scratch);
}
diff --git a/src/secp256k1.c b/src/secp256k1.c
index 8f34c35283..df9bd1e5d7 100644
--- a/src/secp256k1.c
+++ b/src/secp256k1.c
@@ -4,6 +4,17 @@
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
+/* This is a C project. It should not be compiled with a C++ compiler,
+ * and we error out if we detect one.
+ *
+ * We still want to be able to test the project with a C++ compiler
+ * because it is still good to know if this will lead to real trouble, so
+ * there is a possibility to override the check. But be warned that
+ * compiling with a C++ compiler is not supported. */
+#if defined(__cplusplus) && !defined(SECP256K1_CPLUSPLUS_TEST_OVERRIDE)
+#error Trying to compile a C project with a C++ compiler.
+#endif
+
#define SECP256K1_BUILD
#include "../include/secp256k1.h"
@@ -765,3 +776,7 @@ int secp256k1_tagged_sha256(const secp256k1_context* ctx, unsigned char *hash32,
#ifdef ENABLE_MODULE_SCHNORRSIG
# include "modules/schnorrsig/main_impl.h"
#endif
+
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/main_impl.h"
+#endif
diff --git a/src/tests.c b/src/tests.c
index dd53173930..c3c1c9ecd4 100644
--- a/src/tests.c
+++ b/src/tests.c
@@ -942,12 +942,32 @@ void test_modinv32_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod
uint16_to_signed30(&x, in);
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4] | x.v[5] | x.v[6] | x.v[7] | x.v[8]) != 0;
uint16_to_signed30(&m.modulus, mod);
- mutate_sign_signed30(&m.modulus);
/* compute 1/modulus mod 2^30 */
m.modulus_inv30 = modinv2p64(m.modulus.v[0]) & 0x3fffffff;
CHECK(((m.modulus_inv30 * m.modulus.v[0]) & 0x3fffffff) == 1);
+ /* Test secp256k1_jacobi32_maybe_var. */
+ {
+ int jac;
+ uint16_t sqr[16], negone[16];
+ mulmod256(sqr, in, in, mod);
+ uint16_to_signed30(&x, sqr);
+ /* Compute jacobi symbol of in^2, which must be 0 or 1 (or uncomputable). */
+ jac = secp256k1_jacobi32_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == nonzero);
+ /* Then compute the jacobi symbol of -(in^2). x and -x have opposite
+ * jacobi symbols if and only if (mod % 4) == 3. */
+ negone[0] = mod[0] - 1;
+ for (i = 1; i < 16; ++i) negone[i] = mod[i];
+ mulmod256(sqr, sqr, negone, mod);
+ uint16_to_signed30(&x, sqr);
+ jac = secp256k1_jacobi32_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == (1 - (mod[0] & 2)) * nonzero);
+ }
+
+ uint16_to_signed30(&x, in);
+ mutate_sign_signed30(&m.modulus);
for (vartime = 0; vartime < 2; ++vartime) {
/* compute inverse */
(vartime ? secp256k1_modinv32_var : secp256k1_modinv32)(&x, &m);
@@ -1015,12 +1035,32 @@ void test_modinv64_uint16(uint16_t* out, const uint16_t* in, const uint16_t* mod
uint16_to_signed62(&x, in);
nonzero = (x.v[0] | x.v[1] | x.v[2] | x.v[3] | x.v[4]) != 0;
uint16_to_signed62(&m.modulus, mod);
- mutate_sign_signed62(&m.modulus);
/* compute 1/modulus mod 2^62 */
m.modulus_inv62 = modinv2p64(m.modulus.v[0]) & M62;
CHECK(((m.modulus_inv62 * m.modulus.v[0]) & M62) == 1);
+ /* Test secp256k1_jacobi64_maybe_var. */
+ {
+ int jac;
+ uint16_t sqr[16], negone[16];
+ mulmod256(sqr, in, in, mod);
+ uint16_to_signed62(&x, sqr);
+ /* Compute jacobi symbol of in^2, which must be 0 or 1 (or uncomputable). */
+ jac = secp256k1_jacobi64_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == nonzero);
+ /* Then compute the jacobi symbol of -(in^2). x and -x have opposite
+ * jacobi symbols if and only if (mod % 4) == 3. */
+ negone[0] = mod[0] - 1;
+ for (i = 1; i < 16; ++i) negone[i] = mod[i];
+ mulmod256(sqr, sqr, negone, mod);
+ uint16_to_signed62(&x, sqr);
+ jac = secp256k1_jacobi64_maybe_var(&x, &m);
+ CHECK(jac == -2 || jac == (1 - (mod[0] & 2)) * nonzero);
+ }
+
+ uint16_to_signed62(&x, in);
+ mutate_sign_signed62(&m.modulus);
for (vartime = 0; vartime < 2; ++vartime) {
/* compute inverse */
(vartime ? secp256k1_modinv64_var : secp256k1_modinv64)(&x, &m);
@@ -2854,8 +2894,10 @@ void run_sqrt(void) {
for (j = 0; j < count; j++) {
random_fe(&x);
secp256k1_fe_sqr(&s, &x);
