From b47b5ac771919f32e26c8259c060f6b1930682c8 Mon Sep 17 00:00:00 2001 From: Rory Mitchell Date: Tue, 16 Jun 2020 12:45:59 +1200 Subject: [PATCH] Use hypothesis (#5759) * Use hypothesis * Allow int64 array interface for groups * Add packages to Windows CI * Add to travis * Make sure device index is set correctly * Fix dask-cudf test * appveyor --- Jenkinsfile-win64 | 4 +- appveyor.yml | 2 +- src/data/data.cu | 35 ++-- tests/ci_build/Dockerfile.cpu | 2 +- tests/ci_build/Dockerfile.cudf | 2 +- tests/ci_build/Dockerfile.gpu | 2 +- tests/cpp/data/test_metainfo.cu | 30 +++- tests/python-gpu/test_gpu_linear.py | 70 +++++--- tests/python-gpu/test_gpu_pickling.py | 5 +- tests/python-gpu/test_gpu_prediction.py | 2 +- tests/python-gpu/test_gpu_updaters.py | 136 +++++++-------- tests/python-gpu/test_gpu_with_dask.py | 22 +-- tests/python/regression_test_utilities.py | 198 ---------------------- tests/python/test_linear.py | 137 +++++++-------- tests/python/test_updaters.py | 90 ++++++---- tests/python/testing.py | 117 ++++++++++++- tests/travis/run_test.sh | 2 +- 17 files changed, 414 insertions(+), 442 deletions(-) delete mode 100644 tests/python/regression_test_utilities.py diff --git a/Jenkinsfile-win64 b/Jenkinsfile-win64 index 479a78cd94f3..9233494d3130 100644 --- a/Jenkinsfile-win64 +++ b/Jenkinsfile-win64 @@ -113,7 +113,7 @@ def TestWin64CPU() { """ echo "Installing Python dependencies..." bat """ - conda activate && conda upgrade scikit-learn pandas numpy + conda activate && conda install -y hypothesis && conda upgrade scikit-learn pandas numpy hypothesis """ echo "Running Python tests..." bat "conda activate && python -m pytest -v -s --fulltrace tests\\python" @@ -138,7 +138,7 @@ def TestWin64GPU(args) { """ echo "Installing Python dependencies..." bat """ - conda activate && conda upgrade scikit-learn pandas numpy + conda activate && conda install -y hypothesis && conda upgrade scikit-learn pandas numpy hypothesis """ echo "Running Python tests..." bat """ diff --git a/appveyor.yml b/appveyor.yml index cfdd5cbfd11e..54032bcc14cc 100644 --- a/appveyor.yml +++ b/appveyor.yml @@ -44,7 +44,7 @@ install: - if /i "%DO_PYTHON%" == "on" ( conda config --set always_yes true && conda update -q conda && - conda install -y numpy scipy pandas matplotlib pytest scikit-learn graphviz python-graphviz + conda install -y numpy scipy pandas matplotlib pytest scikit-learn graphviz python-graphviz hypothesis ) - set PATH=C:\Miniconda3-x64\Library\bin\graphviz;%PATH% # R: based on https://github.com/krlmlr/r-appveyor diff --git a/src/data/data.cu b/src/data/data.cu index d09202075007..526f9a67366e 100644 --- a/src/data/data.cu +++ b/src/data/data.cu @@ -34,6 +34,30 @@ void CopyInfoImpl(ArrayInterface column, HostDeviceVector* out) { }); } +void CopyGroupInfoImpl(ArrayInterface column, std::vector* out) { + CHECK(column.type[1] == 'i' || column.type[1] == 'u') + << "Expected integer metainfo"; + auto SetDeviceToPtr = [](void* ptr) { + cudaPointerAttributes attr; + dh::safe_cuda(cudaPointerGetAttributes(&attr, ptr)); + int32_t ptr_device = attr.device; + dh::safe_cuda(cudaSetDevice(ptr_device)); + return ptr_device; + }; + auto ptr_device = SetDeviceToPtr(column.data); + dh::TemporaryArray temp(column.num_rows); + auto d_tmp = temp.data(); + + dh::LaunchN(ptr_device, column.num_rows, [=] __device__(size_t idx) { + d_tmp[idx] = column.GetElement(idx); + }); + auto length = column.num_rows; + out->resize(length + 1); + out->at(0) = 0; + thrust::copy(temp.data(), temp.data() + length, out->begin() + 1); + std::partial_sum(out->begin(), out->end(), out->begin()); +} + void MetaInfo::SetInfo(const