-
Notifications
You must be signed in to change notification settings - Fork 16
/
model.py
406 lines (339 loc) · 14.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from datetime import datetime
import os
import sys
import time
import numpy as np
import tensorflow as tf
from PIL import Image
from network import *
from utils import ImageReader, decode_labels, inv_preprocess, prepare_label, write_log, read_labeled_image_list
"""
This script trains or evaluates the model on augmented PASCAL VOC 2012 dataset.
The training set contains 10581 training images.
The validation set contains 1449 validation images.
Training:
'poly' learning rate
different learning rates for different layers
"""
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
class Model(object):
def __init__(self, sess, conf):
self.sess = sess
self.conf = conf
# train
def train(self):
self.train_setup()
self.sess.run(tf.global_variables_initializer())
# Load the pre-trained model if provided
if self.conf.pretrain_file is not None:
self.load(self.loader, self.conf.pretrain_file)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess)
# Train!
for step in range(self.conf.num_steps+1):
start_time = time.time()
feed_dict = { self.curr_step : step }
if step % self.conf.save_interval == 0:
loss_value, images, labels, preds, summary, _ = self.sess.run(
[self.reduced_loss,
self.image_batch,
self.label_batch,
self.pred,
self.total_summary,
self.train_op],
feed_dict=feed_dict)
self.summary_writer.add_summary(summary, step)
self.save(self.saver, step)
else:
loss_value, _ = self.sess.run([self.reduced_loss, self.train_op],
feed_dict=feed_dict)
duration = time.time() - start_time
print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, duration))
write_log('{:d}, {:.3f}'.format(step, loss_value), self.conf.logfile)
# finish
self.coord.request_stop()
self.coord.join(threads)
# evaluate
def test(self):
self.test_setup()
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
# load checkpoint
checkpointfile = self.conf.modeldir+ '/model.ckpt-' + str(self.conf.valid_step)
self.load(self.loader, checkpointfile)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess)
# Test!
confusion_matrix = np.zeros((self.conf.num_classes, self.conf.num_classes), dtype=np.int)
for step in range(self.conf.valid_num_steps):
preds, _, _, c_matrix = self.sess.run([self.pred, self.accu_update_op, self.mIou_update_op, self.confusion_matrix])
confusion_matrix += c_matrix
if step % 100 == 0:
print('step {:d}'.format(step))
print('Pixel Accuracy: {:.3f}'.format(self.accu.eval(session=self.sess)))
print('Mean IoU: {:.3f}'.format(self.mIoU.eval(session=self.sess)))
self.compute_IoU_per_class(confusion_matrix)
# finish
self.coord.request_stop()
self.coord.join(threads)
# prediction
def predict(self):
self.predict_setup()
self.sess.run(tf.global_variables_initializer())
self.sess.run(tf.local_variables_initializer())
# load checkpoint
checkpointfile = self.conf.modeldir+ '/model.ckpt-' + str(self.conf.valid_step)
self.load(self.loader, checkpointfile)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=self.coord, sess=self.sess)
# img_name_list
image_list, _ = read_labeled_image_list('', self.conf.test_data_list)
# Predict!
for step in range(self.conf.test_num_steps):
preds = self.sess.run(self.pred)
img_name = image_list[step].split('/')[2].split('.')[0]
# Save raw predictions, i.e. each pixel is an integer between [0,20].
im = Image.fromarray(preds[0,:,:,0], mode='L')
filename = '/%s_mask.png' % (img_name)
im.save(self.conf.out_dir + '/prediction' + filename)
