) Clojure

A Dynamic Programming Language for the |[VM

Concurrency Support

Rich Hickey



Agenda

Introduction

Feature Tour

Shared state, multithreading and locks
Refs, Transactions, and Agents

Walkthrough - Multithreaded ant colony
simulation

Q&A

®



Introduction

® Who are you?

® Knowl/use Lisp?

® Java/C#/Scala?

® ML/Haskell?

® Python, Ruby, Groovy!
® Clojure!

® Any multithreaded programming? ‘j



Clojure Fundamentals

® Functional
® |Immutable, persistent data structures
® No mutable local variables

® Lisp
® Not CL or Scheme

® Hosted on,and embracing, the VM

® Supporting Concurrency

® Open Source



Clojure Features

® Dynamic development

® REPL, reader, on-the-fly compilation to
JVM bytecode

® Primitives - numbers, including arbitrary-
precision integers & ratios, characters,
strings, symbols, keywords, regexes

® Aggregates - lists, maps, sets, vectors

® read-able, persistent, immutable, extensible

® Abstract sequences + library ’



Clojure Features

Metadata

First-class functions (fn), closures
Recursive functional looping
Destructuring binding in let/fn/loop
List comprehensions (for)

Macros

Multimethods

Concurrency support



Clojure Features

® Java interop
® Call methods, access fields, arrays
® Proxy interfaces/classes

® Sequence functions extended to Java strings,
arrays, Collections

® Clojure data structures implement Collection/
Callable/Iterable/Comparable etc where
appropriate

® Namespaces, zippers, XML and more! ’



State - You're doing it wrong

® Mutable objects are the new spaghetti code
® Hard to understand, test, reason about
® Concurrency disaster

® Terrible default architecture (Java/C#/
Python/Ruby/Groovy/CLOS...)

® Doing the right thing is very difficult

® |anguages matter! ﬂ



Concurrency

Interleaved/simultaneous execution
Must avoid seeing/yielding inconsistent data

The more components there are to the data,
the more difficult to keep consistent

The more steps in a logical change, the more
difficult to keep consistent

Opportunities for automatic parallelism

® Emphasis here on coordination ﬂ



Explicit Locks
® |ock/synchronized(coll){...}

® Only one thread can have the lock, others
block

® Requires coordination

® All code that performs non-atomic access
to coll must put that in a lock block

® Synchronized handles single-method jobs
only

™



Single Lock Problems



Single Lock Problems

® Can’t enforce coordination via language/code




Single Lock Problems

® Can’t enforce coordination via language/code

® This is not a small problem



Single Lock Problems

® Can’t enforce coordination via language/code
® This is not a small problem

® Even when correct, can cause throughput
bottleneck on multi-CPU machines



Single Lock Problems

® Can’t enforce coordination via language/code
® This is not a small problem

® Even when correct, can cause throughput
bottleneck on multi-CPU machines

® Your app is running on a multi-CPU
machine



Single Lock Problems

® Can’t enforce coordination via language/code
® This is not a small problem

® Even when correct, can cause throughput
bottleneck on multi-CPU machines

® Your app is running on a multi-CPU
machine

® Readers block readers



Enhancing Read
Parallelism



Enhancing Read
Parallelism

® Multi-reader/single-writer locks
® Readers don’t block each other
® One writer at a time

® Writers wait for reader(s)



CopyOnWrite
Collections

® Reads get a snapshot

® L ock-free reading

® Atomic writes

® |nternally, copy the representation and swap it
® Writes can be expensive (copying)

® Multi-step writes still require locks ﬂ



Persistent Data Structures

® |[mmutable, + old version of the collection is
still available after 'changes’

® Collection maintains its performance
guarantees for most operations

® Therefore new versions are not full copies
® All Clojure data structures persistent

® Hash map and vector both based upon
array mapped hash tries (Bagwell)