char * c_key, std::string const& interface_str) { Json j_interface = Json::Load({interface_str.c_str(), interface_str.size()}); auto const& j_arr = get(j_interface); @@ -53,16 +77,7 @@ void MetaInfo::SetInfo(const char * c_key, std::string const& interface_str) { } else if (key == "base_margin") { CopyInfoImpl(array_interface, &base_margin_); } else if (key == "group") { - // Ranking is not performed on device. - thrust::device_ptr p_src{ - reinterpret_cast(array_interface.data)}; - - auto length = array_interface.num_rows; - group_ptr_.resize(length + 1); - group_ptr_[0] = 0; - thrust::copy(p_src, p_src + length, group_ptr_.begin() + 1); - std::partial_sum(group_ptr_.begin(), group_ptr_.end(), group_ptr_.begin()); - + CopyGroupInfoImpl(array_interface, &group_ptr_); return; } else { LOG(FATAL) << "Unknown metainfo: " << key; diff --git a/tests/ci_build/Dockerfile.cpu b/tests/ci_build/Dockerfile.cpu index 7e18fd99006f..ae20e02588d6 100644 --- a/tests/ci_build/Dockerfile.cpu +++ b/tests/ci_build/Dockerfile.cpu @@ -22,7 +22,7 @@ ENV GOSU_VERSION 1.10 # Install Python packages in default env RUN \ pip install pyyaml cpplint pylint astroid sphinx numpy scipy pandas matplotlib sh \ - recommonmark guzzle_sphinx_theme mock breathe graphviz \ + recommonmark guzzle_sphinx_theme mock breathe graphviz hypothesis\ pytest scikit-learn wheel kubernetes urllib3 jsonschema boto3 && \ pip install https://h2o-release.s3.amazonaws.com/datatable/stable/datatable-0.7.0/datatable-0.7.0-cp37-cp37m-linux_x86_64.whl && \ pip install "dask[complete]" diff --git a/tests/ci_build/Dockerfile.cudf b/tests/ci_build/Dockerfile.cudf index 7661cebe047d..e0bf0a3c1d03 100644 --- a/tests/ci_build/Dockerfile.cudf +++ b/tests/ci_build/Dockerfile.cudf @@ -19,7 +19,7 @@ ENV PATH=/opt/python/bin:$PATH RUN \ conda create -n cudf_test -c rapidsai -c nvidia -c conda-forge -c defaults \ python=3.7 cudf cudatoolkit=$CUDA_VERSION dask dask-cuda dask-cudf cupy \ - numpy pytest scipy scikit-learn pandas matplotlib wheel python-kubernetes urllib3 graphviz + numpy pytest scipy scikit-learn pandas matplotlib wheel python-kubernetes urllib3 graphviz hypothesis ENV GOSU_VERSION 1.10 diff --git a/tests/ci_build/Dockerfile.gpu b/tests/ci_build/Dockerfile.gpu index 4ec61ab4d90a..b06b85acc496 100644 --- a/tests/ci_build/Dockerfile.gpu +++ b/tests/ci_build/Dockerfile.gpu @@ -18,7 +18,7 @@ ENV PATH=/opt/python/bin:$PATH RUN \ conda create -n gpu_test -c rapidsai -c nvidia -c conda-forge -c defaults \ python=3.7 dask dask-cuda numpy pytest scipy scikit-learn pandas \ - matplotlib wheel python-kubernetes urllib3 graphviz + matplotlib wheel python-kubernetes urllib3 graphviz hypothesis ENV GOSU_VERSION 1.10 diff --git a/tests/cpp/data/test_metainfo.cu b/tests/cpp/data/test_metainfo.cu index 61c9ebc70fa9..2685cc3ebb1a 100644 --- a/tests/cpp/data/test_metainfo.cu +++ b/tests/cpp/data/test_metainfo.cu @@ -21,7 +21,7 @@ std::string PrepareData(std::string typestr, thrust::device_vector* out, cons std::vector j_shape {Json(Integer(static_cast(kRows)))}; column["shape"] = Array(j_shape); - column["strides"] = Array(std::vector{Json(Integer(static_cast(4)))}); + column["strides"] = Array(std::vector{Json(Integer(static_cast(sizeof(T))))}); column["version"] = Integer(static_cast(1)); column["typestr"] = String(typestr); @@ -78,16 +78,32 @@ TEST(MetaInfo, FromInterface) { TEST(MetaInfo, Group) { cudaSetDevice(0); - thrust::device_vector d_data; - std::string str = PrepareData(" d_uint; + std::string uint_str = PrepareData(" d_int64; + std::string int_str = PrepareData(" d_float; + std::string float_str = PrepareData(" 0) + param['updater'] = 