
Clojure
A Dynamic Programming Language for the JVM

Concurrency Support 

Rich Hickey



Agenda
• Introduction

• Feature Tour

• Shared state, multithreading and locks

• Refs, Transactions, and Agents

• Walkthrough - Multithreaded ant colony 
simulation

• Q&A



Introduction

• Who are you?

• Know/use Lisp?

• Java/C#/Scala?

• ML/Haskell?

• Python, Ruby, Groovy?

• Clojure?

• Any multithreaded programming?



Clojure Fundamentals
• Functional

• Immutable, persistent data structures

• No mutable local variables

• Lisp

• Not CL or Scheme

• Hosted on, and embracing, the JVM

• Supporting Concurrency

• Open Source



Clojure Features
• Dynamic development

• REPL, reader, on-the-fly compilation to 
JVM bytecode

• Primitives - numbers, including arbitrary-
precision integers & ratios, characters, 
strings, symbols, keywords, regexes

• Aggregates - lists, maps, sets, vectors

• read-able, persistent, immutable, extensible

• Abstract sequences + library



Clojure Features
• Metadata

• First-class functions (fn), closures

• Recursive functional looping

• Destructuring binding in let/fn/loop

• List comprehensions (for)

• Macros

• Multimethods

• Concurrency support



Clojure Features
• Java interop

• Call methods, access fields, arrays

• Proxy interfaces/classes

• Sequence functions extended to Java strings, 
arrays, Collections

• Clojure data structures implement Collection/
Callable/Iterable/Comparable etc where 
appropriate

• Namespaces, zippers, XML and more!



State - You’re doing it wrong

• Mutable objects are the new spaghetti code

• Hard to understand, test, reason about

• Concurrency disaster

• Terrible default architecture (Java/C#/
Python/Ruby/Groovy/CLOS...)

• Doing the right thing is very difficult

• Languages matter!



Concurrency
• Interleaved/simultaneous execution

• Must avoid seeing/yielding inconsistent data

• The more components there are to the data, 
the more difficult to keep consistent

• The more steps in a logical change, the more 
difficult to keep consistent

• Opportunities for automatic parallelism

• Emphasis here on coordination



Explicit Locks
• lock/synchronized(coll){...}

• Only one thread can have the lock, others 
block

• Requires coordination

• All code that performs non-atomic access 
to coll must put that in a lock block

• Synchronized handles single-method jobs 
only



Single Lock Problems



Single Lock Problems

• Can’t enforce coordination via language/code



Single Lock Problems

• Can’t enforce coordination via language/code

• This is not a small problem



Single Lock Problems

• Can’t enforce coordination via language/code

• This is not a small problem

• Even when correct, can cause throughput 
bottleneck on multi-CPU machines



Single Lock Problems

• Can’t enforce coordination via language/code

• This is not a small problem

• Even when correct, can cause throughput 
bottleneck on multi-CPU machines

• Your app is running on a multi-CPU 
machine



Single Lock Problems

• Can’t enforce coordination via language/code

• This is not a small problem

• Even when correct, can cause throughput 
bottleneck on multi-CPU machines

• Your app is running on a multi-CPU 
machine

• Readers block readers



Enhancing Read 
Parallelism



Enhancing Read 
Parallelism

• Multi-reader/single-writer locks

• Readers don’t block each other

• One writer at a time

• Writers wait for reader(s)



CopyOnWrite 
Collections

• Reads get a snapshot

• Lock-free reading

• Atomic writes

• Internally, copy the representation and swap it 

• Writes can be expensive (copying)

• Multi-step writes still require locks



Persistent Data Structures

• Immutable, + old version of the collection is 
still available after 'changes'

• Collection maintains its performance 
guarantees for most operations

• Therefore new versions are not full copies

• All Clojure data structures persistent

• Hash map and vector both based upon 
array mapped hash tries (Bagwell)

