-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset3Params.m
54 lines (45 loc) · 1.66 KB
/
dataset3Params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [C, sigma] = dataset3Params(X, y, Xval, yval)
%DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
% [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and
% sigma. You should complete this function to return the optimal C and
% sigma based on a cross-validation set.
%
% You need to return the following variables correctly.
C = 1;
sigma = 0.3;
% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
% learning parameters found using the cross validation set.
% You can use svmPredict to predict the labels on the cross
% validation set. For example,
% predictions = svmPredict(model, Xval);
% will return the predictions on the cross validation set.
%
% Note: You can compute the prediction error using
% mean(double(predictions ~= yval))
%
Ctemp=[0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30];
sigtemp=[0.01; 0.03; 0.1; 0.3; 1; 3; 10; 30];
rowsn=numel(Ctemp)*numel(sigtemp);
errmat=zeros(rowsn,3);
r=1;
for i=1:numel(Ctemp)
for j=1:numel(sigtemp)
model= svmTrain(X, y, Ctemp(i), @(x1, x2) gaussianKernel(x1, x2, sigtemp(j)));
predictions = svmPredict(model, Xval);
errmat(r,1)=mean(double(predictions ~= yval));
errmat(r,2)=Ctemp(i);
errmat(r,3)=sigtemp(j);
r=r+1;
end
end
%display(errmat);
errvals=errmat(:,1);
[minerr,index]=min(errvals);
%display(index);
C=errmat(index,2);
sigma=errmat(index,3);
% =========================================================================
end