'gpu_coord_descent' + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing(result) + + # Loss is not guaranteed to always decrease because of regularisation parameters + # We test a weaker condition that the loss has not increased between the first and last + # iteration + @given(parameter_strategy, strategies.integers(10, 50), + tm.dataset_strategy, strategies.floats(1e-5, 2.0), + strategies.floats(1e-5, 2.0)) + @settings(deadline=None) + def test_gpu_coordinate_regularised(self, param, num_rounds, dataset, alpha, lambd): + assume(len(dataset.y) > 0) + param['updater'] = 'gpu_coord_descent' + param['alpha'] = alpha + param['lambda'] = lambd + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing([result[0], result[-1]]) diff --git a/tests/python-gpu/test_gpu_pickling.py b/tests/python-gpu/test_gpu_pickling.py index 9fe12ffbfdd6..b0aacea9018a 100644 --- a/tests/python-gpu/test_gpu_pickling.py +++ b/tests/python-gpu/test_gpu_pickling.py @@ -4,9 +4,13 @@ import numpy as np import subprocess import os +import sys import json import pytest +sys.path.append("tests/python") +import testing as tm + import xgboost as xgb from xgboost import XGBClassifier @@ -90,7 +94,6 @@ def test_wrap_gpu_id(self): ) status = subprocess.call(args, env=env) assert status == 0 - os.remove(model_path) def test_pickled_predictor(self): diff --git a/tests/python-gpu/test_gpu_prediction.py b/tests/python-gpu/test_gpu_prediction.py index c99f918ba8e4..6324e117b3e8 100644 --- a/tests/python-gpu/test_gpu_prediction.py +++ b/tests/python-gpu/test_gpu_prediction.py @@ -158,10 +158,10 @@ def test_inplace_predict_cudf(self): rows = 1000 cols = 10 rng = np.random.RandomState(1994) + cp.cuda.runtime.setDevice(0) X = rng.randn(rows, cols) X = pd.DataFrame(X) y = rng.randn(rows) - X = cudf.from_pandas(X) dtrain = xgb.DMatrix(X, y) diff --git a/tests/python-gpu/test_gpu_updaters.py b/tests/python-gpu/test_gpu_updaters.py index 755e3bb43f8f..ce555bd6a5a6 100644 --- a/tests/python-gpu/test_gpu_updaters.py +++ b/tests/python-gpu/test_gpu_updaters.py @@ -1,74 +1,71 @@ import numpy as np import sys -import unittest import pytest import xgboost as xgb +from hypothesis import given, strategies, assume, settings, note sys.path.append("tests/python") import testing as tm -from regression_test_utilities import run_suite, parameter_combinations, \ - assert_results_non_increasing - -def assert_gpu_results(cpu_results, gpu_results): - for cpu_res, gpu_res in zip(cpu_results, gpu_results): - # Check final eval result roughly equivalent - assert np.allclose(cpu_res["eval"][-1], - gpu_res["eval"][-1], 1e-1, 1e-1) - - -datasets = ["Boston", "Cancer", "Digits", "Sparse regression", - "Sparse regression with weights", "Small weights regression"] - -test_param = parameter_combinations({ - 'gpu_id': [0], - 'max_depth': [2, 8], - 'max_leaves': [255, 4], - 'max_bin': [4, 256], - 'grow_policy': ['lossguide'], - 'single_precision_histogram': [True], - 'min_child_weight': [0], - 'lambda': [0]}) - - -class TestGPU(unittest.TestCase): - def test_gpu_hist(self): - for param in test_param: - param['tree_method'] = 'gpu_hist' - gpu_results = run_suite(param, select_datasets=datasets) - assert_results_non_increasing(gpu_results, 1e-2) - param['tree_method'] = 'hist' - cpu_results = run_suite(param, select_datasets=datasets) - assert_gpu_results(cpu_results, gpu_results) +parameter_strategy = strategies.fixed_dictionaries({ + 'max_depth': strategies.integers(0, 11), + 'max_leaves': strategies.integers(0, 256), + 'max_bin': strategies.integers(2, 1024), + 'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']), + 'single_precision_histogram': strategies.booleans(), + 'min_child_weight': strategies.floats(0.5, 2.0), + 'seed': strategies.integers(0, 10), + # We cannot enable subsampling as the training loss can increase + # 'subsample': strategies.floats(0.5, 1.0), + 'colsample_bytree': strategies.floats(0.5, 1.0), + 'colsample_bylevel': strategies.floats(0.5, 1.0), +}).