+ CHECK(secp256k1_fe_jacobi_var(&s) == 1);
test_sqrt(&s, &x);
secp256k1_fe_negate(&t, &s, 1);
+ CHECK(secp256k1_fe_jacobi_var(&t) == -1);
test_sqrt(&t, NULL);
secp256k1_fe_mul(&t, &s, &ns);
test_sqrt(&t, NULL);
@@ -3236,7 +3278,7 @@ void test_ge(void) {
*/
secp256k1_ge *ge = (secp256k1_ge *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_ge) * (1 + 4 * runs));
secp256k1_gej *gej = (secp256k1_gej *)checked_malloc(&ctx->error_callback, sizeof(secp256k1_gej) * (1 + 4 * runs));
- secp256k1_fe zf;
+ secp256k1_fe zf, r;
secp256k1_fe zfi2, zfi3;
secp256k1_gej_set_infinity(&gej[0]);
@@ -3278,6 +3320,11 @@ void test_ge(void) {
secp256k1_fe_sqr(&zfi2, &zfi3);
secp256k1_fe_mul(&zfi3, &zfi3, &zfi2);
+ /* Generate random r */
+ do {
+ random_field_element_test(&r);
+ } while(secp256k1_fe_is_zero(&r));
+
for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
int i2;
for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
@@ -3390,6 +3437,29 @@ void test_ge(void) {
free(ge_set_all);
}
+ /* Test all elements have X coordinates on the curve. */
+ for (i = 1; i < 4 * runs + 1; i++) {
+ secp256k1_fe n;
+ CHECK(secp256k1_ge_x_on_curve_var(&ge[i].x));
+ /* And the same holds after random rescaling. */
+ secp256k1_fe_mul(&n, &zf, &ge[i].x);
+ CHECK(secp256k1_ge_x_frac_on_curve_var(&n, &zf));
+ }
+
+ /* Test correspondence secp256k1_ge_x{,_frac}_on_curve_var with ge_set_xo. */
+ {
+ secp256k1_fe n;
+ secp256k1_ge q;
+ int ret_on_curve, ret_frac_on_curve, ret_set_xo;
+ secp256k1_fe_mul(&n, &zf, &r);
+ ret_on_curve = secp256k1_ge_x_on_curve_var(&r);
+ ret_frac_on_curve = secp256k1_ge_x_frac_on_curve_var(&n, &zf);
+ ret_set_xo = secp256k1_ge_set_xo_var(&q, &r, 0);
+ CHECK(ret_on_curve == ret_frac_on_curve);
+ CHECK(ret_on_curve == ret_set_xo);
+ if (ret_set_xo) CHECK(secp256k1_fe_equal_var(&r, &q.x));
+ }
+
/* Test batch gej -> ge conversion with many infinities. */
for (i = 0; i < 4 * runs + 1; i++) {
int odd;
@@ -3986,6 +4056,68 @@ void ecmult_const_mult_zero_one(void) {
ge_equals_ge(&res2, &point);
}
+void ecmult_const_mult_xonly(void) {
+ int i;
+
+ /* Test correspondence between secp256k1_ecmult_const and secp256k1_ecmult_const_xonly. */
+ for (i = 0; i < 2*count; ++i) {
+ secp256k1_ge base;
+ secp256k1_gej basej, resj;
+ secp256k1_fe n, d, resx, v;
+ secp256k1_scalar q;
+ int res;
+ /* Random base point. */
+ random_group_element_test(&base);
+ /* Random scalar to multiply it with. */
+ random_scalar_order_test(&q);
+ /* If i is odd, n=d*base.x for random non-zero d */
+ if (i & 1) {
+ do {
+ random_field_element_test(&d);
+ } while (secp256k1_fe_normalizes_to_zero_var(&d));
+ secp256k1_fe_mul(&n, &base.x, &d);
+ } else {
+ n = base.x;
+ }
+ /* Perform x-only multiplication. */
+ res = secp256k1_ecmult_const_xonly(&resx, &n, (i & 1) ? &d : NULL, &q, 256, i & 2);
+ CHECK(res);
+ /* Perform normal multiplication. */
+ secp256k1_gej_set_ge(&basej, &base);
+ secp256k1_ecmult(&resj, &basej, &q, NULL);
+ /* Check that resj's X coordinate corresponds with resx. */
+ secp256k1_fe_sqr(&v, &resj.z);
+ secp256k1_fe_mul(&v, &v, &resx);
+ CHECK(check_fe_equal(&v, &resj.x));
+ }
+
+ /* Test that secp256k1_ecmult_const_xonly correctly rejects X coordinates not on curve. */
+ for (i = 0; i < 2*count; ++i) {
+ secp256k1_fe x, n, d, c, r;
+ int res;
+ secp256k1_scalar q;
+ random_scalar_order_test(&q);
+ /* Generate random X coordinate not on the curve. */
+ do {
+ random_field_element_test(&x);
+ secp256k1_fe_sqr(&c, &x);
+ secp256k1_fe_mul(&c, &c, &x);
+ secp256k1_fe_add(&c, &secp256k1_fe_const_b);
+ } while (secp256k1_fe_jacobi_var(&c) >= 0);
+ /* If i is odd, n=d*x for random non-zero d. */
+ if (i & 1) {
+ do {
+ random_field_element_test(&d);
+ } while (secp256k1_fe_normalizes_to_zero_var(&d));
+ secp256k1_fe_mul(&n, &x, &d);
+ } else {
+ n = x;
+ }
+ res = secp256k1_ecmult_const_xonly(&r, &n, (i & 1) ? &d : NULL, &q, 256, 0);
+ CHECK(res == 0);
+ }
+}
+
void ecmult_const_chain_multiply(void) {