# Save predictions for visualization.
# See utils/label_utils.py for color setting
# Need to be modified based on datasets.
if self.conf.visual:
msk = decode_labels(preds, num_classes=self.conf.num_classes)
im = Image.fromarray(msk[0], mode='RGB')
filename = '/%s_mask_visual.png' % (img_name)
im.save(self.conf.out_dir + '/visual_prediction' + filename)
if step % 100 == 0:
print('step {:d}'.format(step))
print('The output files has been saved to {}'.format(self.conf.out_dir))
# finish
self.coord.request_stop()
self.coord.join(threads)
def train_setup(self):
tf.set_random_seed(self.conf.random_seed)
# Create queue coordinator.
self.coord = tf.train.Coordinator()
# Input size
input_size = (self.conf.input_height, self.conf.input_width)
# Load reader
with tf.name_scope("create_inputs"):
reader = ImageReader(
self.conf.data_dir,
self.conf.data_list,
input_size,
self.conf.random_scale,
self.conf.random_mirror,
self.conf.ignore_label,
IMG_MEAN,
self.coord)
self.image_batch, self.label_batch = reader.dequeue(self.conf.batch_size)
# Create network
if self.conf.encoder_name not in ['res101', 'res50', 'deeplab']:
print('encoder_name ERROR!')
print("Please input: res101, res50, or deeplab")
sys.exit(-1)
elif self.conf.encoder_name == 'deeplab':
net = Deeplab_v2(self.image_batch, self.conf.num_classes, True, self.conf.dilated_type)
# Variables that load from pre-trained model.
restore_var = [v for v in tf.global_variables() if 'fc' not in v.name and 'fix_w' not in v.name]
# Trainable Variables
all_trainable = tf.trainable_variables()
# Fine-tune part
encoder_trainable = [v for v in all_trainable if 'fc' not in v.name] # lr * 1.0
# Decoder part
decoder_trainable = [v for v in all_trainable if 'fc' in v.name]
else:
net = ResNet_segmentation(self.image_batch, self.conf.num_classes, True, self.conf.encoder_name, self.conf.dilated_type)
# Variables that load from pre-trained model.
restore_var = [v for v in tf.global_variables() if 'resnet_v1' in v.name and 'fix_w' not in v.name]
# Trainable Variables
all_trainable = tf.trainable_variables()
# Fine-tune part
encoder_trainable = [v for v in all_trainable if 'resnet_v1' in v.name] # lr * 1.0
# Decoder part
decoder_trainable = [v for v in all_trainable if 'decoder' in v.name]
decoder_w_trainable = [v for v in decoder_trainable if 'weights' in v.name or 'gamma' in v.name] # lr * 10.0
decoder_b_trainable = [v for v in decoder_trainable if 'biases' in v.name or 'beta' in v.name] # lr * 20.0
# Check
assert(len(all_trainable) == len(decoder_trainable) + len(encoder_trainable))
assert(len(decoder_trainable) == len(decoder_w_trainable) + len(decoder_b_trainable))
# Network raw output
raw_output = net.outputs # [batch_size, h, w, 21]
# Output size
output_shape = tf.shape(raw_output)
output_size = (output_shape[1], output_shape[2])
# Groud Truth: ignoring all labels greater or equal than n_classes
label_proc = prepare_label(self.label_batch, output_size, num_classes=self.conf.num_classes, one_hot=False)
raw_gt = tf.reshape(label_proc, [-1,])
indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, self.conf.num_classes - 1)), 1)
gt = tf.cast(tf.gather(raw_gt, indices), tf.int32)
raw_prediction = tf.reshape(raw_output, [-1, self.conf.num_classes])
prediction = tf.gather(raw_prediction, indices)
# Pixel-wise softmax_cross_entropy loss
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt)
# L2 regularization
l2_losses = [self.conf.weight_decay * tf.nn.l2_loss(v) for v in all_trainable if 'weights' in v.name]
# Loss function
self.reduced_loss = tf.reduce_mean(loss) + tf.add_n(l2_losses)
# Define optimizers
# 'poly' learning rate
base_lr = tf.constant(self.conf.learning_rate)
self.curr_step = tf.placeholder(dtype=tf.float32, shape=())
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - self.curr_step / self.conf.num_steps), self.conf.power))
# We have several optimizers here in order to handle the different lr_mult
# which is a kind of parameters in Caffe. This controls the actual lr for each
# layer.
opt_encoder = tf.train.MomentumOptimizer(learning_rate, self.conf.momentum)
opt_decoder_w = tf.train.MomentumOptimizer(learning_rate * 10.0, self.conf.momentum)
opt_decoder_b = tf.train.MomentumOptimizer(learning_rate * 20.0, self.conf.momentum)