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and ( + x['max_depth'] > 0 or x['grow_policy'] == 'lossguide')) + + +def train_result(param, dmat, num_rounds): + result = {} + xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, + evals_result=result) + return result + + +class TestGPUUpdaters: + @given(parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_gpu_hist(self, param, num_rounds, dataset): + param['tree_method'] = 'gpu_hist' + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds) + note(result) + assert tm.non_increasing(result['train'][dataset.metric]) @pytest.mark.skipif(**tm.no_cupy()) - def test_gpu_hist_device_dmatrix(self): - # DeviceDMatrix does not currently accept sparse formats - device_dmatrix_datasets = ["Boston", "Cancer", "Digits"] - for param in test_param: - param['tree_method'] = 'gpu_hist' - - gpu_results_device_dmatrix = run_suite(param, select_datasets=device_dmatrix_datasets, - DMatrixT=xgb.DeviceQuantileDMatrix, - dmatrix_params={'max_bin': param['max_bin']}) - assert_results_non_increasing(gpu_results_device_dmatrix, 1e-2) - gpu_results = run_suite(param, select_datasets=device_dmatrix_datasets) - assert_gpu_results(gpu_results, gpu_results_device_dmatrix) - - # NOTE(rongou): Because the `Boston` dataset is too small, this only tests external memory mode - # with a single page. To test multiple pages, set DMatrix::kPageSize to, say, 1024. - def test_external_memory(self): - for param in reversed(test_param): - param['tree_method'] = 'gpu_hist' - param['gpu_page_size'] = 1024 - gpu_results = run_suite(param, select_datasets=["Boston"]) - assert_results_non_increasing(gpu_results, 1e-2) - ext_mem_results = run_suite(param, select_datasets=["Boston External Memory"]) - assert_results_non_increasing(ext_mem_results, 1e-2) - assert_gpu_results(gpu_results, ext_mem_results) - break - - def test_with_empty_dmatrix(self): + @given(parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_gpu_hist_device_dmatrix(self, param, num_rounds, dataset): + # We cannot handle empty dataset yet + assume(len(dataset.y) > 0) + param['tree_method'] = 'gpu_hist' + param = dataset.set_params(param) + result = train_result(param, dataset.get_device_dmat(), num_rounds) + note(result) + assert tm.non_increasing(result['train'][dataset.metric]) + + @given(parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_external_memory(self, param, num_rounds, dataset): + # We cannot handle empty dataset yet + assume(len(dataset.y) > 0) + param['tree_method'] = 'gpu_hist' + param = dataset.set_params(param) + external_result = train_result(param, dataset.get_external_dmat(), num_rounds) + assert tm.non_increasing(external_result['train'][dataset.metric]) + + def test_empty_dmatrix_prediction(self): # FIXME(trivialfis): This should be done with all updaters kRows = 0 kCols = 100 @@ -94,13 +91,10 @@ def test_with_empty_dmatrix(self): np.testing.assert_allclose(predictions, 0.5, 1e-6) @pytest.mark.mgpu - def test_specified_gpu_id_gpu_update(self): - variable_param = {'gpu_id': [1], - 'max_depth': [8], - 'max_leaves': [255, 4], - 'max_bin': [2, 64], - 'grow_policy': ['lossguide'], - 'tree_method': ['gpu_hist']} - for param in parameter_combinations(variable_param): - gpu_results = run_suite(param, select_datasets=datasets) - assert_results_non_increasing(gpu_results, 1e-2) + @given(tm.dataset_strategy, strategies.integers(0, 10)) + @settings(deadline=None, max_examples=10) + def test_specified_gpu_id_gpu_update(self, dataset, gpu_id): + param = {'tree_method': 'gpu_hist', 'gpu_id': gpu_id} + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), 10) + assert tm.non_increasing(result['train'][dataset.metric]) diff --git a/tests/python-gpu/test_gpu_with_dask.py b/tests/python-gpu/test_gpu_with_dask.py index 97eeb5bdf30f..0a34dfe236ea 100644 --- a/tests/python-gpu/test_gpu_with_dask.py +++ b/tests/python-gpu/test_gpu_with_dask.py @@ -31,7 +31,8 @@ class TestDistributedGPU(unittest.TestCase): def test_dask_dataframe(self): with LocalCUDACluster() as cluster: with Client(cluster) as client: - import cupy + import cupy as cp + cp.cuda.runtime.setDevice(0) X, y = generate_array() X = dd.from_dask_array(X) @@ -59,8 +60,8 @@ def test_dask_dataframe(self): single_node = out['booster'].predict( xgboost.DMatrix(X.compute())) - cupy.testing.assert_allclose(single_node, predictions) - cupy.testing.assert_allclose(single_node, series_predictions) + cp.testing.assert_allclose(single_node, predictions) + np.testing.assert_allclose(single_node, series_predictions.to_array()) predt = dxgb.predict(client, out, X) assert isinstance(predt, dd.Series) @@ -73,7 +74,7 @@ def is_df(part): is_df, meta=dd.utils.make_meta({'prediction': 'f4'})) - cupy.testing.assert_allclose( + cp.testing.assert_allclose( predt.values.compute(), single_node) @pytest.mark.skipif(**tm.no_cupy()) @@ -81,11 +82,12 @@ def is_df(part): def test_dask_array(self): with LocalCUDACluster() as cluster: with Client(cluster) as client: - import cupy + import cupy as cp + cp.cuda.runtime.setDevice(0) X, y = generate_array() - X = X.map_blocks(cupy.asarray) - y = y.map_blocks(cupy.asarray) + X = X.map_blocks(cp.asarray) + y = y.map_blocks(cp.asarray) dtrain = dxgb.DaskDMatrix(client, X, y) out = dxgb.train(client, {'tree_method': 'gpu_hist'}, dtrain=dtrain, @@ -97,11 +99,11 @@ def test_dask_array(self): single_node = out['booster'].predict( xgboost.DMatrix(X.compute())) np.testing.assert_allclose(single_node, from_dmatrix) - device = cupy.cuda.runtime.getDevice() + device = cp.cuda.runtime.getDevice() assert device == inplace_predictions.device.id - single_node = cupy.array(single_node) + single_node = cp.array(single_node) assert device == single_node.device.id - cupy.testing.assert_allclose( + cp.testing.assert_allclose( single_node, inplace_predictions) diff --git a/tests/python/regression_test_utilities.py b/tests/python/regression_test_utilities.py deleted file mode 100644 index b2b44000761d..000000000000 --- a/tests/python/regression_test_utilities.py +++ /dev/null @@ -1,198 +0,0 @@ -import glob -import itertools as it -import numpy as np -import os -import sys -import xgboost as xgb -from joblib import Memory -memory = Memory('./cachedir', verbose=0) - -try: - from sklearn import datasets - from sklearn.preprocessing import scale -except ImportError: - None - - -class Dataset: - def __init__(self, name, get_dataset, objective, metric, - has_weights=False, use_external_memory=False): - self.name = name - self.objective = objective - self.metric = metric - if has_weights: - self.X, self.y, self.w = get_dataset() - else: - self.X, self.y = get_dataset() - self.w = None - self.use_external_memory = use_external_memory - - def __str__(self): - a = 'name: {name}\nobjective:{objective}, metric:{metric}, '.format( - name=self.name, - objective=self.objective, - metric=self.metric) - b = 'external memory:{use_external_memory}\n'.format( - use_external_memory=self.use_external_memory - ) - return a + b - - def __repr__(self): - return self.