/* Check known result (randomly generated test problem from sage) */
const secp256k1_scalar scalar = SECP256K1_SCALAR_CONST(
@@ -4017,6 +4149,7 @@ void run_ecmult_const_tests(void) {
ecmult_const_random_mult();
ecmult_const_commutativity();
ecmult_const_chain_multiply();
+ ecmult_const_mult_xonly();
}
typedef struct {
@@ -6872,6 +7005,10 @@ void run_ecdsa_edge_cases(void) {
# include "modules/schnorrsig/tests_impl.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+# include "modules/ellswift/tests_impl.h"
+#endif
+
void run_secp256k1_memczero_test(void) {
unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
unsigned char buf2[sizeof(buf1)];
@@ -7086,11 +7223,15 @@ int main(int argc, char **argv) {
run_context_tests(0);
run_context_tests(1);
run_scratch_tests();
+
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
- if (secp256k1_testrand_bits(1)) {
+ /* Randomize the context only with probability 15/16
+ to make sure we test without context randomization from time to time.
+ TODO Reconsider this when recalibrating the tests. */
+ if (secp256k1_testrand_bits(4)) {
unsigned char rand32[32];
secp256k1_testrand256(rand32);
- CHECK(secp256k1_context_randomize(ctx, secp256k1_testrand_bits(1) ? rand32 : NULL));
+ CHECK(secp256k1_context_randomize(ctx, rand32));
}
run_rand_bits();
@@ -7172,6 +7313,10 @@ int main(int argc, char **argv) {
run_schnorrsig_tests();
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ run_ellswift_tests();
+#endif
+
/* util tests */
run_secp256k1_memczero_test();
run_secp256k1_byteorder_tests();
diff --git a/src/tests_exhaustive.c b/src/tests_exhaustive.c
index 6a4e2340f2..225bbddffc 100644
--- a/src/tests_exhaustive.c
+++ b/src/tests_exhaustive.c
@@ -342,15 +342,15 @@ void test_exhaustive_sign(const secp256k1_context *ctx, const secp256k1_ge *grou
}
#ifdef ENABLE_MODULE_RECOVERY
-#include "src/modules/recovery/tests_exhaustive_impl.h"
+#include "modules/recovery/tests_exhaustive_impl.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
-#include "src/modules/extrakeys/tests_exhaustive_impl.h"
+#include "modules/extrakeys/tests_exhaustive_impl.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
-#include "src/modules/schnorrsig/tests_exhaustive_impl.h"
+#include "modules/schnorrsig/tests_exhaustive_impl.h"
#endif
int main(int argc, char** argv) {
diff --git a/src/util.h b/src/util.h
index dac86bd77f..0921e34f16 100644
--- a/src/util.h
+++ b/src/util.h
@@ -16,6 +16,11 @@
#include
#include
+#define STR_(x) #x
+#define STR(x) STR_(x)
+#define DEBUG_CONFIG_MSG(x) "DEBUG_CONFIG: " x
+#define DEBUG_CONFIG_DEF(x) DEBUG_CONFIG_MSG(#x "=" STR(x))
+
typedef struct {
void (*fn)(const char *text, void* data);
const void* data;
diff --git a/src/valgrind_ctime_test.c b/src/valgrind_ctime_test.c
index 6ff0085d34..b9e7937a1c 100644
--- a/src/valgrind_ctime_test.c
+++ b/src/valgrind_ctime_test.c
@@ -27,6 +27,10 @@
#include "../include/secp256k1_schnorrsig.h"
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+#include "../include/secp256k1_ellswift.h"
+#endif
+
void run_tests(secp256k1_context *ctx, unsigned char *key);
int main(void) {
@@ -79,6 +83,9 @@ void run_tests(secp256k1_context *ctx, unsigned char *key) {
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
+#ifdef ENABLE_MODULE_ELLSWIFT
+ unsigned char ellswift[64];
+#endif
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
@@ -170,4 +177,22 @@ void run_tests(secp256k1_context *ctx, unsigned char *key) {
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
+
+#ifdef ENABLE_MODULE_ELLSWIFT
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_ellswift_create(ctx, ellswift, key, NULL);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ ret = secp256k1_ellswift_create(ctx, ellswift, key, key);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ VALGRIND_MAKE_MEM_DEFINED(&ellswift, sizeof(ellswift));
+ ret = secp256k1_ellswift_xdh(ctx, msg, ellswift, ellswift, key, NULL, NULL);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
+#endif
}