® Sorted map is red-black tree

>



Bit-partitioned hash tries




Path Copying

HashMap
HashMa
P int count 16
int count 15
INode root
INode root #



Structural Sharing

Key to efficient ‘copies’ and therefore
persistence

Everything is final so no chance of
interference

Thread safe

Iteration safe



Multi-component
change

® Preceding was the easy part

® Many logical activities involve multiple
data structures/multiple steps

® [wo locking options
® Coarse granularity locks

® Fine granularity locks



Coarse Granularity
Locking

® Create external Lock representing a set of
data structures

® Clients must obtain a lock to manipulate
any of the structures

® Each multi-part logical operation requires
only one lock



Coarse Granularity
Locking




Coarse Granularity

Locking
\/ Safest




Coarse Granularity

Locking
\/ Safest

*Can be confusing as to what constitutes
the set(s), what needs to be locked

® X needs a/b/c,Y needs b/c/d



Coarse Granularity

Locking
\/ Safest

*Can be confusing as to what constitutes
the set(s), what needs to be locked

® X needs a/b/c,Y needs b/c/d
*Least throughput

® Possible needless blocking



Coarse Granularity

Locking
\/ Safest

*Can be confusing as to what constitutes
the set(s), what needs to be locked

® X needs a/b/c,Y needs b/c/d
*Least throughput

® Possible needless blocking

- Should reads lock?



Fine Granularity
Locking

® Use locks on data structures themselves

® (Clients must obtain a lock on each of the
structures

® A multi-part logical operation may require
several locks



Fine Granularity Locking



Fine Granularity Locking

*Dangerous




Fine Granularity Locking

*Dangerous
*Locking order is critical

® X locks a/b,Y locks b/a - deadlock
possible

® Very difficult to enforce locking order




Fine Granularity Locking

*Dangerous
*Locking order is critical

® X locks a/b,Y locks b/a - deadlock
possible

® Very difficult to enforce locking order

\/ Best throughput

® Minimal blocking



Fine Granularity Locking

*Dangerous
*Locking order is critical

® X locks a/b,Y locks b/a - deadlock
possible

® Very difficult to enforce locking order

\/ Best throughput

® Minimal blocking

-Should reads lock? ﬂ



Concurrency Methods

® Conventional way:
® Direct references to mutable objects
® | ock and pray (manual/convention)
® Clojure way:

® |ndirect references to immutable persistent data
structures

® Concurrency semantics for references

® Automatic/enforced

® No locks! )




Clojure References

® The only things that mutate are references
themselves, in a controlled way

® 3 types of mutable references
® Vars - Isolate changes within threads

® Refs - Share synchronous coordinated
changes between threads

® Agents - Share asynchronous
independent changes between threads ﬂ



Vars

® [ike Common Lisp’s special vars
® dynamic scope
® stack discipline

® Shared root binding established by def
® root can be unbound

® Can be changed (via set!) but only if first
thread-locally bound using binding

® Functions stored in vars, so they too can be
dynamically rebound

® context/aspect-like idioms )



Refs and Transactions

® Software transactional memory system (STM)
® Refs can only be changed within a transaction
® All changes are Atomic and Isolated

® Every change to Refs made within a
transaction occurs or none do

® No transaction sees the effects of any
other transaction while it is running

® [ransactions are speculative

® Will be retried automatically if conflict
® Must avoid side-effects! L ’



The Clojure STM

Surround code with (dosync ...)
Uses Multiversion Concurrency Control (MVCC)

All reads of Refs will see a consistent snapshot of
the 'Ref world' as of the starting point of the
transaction, + any changes it has made.

All changes made to Refs during a transaction
will appear to occur at a single point in the
timeline.

Readers never block writers/readers, writers
never block readers, supports commute g )



Agents

Manage independent state

State changes through actions, which are
ordinary functions (state=>new-state)

Actions are dispatched using send or send-
off, which return immediately

Actions occur asynchronously on thread-
pool threads

Only one action per agent happens at a
time



Agents

Agent state always accessible, via deref/@,
but may not reflect all actions

Can coordinate with actions using await

Any dispatches made during an action are
held until after the state of the agent has
changed

Agents coordinate with transactions - any
dispatches made during a transaction are
held until it commits

Agents are not Actors (Erlang/Scala) . | )



Walkthrough

Ant colony simulation

World populated with food and ants

Ants find food, bring home, drop pheromones
Sense pheromones, food, home

Ants act independently, on multiple real threads

Model pheromone evaporation

Animated GUI

< 250 lines of Clojure ‘3



Thanks for listening!

http://www.clojure.org



http://www.clojure.org
http://www.clojure.org

