-
Notifications
You must be signed in to change notification settings - Fork 37
/
a_person_mask_generator_comfyui.py
215 lines (173 loc) · 7.68 KB
/
a_person_mask_generator_comfyui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from functools import reduce
import cv2
import torch
import numpy as np
from PIL import Image
import mediapipe as mp
import folder_paths
def get_a_person_mask_generator_model_path() -> str:
model_folder_name = "mediapipe"
model_name = "selfie_multiclass_256x256.tflite"
model_folder_path = os.path.join(folder_paths.models_dir, model_folder_name)
model_file_path = os.path.join(model_folder_path, model_name)
if not os.path.exists(model_file_path):
import wget
model_url = f"https://storage.googleapis.com/mediapipe-models/image_segmenter/selfie_multiclass_256x256/float32/latest/{model_name}"
print(f"Downloading '{model_name}' model")
os.makedirs(model_folder_path, exist_ok=True)
wget.download(model_url, model_file_path)
return model_file_path
class APersonMaskGenerator:
def __init__(self):
# download the model if we need it
get_a_person_mask_generator_model_path()
@classmethod
def INPUT_TYPES(self):
false_widget = (
"BOOLEAN",
{"default": False, "label_on": "enabled", "label_off": "disabled"},
)
true_widget = (
"BOOLEAN",
{"default": True, "label_on": "enabled", "label_off": "disabled"},
)
return {
"required": {
"images": ("IMAGE",),
},
"optional": {
"face_mask": true_widget,
"background_mask": false_widget,
"hair_mask": false_widget,
"body_mask": false_widget,
"clothes_mask": false_widget,
"confidence": (
"FLOAT",
{"default": 0.40, "min": 0.01, "max": 1.0, "step": 0.01},
),
},
}
CATEGORY = "A Person Mask Generator - David Bielejeski"
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("masks",)
FUNCTION = "generate_mask"
def get_mediapipe_image(self, image: Image) -> mp.Image:
# Convert image to NumPy array
numpy_image = np.asarray(image)
image_format = mp.ImageFormat.SRGB
# Convert BGR to RGB (if necessary)
if numpy_image.shape[-1] == 4:
image_format = mp.ImageFormat.SRGBA
elif numpy_image.shape[-1] == 3:
image_format = mp.ImageFormat.SRGB
numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
return mp.Image(image_format=image_format, data=numpy_image)
def generate_mask(
self,
images,
face_mask: bool,
background_mask: bool,
hair_mask: bool,
body_mask: bool,
clothes_mask: bool,
confidence: float,
):
"""Create a segmentation mask from an image
Args:
image (torch.Tensor): The image to create the mask for.
face_mask (bool): create a mask for the background.
background_mask (bool): create a mask for the hair.
hair_mask (bool): create a mask for the body .
body_mask (bool): create a mask for the face.
clothes_mask (bool): create a mask for the clothes.
Returns:
torch.Tensor: The segmentation masks.
"""
a_person_mask_generator_model_path = get_a_person_mask_generator_model_path()
a_person_mask_generator_model_buffer = None
with open(a_person_mask_generator_model_path, "rb") as f:
a_person_mask_generator_model_buffer = f.read()
image_segmenter_base_options = mp.tasks.BaseOptions(
model_asset_buffer=a_person_mask_generator_model_buffer
)
options = mp.tasks.vision.ImageSegmenterOptions(
base_options=image_segmenter_base_options,
running_mode=mp.tasks.vision.RunningMode.IMAGE,
output_category_mask=True,
)
# Create the image segmenter
res_masks = []
with mp.tasks.vision.ImageSegmenter.create_from_options(options) as segmenter:
for image in images:
# Convert the Tensor to a PIL image
i = 255.0 * image.cpu().numpy()
image_pil = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
# create our foreground and background arrays for storing the mask results
mask_background_array = np.zeros(
(image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8
)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros(
(image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8
)
mask_foreground_array[:] = (255, 255, 255, 255)
# Retrieve the masks for the segmented image
media_pipe_image = self.get_mediapipe_image(image=image_pil)
if any(
[face_mask, background_mask, hair_mask, body_mask, clothes_mask]
):
segmented_masks = segmenter.segment(media_pipe_image)
# https://developers.google.com/mediapipe/solutions/vision/image_segmenter#multiclass-model
# 0 - background
# 1 - hair
# 2 - body - skin
# 3 - face - skin
# 4 - clothes
# 5 - others(accessories)
masks = []
if background_mask:
masks.append(segmented_masks.confidence_masks[0])
if hair_mask:
masks.append(segmented_masks.confidence_masks[1])
if body_mask:
masks.append(segmented_masks.confidence_masks[2])
if face_mask:
masks.append(segmented_masks.confidence_masks[3])
if clothes_mask:
masks.append(segmented_masks.confidence_masks[4])
image_data = media_pipe_image.numpy_view()
image_shape = image_data.shape
# convert the image shape from "rgb" to "rgba" aka add the alpha channel
if image_shape[-1] == 3:
image_shape = (image_shape[0], image_shape[1], 4)
mask_background_array = np.zeros(image_shape, dtype=np.uint8)
mask_background_array[:] = (0, 0, 0, 255)
mask_foreground_array = np.zeros(image_shape, dtype=np.uint8)
mask_foreground_array[:] = (255, 255, 255, 255)
mask_arrays = []
if len(masks) == 0:
mask_arrays.append(mask_background_array)
else:
for i, mask in enumerate(masks):
condition = (
np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1)
> confidence
)
mask_array = np.where(
condition, mask_foreground_array, mask_background_array
)
mask_arrays.append(mask_array)
# Merge our masks taking the maximum from each
merged_mask_arrays = reduce(np.maximum, mask_arrays)
# Create the image
mask_image = Image.fromarray(merged_mask_arrays)
# convert PIL image to tensor image
tensor_mask = mask_image.convert("RGB")
tensor_mask = np.array(tensor_mask).astype(np.float32) / 255.0
tensor_mask = torch.from_numpy(tensor_mask)[None,]
tensor_mask = tensor_mask.squeeze(3)[..., 0]
res_masks.append(tensor_mask)
return (torch.cat(res_masks, dim=0),)