-
Notifications
You must be signed in to change notification settings - Fork 0
/
euler_problem_12.py
42 lines (33 loc) · 1.01 KB
/
euler_problem_12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Highly divisible triangular number
# Problem 12
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
# Let us list the factors of the first seven triangle numbers:
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number to have over five divisors.
# What is the value of the first triangle number to have over five hundred divisors?
import math
def numberOfFactors(val):
numFactors = 0
lim = math.sqrt(val)
i = 1
while i <= lim:
if val % i == 0:
numFactors += 1
i += 1
return 2*numFactors
listTriangleNums = [1]
idx = 1
numOfFactors = 0
while numOfFactors < 500:
idx += 1
newTriangleNum = reduce(lambda x, y: x+y, range(1,(idx+1)))
listTriangleNums.append(newTriangleNum)
numOfFactors = numberOfFactors(listTriangleNums[-1])
print listTriangleNums[-1]