# To make sure each layer gets updated by different lr's, we do not use 'minimize' here.
# Instead, we separate the steps compute_grads+update_params.
# Compute grads
grads = tf.gradients(self.reduced_loss, encoder_trainable + decoder_w_trainable + decoder_b_trainable)
grads_encoder = grads[:len(encoder_trainable)]
grads_decoder_w = grads[len(encoder_trainable) : (len(encoder_trainable) + len(decoder_w_trainable))]
grads_decoder_b = grads[(len(encoder_trainable) + len(decoder_w_trainable)):]
# Update params
train_op_conv = opt_encoder.apply_gradients(zip(grads_encoder, encoder_trainable))
train_op_fc_w = opt_decoder_w.apply_gradients(zip(grads_decoder_w, decoder_w_trainable))
train_op_fc_b = opt_decoder_b.apply_gradients(zip(grads_decoder_b, decoder_b_trainable))
# Finally, get the train_op!
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for collecting moving_mean and moving_variance
with tf.control_dependencies(update_ops):
self.train_op = tf.group(train_op_conv, train_op_fc_w, train_op_fc_b)
# Saver for storing checkpoints of the model
self.saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=0)
# Loader for loading the pre-trained model
self.loader = tf.train.Saver(var_list=restore_var)
# Training summary
# Processed predictions: for visualisation.
raw_output_up = tf.image.resize_bilinear(raw_output, input_size)
raw_output_up = tf.argmax(raw_output_up, axis=3)
self.pred = tf.expand_dims(raw_output_up, dim=3)
# Image summary.
images_summary = tf.py_func(inv_preprocess, [self.image_batch, 2, IMG_MEAN], tf.uint8)
labels_summary = tf.py_func(decode_labels, [self.label_batch, 2, self.conf.num_classes], tf.uint8)
preds_summary = tf.py_func(decode_labels, [self.pred, 2, self.conf.num_classes], tf.uint8)
self.total_summary = tf.summary.image('images',
tf.concat(axis=2, values=[images_summary, labels_summary, preds_summary]),
max_outputs=2) # Concatenate row-wise.
if not os.path.exists(self.conf.logdir):
os.makedirs(self.conf.logdir)
self.summary_writer = tf.summary.FileWriter(self.conf.logdir, graph=tf.get_default_graph())
def test_setup(self):
# Create queue coordinator.
self.coord = tf.train.Coordinator()
# Load reader
with tf.name_scope("create_inputs"):
reader = ImageReader(
self.conf.data_dir,
self.conf.valid_data_list,
None, # the images have different sizes
False, # no data-aug
False, # no data-aug
self.conf.ignore_label,
IMG_MEAN,
self.coord)
image, label = reader.image, reader.label # [h, w, 3 or 1]
# Add one batch dimension [1, h, w, 3 or 1]
self.image_batch, self.label_batch = tf.expand_dims(image, dim=0), tf.expand_dims(label, dim=0)
# Create network
if self.conf.encoder_name not in ['res101', 'res50', 'deeplab']:
print('encoder_name ERROR!')