__str__() - - -@memory.cache -def get_boston(): - data = datasets.load_boston() - return data.data, data.target - - -@memory.cache -def get_digits(): - data = datasets.load_digits() - return data.data, data.target - - -@memory.cache -def get_cancer(): - data = datasets.load_breast_cancer() - return data.data, data.target - - -@memory.cache -def get_sparse(): - rng = np.random.RandomState(199) - n = 2000 - sparsity = 0.75 - X, y = datasets.make_regression(n, random_state=rng) - flag = rng.binomial(1, sparsity, X.shape) - for i in range(X.shape[0]): - for j in range(X.shape[1]): - if flag[i, j]: - X[i, j] = 0.0 - from scipy import sparse - X = sparse.csr_matrix(X) - return X, y - - -def get_sparse_weights(): - return get_weights_regression(1, 10) - - -def get_small_weights(): - return get_weights_regression(1e-6, 1e-5) - - -@memory.cache -def get_weights_regression(min_weight, max_weight): - rng = np.random.RandomState(199) - n = 2000 - sparsity = 0.25 - X, y = datasets.make_regression(n, random_state=rng) - flag = rng.binomial(1, sparsity, X.shape) - for i in range(X.shape[0]): - for j in range(X.shape[1]): - if flag[i, j]: - X[i, j] = np.nan - w = rng.uniform(min_weight, max_weight, n) - return X, y, w - - -def train_dataset(dataset, param_in, num_rounds=10, scale_features=False, DMatrixT=xgb.DMatrix, - dmatrix_params={}): - param = param_in.copy() - param["objective"] = dataset.objective - if dataset.objective == "multi:softmax": - param["num_class"] = int(np.max(dataset.y) + 1) - param["eval_metric"] = dataset.metric - - if scale_features: - X = scale(dataset.X, with_mean=isinstance(dataset.X, np.ndarray)) - else: - X = dataset.X - - if dataset.use_external_memory: - np.savetxt('tmptmp_1234.csv', np.hstack((dataset.y.reshape(len(dataset.y), 1), X)), - delimiter=',') - dtrain = DMatrixT('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_', - weight=dataset.w) - elif DMatrixT is xgb.DeviceQuantileDMatrix: - import cupy as cp - dtrain = DMatrixT(cp.array(X), cp.array(dataset.y), - weight=None if dataset.w is None else cp.array(dataset.w), - **dmatrix_params) - else: - dtrain = DMatrixT(X, dataset.y, weight=dataset.w, **dmatrix_params) - - print("Training on dataset: " + dataset.name, file=sys.stderr) - print("Using parameters: " + str(param), file=sys.stderr) - res = {} - bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], - evals_result=res, verbose_eval=False) - - # Free the booster and dmatrix so we can delete temporary files - bst_copy = bst.copy() - del bst - del dtrain - - # Cleanup temporary files - if dataset.use_external_memory: - for f in glob.glob("tmptmp_*"): - os.remove(f) - - return {"dataset": dataset, "bst": bst_copy, "param": param.copy(), - "eval": res['train'][dataset.metric]} - - -def parameter_combinations(variable_param): - """ - Enumerate all possible combinations of parameters - """ - result = [] - names = sorted(variable_param) - combinations = it.product(*(variable_param[Name] for Name in names)) - for set in combinations: - param = {} - for i, name in enumerate(names): - param[name] = set[i] - result.append(param) - return result - - -def run_suite(param, num_rounds=10, select_datasets=None, scale_features=False, - DMatrixT=xgb.DMatrix, dmatrix_params={}): - """ - Run the given parameters on a range of datasets. Objective and eval metric will be - automatically set - """ - datasets = [ - Dataset("Boston", get_boston, "reg:squarederror", "rmse"), - Dataset("Digits", get_digits, "multi:softmax", "mlogloss"), - Dataset("Cancer", get_cancer, "binary:logistic", "logloss"), - Dataset("Sparse