-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.py
69 lines (59 loc) · 1.98 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
class Config:
def __init__(self):
self.batch_size = 32
self.points_number = 1024
self.classes_number = 40
self.server_host = os.getenv('SOCKET_SERVER', 'http://localhost:3000')
###########################################################################
# PointCNN feature extractor settings
###########################################################################
# xconv
self.sorting_method = None
self.with_X_transformation = True
self.xconv_param_name = ('K', 'D', 'P', 'C', 'links')
self.xconv_params = [dict(zip(self.xconv_param_name, xconv_param)) for xconv_param in [(8, 1, -1, 48, [])]]
# Sampling
self.sampling = 'random'
self.with_global = False
###########################################################################
# Local features extractors training
###########################################################################
# load_fn = data_utils.load_cls_train_val
# balance_fn = None
# map_fn = None
# keep_remainder = True
# save_ply_fn = None
#
# num_class = 40
# sample_num = 1024
# batch_size = 128
#
# num_epochs = 1024
# step_val = 500
#
# learning_rate_base = 0.01
# decay_steps = 8000
# decay_rate = 0.5
# learning_rate_min = 1e-6
#
# weight_decay = 1e-5
#
# jitter = 0.0
# jitter_val = 0.0
#
# rotation_range = [0, math.pi, 0, 'u']
# rotation_range_val = [0, 0, 0, 'u']
# rotation_order = 'rxyz'
#
# scaling_range = [0.1, 0.1, 0.1, 'g']
# scaling_range_val = [0, 0, 0, 'u']
#
# sample_num_variance = 1 // 8
# sample_num_clip = 1 // 4
#
# optimizer = 'adam'
# epsilon = 1e-2
#
# data_dim = 6
# use_extra_features = False