forked from StevenJokes/pytorch3d
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
executable file
·101 lines (77 loc) · 3.05 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import glob
import os
import runpy
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "pytorch3d", "csrc")
main_source = os.path.join(extensions_dir, "ext.cpp")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu"))
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": ["-std=c++14"]}
define_macros = []
force_cuda = os.getenv("FORCE_CUDA", "0") == "1"
if (torch.cuda.is_available() and CUDA_HOME is not None) or force_cuda:
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
nvcc_args = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
nvcc_flags_env = os.getenv("NVCC_FLAGS", "")
if nvcc_flags_env != "":
nvcc_args.extend(nvcc_flags_env.split(" "))
# It's better if pytorch can do this by default ..
CC = os.environ.get("CC", None)
if CC is not None:
CC_arg = "-ccbin={}".format(CC)
if CC_arg not in nvcc_args:
if any(arg.startswith("-ccbin") for arg in nvcc_args):
raise ValueError("Inconsistent ccbins")
nvcc_args.append(CC_arg)
extra_compile_args["nvcc"] = nvcc_args
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
"pytorch3d._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
# Retrieve __version__ from the package.
__version__ = runpy.run_path("pytorch3d/__init__.py")["__version__"]
if os.getenv("PYTORCH3D_NO_NINJA", "0") == "1":
class BuildExtension(torch.utils.cpp_extension.BuildExtension):
def __init__(self, *args, **kwargs):
super().__init__(use_ninja=False, *args, **kwargs)
else:
BuildExtension = torch.utils.cpp_extension.BuildExtension
setup(
name="pytorch3d",
version=__version__,
author="FAIR",
url="https://github.com/facebookresearch/pytorch3d",
description="PyTorch3D is FAIR's library of reusable components "
"for deep Learning with 3D data.",
packages=find_packages(exclude=("configs", "tests")),
install_requires=["torchvision>=0.4", "fvcore"],
extras_require={
"all": ["matplotlib", "tqdm>4.29.0", "imageio", "ipywidgets"],
"dev": ["flake8", "isort", "black==19.3b0"],
},
ext_modules=get_extensions(),
cmdclass={"build_ext": BuildExtension},
)