print("Please input: res101, res50, or deeplab")
sys.exit(-1)
elif self.conf.encoder_name == 'deeplab':
net = Deeplab_v2(self.image_batch, self.conf.num_classes, False, self.conf.dilated_type)
else:
net = ResNet_segmentation(self.image_batch, self.conf.num_classes, False, self.conf.encoder_name, self.conf.dilated_type)
# predictions
raw_output = net.outputs
raw_output = tf.image.resize_bilinear(raw_output, tf.shape(self.image_batch)[1:3,])
raw_output = tf.argmax(raw_output, axis=3)
pred = tf.expand_dims(raw_output, dim=3)
self.pred = tf.reshape(pred, [-1,])
# labels
gt = tf.reshape(self.label_batch, [-1,])
# Ignoring all labels greater than or equal to n_classes.
temp = tf.less_equal(gt, self.conf.num_classes - 1)
weights = tf.cast(temp, tf.int32)
# fix for tf 1.3.0
gt = tf.where(temp, gt, tf.cast(temp, tf.uint8))
# Pixel accuracy
self.accu, self.accu_update_op = tf.contrib.metrics.streaming_accuracy(
self.pred, gt, weights=weights)
# mIoU
self.mIoU, self.mIou_update_op = tf.contrib.metrics.streaming_mean_iou(
self.pred, gt, num_classes=self.conf.num_classes, weights=weights)
# confusion matrix
self.confusion_matrix = tf.contrib.metrics.confusion_matrix(
self.pred, gt, num_classes=self.conf.num_classes, weights=weights)
# Loader for loading the checkpoint
self.loader = tf.train.Saver(var_list=tf.global_variables())
def predict_setup(self):
# Create queue coordinator.
self.coord = tf.train.Coordinator()
# Load reader
with tf.name_scope("create_inputs"):
reader = ImageReader(
self.conf.data_dir,
self.conf.test_data_list,
None, # the images have different sizes
False, # no data-aug
False, # no data-aug
self.conf.ignore_label,
IMG_MEAN,
self.coord)
image, label = reader.image, reader.label # [h, w, 3 or 1]
# Add one batch dimension [1, h, w, 3 or 1]
image_batch, label_batch = tf.expand_dims(image, dim=0), tf.expand_dims(label, dim=0)
# Create network
if self.conf.encoder_name not in ['res101', 'res50', 'deeplab']:
print('encoder_name ERROR!')
print("Please input: res101, res50, or deeplab")
sys.exit(-1)
elif self.conf.encoder_name == 'deeplab':
net = Deeplab_v2(image_batch, self.conf.num_classes, False, self.conf.dilated_type)
else:
net = ResNet_segmentation(image_batch, self.conf.num_classes, False, self.conf.encoder_name, self.conf.dilated_type)
# Predictions.
raw_output = net.outputs
raw_output = tf.image.resize_bilinear(raw_output, tf.shape(image_batch)[1:3,])
raw_output = tf.argmax(raw_output, axis=3)
self.pred = tf.cast(tf.expand_dims(raw_output, dim=3), tf.uint8)
# Create directory
if not os.path.exists(self.conf.out_dir):
os.makedirs(self.conf.out_dir)
os.makedirs(self.conf.out_dir + '/prediction')
if self.conf.visual:
os.makedirs(self.conf.out_dir + '/visual_prediction')
# Loader for loading the checkpoint
self.loader = tf.train.Saver(var_list=tf.global_variables())
def save(self, saver, step):
'''
Save weights.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(self.conf.modeldir, model_name)
if not os.path.exists(self.conf.modeldir):
os.makedirs(self.conf.modeldir)
saver.save(self.sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(self, saver, filename):
'''
Load trained weights.
'''
saver.restore(self.sess, filename)
print("Restored model parameters from {}".format(filename))
def compute_IoU_per_class(self, confusion_matrix):
mIoU = 0
for i in range(self.conf.num_classes):
# IoU = true_positive / (true_positive + false_positive + false_negative)
TP = confusion_matrix[i,i]
FP = np.sum(confusion_matrix[:, i]) - TP
FN = np.sum(confusion_matrix[i]) - TP
IoU = TP / (TP + FP + FN)
print ('class %d: %.3f' % (i, IoU))
mIoU += IoU / self.conf.num_classes
print ('mIoU: %.3f' % mIoU)