-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_pipeline.py
320 lines (264 loc) · 13.8 KB
/
train_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import argparse
import numpy as np
import tensorflow as tf
import importlib
import requests
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import provider
from config import Config
config = Config()
# Endpoint
pointnet_url = 'http://127.0.0.1:5000/api'
dgcnn_url = 'http://127.0.0.1:5001/api'
pointcnn_url = 'http://127.0.0.1:5002/api'
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--dataset', default='modelnet', help='Dataset to train on: modelnet or shapenet [default: modelnet]')
parser.add_argument('--model', default='pointnet_pipeline', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_pipeline]')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=15, help='Epoch to run [default: 15]')
#parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000 for modelnet, 850000 for shapenet]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
FLAGS = parser.parse_args()
DATASET = FLAGS.dataset
#BATCH_SIZE = FLAGS.batch_size
#NUM_POINT = FLAGS.num_point
NUM_POINT = config.points_number
BATCH_SIZE = config.batch_size
NUM_FEATURES = 48
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train_pipeline.py %s' % LOG_DIR) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
MAX_NUM_POINT = 2048
# Train/test on modelnet
if DATASET == 'modelnet':
NUM_CLASSES = 40
TRAIN_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
TEST_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
# Train/test on shapenet
elif DATASET == 'shapenet':
NUM_CLASSES = 55
TRAIN_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/shapenet_core55_1024/train_files.txt'))
TEST_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/shapenet_core55_1024/test_files.txt'))
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch*BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def train():
with tf.Graph().as_default():
with tf.device('/gpu:'+str(GPU_INDEX)):
features_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, num_features=NUM_FEATURES)
is_training_pl = tf.placeholder(tf.bool, shape=())
# Note the global_step=batch parameter to minimize.
# That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
batch = tf.Variable(0)
bn_decay = get_bn_decay(batch)
tf.summary.scalar('bn_decay', bn_decay)
# Get model and loss
pred, _, _ = MODEL.get_model(features_pl, is_training_pl, num_classes=NUM_CLASSES, bn_decay=bn_decay)
loss = MODEL.get_loss(pred, labels_pl)
tf.summary.scalar('loss', loss)
correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl))
accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE)
tf.summary.scalar('accuracy', accuracy)
# Get training operator
learning_rate = get_learning_rate(batch)
tf.summary.scalar('learning_rate', learning_rate)
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.allow_soft_placement = True
session_config.log_device_placement = False
sess = tf.Session(config=session_config)
# Add summary writers
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph)
test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test'))
# Init variables
init = tf.global_variables_initializer()
# To fix the bug introduced in TF 0.12.1 as in
# http://stackoverflow.com/questions/41543774/invalidargumenterror-for-tensor-bool-tensorflow-0-12-1
sess.run(init, {is_training_pl: True})
ops = {'features_pl': features_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
train_one_epoch(sess, ops, train_writer)
eval_one_epoch(sess, ops, test_writer)
# Save the variables to disk.
if epoch % 10 == 0:
save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt"))
log_string("Model saved in file: %s" % save_path)
def train_one_epoch(sess, ops, train_writer):
""" ops: dict mapping from string to tf ops """
is_training = True
# Shuffle train files
train_file_idxs = np.arange(0, len(TRAIN_FILES))
np.random.shuffle(train_file_idxs)
for fn in range(len(TRAIN_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.load_data_file(TRAIN_FILES[train_file_idxs[fn]], with_normals=True)
current_data = current_data[:,0:NUM_POINT,:]
current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label))
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
total_correct = 0
total_seen = 0
loss_sum = 0
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Augment batched point clouds by rotation and jittering
# import pickle
# from pypcd import pypcd
# cloud_out = pypcd.make_xyz_normal_point_cloud(current_data[start_idx, :, :])
# cloud_out.save_pcd('pc_orig.pcd')
rotated_data = provider.rotate_point_cloud(current_data[start_idx:end_idx, :, :])
# cloud_out = pypcd.make_xyz_normal_point_cloud(rotated_data[0])
# cloud_out.save_pcd('pc_rot.pcd')
# exit()
jittered_data = provider.jitter_point_cloud(rotated_data)
jittered_data_json = {'point_clouds': jittered_data.tolist()}
# Etract features pointcnn
response_pointcnn = requests.post(pointcnn_url, json=jittered_data_json)
pointcnn_features = np.array(response_pointcnn.json()['features'])
# # Etract features pointnet
# jittered_data_json = {'point_clouds': jittered_data[:, :, :3].tolist()}
# response_pointnet = requests.post(pointnet_url, json=jittered_data_json)
# pointnet_features = np.array(response_pointnet.json()['features'])
# Etract features dgcnn
# jittered_data_json = {'point_clouds': jittered_data[:, :, :3].tolist()}
# response_dgcnn = requests.post(dgcnn_url, json=jittered_data_json)
# dgcnn_features = np.array(response_dgcnn.json()['features'])
# Concatenate
#point_features = np.concatenate((pointcnn_features, dgcnn_features), axis=-1)
point_features = pointcnn_features
# Train
feed_dict = {ops['features_pl']: point_features,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training,}
summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict)
train_writer.add_summary(summary, step)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += loss_val
log_string('mean loss: %f' % (loss_sum / float(num_batches)))
log_string('accuracy: %f' % (total_correct / float(total_seen)))
def eval_one_epoch(sess, ops, test_writer):
""" ops: dict mapping from string to tf ops """
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
for fn in range(len(TEST_FILES)):
log_string('----' + str(fn) + '-----')
current_data, current_label = provider.load_data_file(TEST_FILES[fn], with_normals=True)
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
# Current point_clouds & label
current_point_clouds = current_data[start_idx:end_idx, :, :]
current_labels = current_label[start_idx:end_idx]
current_data_json = {'point_clouds': current_point_clouds.tolist()}
# Etract features pointcnn
response_pointcnn = requests.post(pointcnn_url, json=current_data_json)
pointcnn_features = np.array(response_pointcnn.json()['features'])
# # Etract features pointnet
# current_data_json = {'point_clouds': current_point_clouds[:, :, :3].tolist()}
# response_pointnet = requests.post(pointnet_url, json=current_data_json)
# pointnet_features = np.array(response_pointnet.json()['features'])
# # Etract features dgcnn
# current_data_json = {'point_clouds': current_point_clouds[:, :, :3].tolist()}
# response_dgcnn = requests.post(dgcnn_url, json=current_data_json)
# dgcnn_features = np.array(response_dgcnn.json()['features'])
# Concatenate
#point_features = np.concatenate((pointcnn_features, dgcnn_features), axis=-1)
point_features = pointcnn_features
feed_dict = {ops['features_pl']: point_features,
ops['labels_pl']: current_labels,
ops['is_training_pl']: is_training}
summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'],
ops['loss'], ops['pred']], feed_dict=feed_dict)
pred_val = np.argmax(pred_val, 1)
correct = np.sum(pred_val == current_label[start_idx:end_idx])
total_correct += correct
total_seen += BATCH_SIZE
loss_sum += (loss_val*BATCH_SIZE)
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f'% (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
if __name__ == "__main__":
train()
LOG_FOUT.close()