regression", get_sparse, "reg:squarederror", "rmse"), - Dataset("Sparse regression with weights", get_sparse_weights, - "reg:squarederror", "rmse", has_weights=True), - Dataset("Small weights regression", get_small_weights, - "reg:squarederror", "rmse", has_weights=True), - Dataset("Boston External Memory", get_boston, - "reg:squarederror", "rmse", - use_external_memory=True) - ] - - results = [ - ] - for d in datasets: - if select_datasets is None or d.name in select_datasets: - results.append( - train_dataset(d, param, num_rounds=num_rounds, scale_features=scale_features, - DMatrixT=DMatrixT, dmatrix_params=dmatrix_params)) - return results - - -def non_increasing(L, tolerance): - return all((y - x) < tolerance for x, y in zip(L, L[1:])) - - -def assert_results_non_increasing(results, tolerance=1e-5): - for r in results: - assert non_increasing(r['eval'], tolerance), r diff --git a/tests/python/test_linear.py b/tests/python/test_linear.py index 82dcca6374fb..72d7bf988fc7 100644 --- a/tests/python/test_linear.py +++ b/tests/python/test_linear.py @@ -1,87 +1,72 @@ -import numpy as np import testing as tm -import unittest -import pytest - +from hypothesis import strategies, given, settings, note import xgboost as xgb -try: - from sklearn.linear_model import ElasticNet - from sklearn.preprocessing import scale - from regression_test_utilities import run_suite, parameter_combinations -except ImportError: - None - - -def is_float(s): - try: - float(s) - return 1 - except ValueError: - return 0 - - -def xgb_get_weights(bst): - return np.array([float(s) for s in bst.get_dump()[0].split() if - is_float(s)]) - +parameter_strategy = strategies.fixed_dictionaries({ + 'booster': strategies.just('gblinear'), + 'eta': strategies.floats(0.01, 0.25), + 'tolerance': strategies.floats(1e-5, 1e-2), + 'nthread': strategies.integers(1, 4), +}) -def assert_regression_result(results, tol): - regression_results = [r for r in results if - r["param"]["objective"] == "reg:squarederror"] - for res in regression_results: - X = scale(res["dataset"].X, - with_mean=isinstance(res["dataset"].X, np.ndarray)) - y = res["dataset"].y - reg_alpha = res["param"]["alpha"] - reg_lambda = res["param"]["lambda"] - pred = res["bst"].predict(xgb.DMatrix(X)) - weights = xgb_get_weights(res["bst"])[1:] - enet = ElasticNet(alpha=reg_alpha + reg_lambda, - l1_ratio=reg_alpha / (reg_alpha + reg_lambda)) - enet.fit(X, y) - enet_pred = enet.predict(X) - assert np.isclose(weights, enet.coef_, rtol=tol, - atol=tol).all(), (weights, enet.coef_) - assert np.isclose(enet_pred, pred, rtol=tol, atol=tol).all(), ( - res["dataset"].name, enet_pred[:5], pred[:5]) +coord_strategy = strategies.fixed_dictionaries({ + 'feature_selector': strategies.sampled_from(['cyclic', 'shuffle', + 'greedy', 'thrifty']), + 'top_k': strategies.integers(1, 10), +}) -# TODO: More robust classification tests -def assert_classification_result(results): - classification_results = [r for r in results if - r["param"]["objective"] != "reg:squarederror"] - for res in classification_results: - # Check accuracy is reasonable - assert res["eval"][-1] < 2.0, (res["dataset"].name, res["eval"][-1]) +def train_result(param, dmat, num_rounds): + result = {} + xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, + evals_result=result) + return result -class TestLinear(unittest.TestCase): +class TestLinear: + @given(parameter_strategy, strategies.integers(10, 50), + tm.dataset_strategy, coord_strategy) + @settings(deadline=None) + def test_coordinate(self, param, num_rounds, dataset, coord_param): + param['updater'] = 