• Sorted map is red-black tree



Bit-partitioned hash tries



Path Copying
int count 15

INode root

HashMap
int count 16

INode root

HashMap



Structural Sharing

• Key to efficient ‘copies’ and therefore 
persistence

• Everything is final so no chance of 
interference

• Thread safe

• Iteration safe



Multi-component 
change

• Preceding was the easy part

• Many logical activities involve multiple 
data structures/multiple steps

• Two locking options

• Coarse granularity locks

• Fine granularity locks



Coarse Granularity 
Locking

• Create external Lock representing a set of 
data structures

• Clients must obtain a lock to manipulate 
any of the structures

• Each multi-part logical operation requires 
only one lock



Coarse Granularity 
Locking



Coarse Granularity 
Locking

✓Safest



Coarse Granularity 
Locking

✓Safest

✴Can be confusing as to what constitutes 
the set(s), what needs to be locked

• X needs a/b/c, Y needs b/c/d



Coarse Granularity 
Locking

✓Safest

✴Can be confusing as to what constitutes 
the set(s), what needs to be locked

• X needs a/b/c, Y needs b/c/d

✴Least throughput

• Possible needless blocking



Coarse Granularity 
Locking

✓Safest

✴Can be confusing as to what constitutes 
the set(s), what needs to be locked

• X needs a/b/c, Y needs b/c/d

✴Least throughput

• Possible needless blocking

✴Should reads lock?



Fine Granularity 
Locking

• Use locks on data structures themselves

• Clients must obtain a lock on each of the 
structures

• A multi-part logical operation may require 
several locks



Fine Granularity Locking



Fine Granularity Locking
✴Dangerous



Fine Granularity Locking
✴Dangerous

✴Locking order is critical

• X locks a/b, Y locks b/a - deadlock 
possible

• Very difficult to enforce locking order



Fine Granularity Locking
✴Dangerous

✴Locking order is critical

• X locks a/b, Y locks b/a - deadlock 
possible

• Very difficult to enforce locking order

✓Best throughput

• Minimal blocking



Fine Granularity Locking
✴Dangerous

✴Locking order is critical

• X locks a/b, Y locks b/a - deadlock 
possible

• Very difficult to enforce locking order

✓Best throughput

• Minimal blocking

✴Should reads lock?



Concurrency Methods
• Conventional way:

• Direct references to mutable objects

• Lock and pray (manual/convention)

• Clojure way:

• Indirect references to immutable persistent data 
structures

• Concurrency semantics for references

• Automatic/enforced

• No locks!



Clojure References

• The only things that mutate are references 
themselves, in a controlled way

• 3 types of mutable references

• Vars - Isolate changes within threads

• Refs - Share synchronous coordinated 
changes between threads

• Agents - Share asynchronous 
independent changes between threads



Vars
• Like Common Lisp’s special vars

• dynamic scope

• stack discipline

• Shared root binding established by def

• root can be unbound

• Can be changed (via set!) but only if first 
thread-locally bound using binding

• Functions stored in vars, so they too can be 
dynamically rebound

• context/aspect-like idioms



Refs and Transactions
• Software transactional memory system (STM)

• Refs can only be changed within a transaction

• All changes are Atomic and Isolated

• Every change to Refs made within a 
transaction occurs or none do

• No transaction sees the effects of any 
other transaction while it is running

• Transactions are speculative

• Will be retried automatically if conflict

• Must avoid side-effects!



The Clojure STM
• Surround code with (dosync ...)

• Uses Multiversion Concurrency Control (MVCC)

• All reads of Refs will see a consistent snapshot of 
the 'Ref world' as of the starting point of the 
transaction, + any changes it has made.

• All changes made to Refs during a transaction 
will appear to occur at a single point in the 
timeline.

• Readers never block writers/readers, writers 
never block readers, supports commute



Agents
• Manage independent state

• State changes through actions, which are 
ordinary functions (state=>new-state)

• Actions are dispatched using send or send-
off, which return immediately

• Actions occur asynchronously on thread-
pool threads

• Only one action per agent happens at a 
time



Agents
• Agent state always accessible, via deref/@, 

but may not reflect all actions

• Can coordinate with actions using await

• Any dispatches made during an action are 
held until after the state of the agent has 
changed

• Agents coordinate with transactions - any 
dispatches made during a transaction are 
held until it commits

• Agents are not Actors (Erlang/Scala)



Walkthrough

• Ant colony simulation

• World populated with food and ants

• Ants find food, bring home, drop pheromones

• Sense pheromones, food, home

• Ants act independently, on multiple real threads

• Model pheromone evaporation

• Animated GUI

• < 250 lines of Clojure



Thanks for listening!

http://www.clojure.org

http://www.clojure.org
http://www.clojure.org