'coord_descent' + param.update(coord_param) + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing(result) - datasets = ["Boston", "Digits", "Cancer", "Sparse regression", - "Boston External Memory"] + # Loss is not guaranteed to always decrease because of regularisation parameters + # We test a weaker condition that the loss has not increased between the first and last + # iteration + @given(parameter_strategy, strategies.integers(10, 50), + tm.dataset_strategy, coord_strategy, strategies.floats(1e-5, 2.0), + strategies.floats(1e-5, 2.0)) + @settings(deadline=None) + def test_coordinate_regularised(self, param, num_rounds, dataset, coord_param, alpha, lambd): + param['updater'] = 'coord_descent' + param['alpha'] = alpha + param['lambda'] = lambd + param.update(coord_param) + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing([result[0], result[-1]]) - @pytest.mark.skipif(**tm.no_sklearn()) - def test_coordinate(self): - variable_param = {'booster': ['gblinear'], 'updater': - ['coord_descent'], 'eta': [0.5], 'top_k': - [10], 'tolerance': [1e-5], 'nthread': [2], - 'alpha': [.005, .1], 'lambda': [.005], - 'feature_selector': ['cyclic', 'shuffle', - 'greedy', 'thrifty']} - for param in parameter_combinations(variable_param): - results = run_suite(param, 150, self.datasets, scale_features=True) - assert_regression_result(results, 1e-2) - assert_classification_result(results) + @given(parameter_strategy, strategies.integers(10, 50), + tm.dataset_strategy) + @settings(deadline=None) + def test_shotgun(self, param, num_rounds, dataset): + param['updater'] = 'shotgun' + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing(result) - @pytest.mark.skipif(**tm.no_sklearn()) - def test_shotgun(self): - variable_param = {'booster': ['gblinear'], 'updater': - ['shotgun'], 'eta': [0.5], 'top_k': [10], - 'tolerance': [1e-5], 'nthread': [2], - 'alpha': [.005, .1], 'lambda': [.005], - 'feature_selector': ['cyclic', 'shuffle']} - for param in parameter_combinations(variable_param): - results = run_suite(param, 200, self.datasets, True) - assert_regression_result(results, 1e-2) - assert_classification_result(results) + @given(parameter_strategy, strategies.integers(10, 50), + tm.dataset_strategy, strategies.floats(1e-5, 2.0), + strategies.floats(1e-5, 2.0)) + @settings(deadline=None) + def test_shotgun_regularised(self, param, num_rounds, dataset, alpha, lambd): + param['updater'] = 'shotgun' + param['alpha'] = alpha + param['lambda'] = lambd + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds)['train'][dataset.metric] + assert tm.non_increasing([result[0], result[-1]]) diff --git a/tests/python/test_updaters.py b/tests/python/test_updaters.py index 673cacc79c61..2c456fc3a811 100644 --- a/tests/python/test_updaters.py +++ b/tests/python/test_updaters.py @@ -3,28 +3,57 @@ import pytest import xgboost as xgb import numpy as np +from hypothesis import given, strategies, settings, note -try: - from regression_test_utilities import run_suite, parameter_combinations, \ - assert_results_non_increasing -except ImportError: - None +exact_parameter_strategy = strategies.fixed_dictionaries({ + 'nthread': strategies.integers(1, 4), + 'max_depth': strategies.integers(1, 11), + 'min_child_weight': strategies.floats(0.5, 2.0), + 'alpha': strategies.floats(0.0, 2.0), + 'lambda': strategies.floats(1e-5, 2.0), + 'eta': strategies.floats(0.01, 0.5), + 'gamma': strategies.floats(0.0, 2.0), + 'seed': strategies.integers(0, 10), + # We cannot enable subsampling as the training loss can increase + # 'subsample': strategies.floats(0.5, 1.0), + 'colsample_bytree': strategies.floats(0.5, 1.0), + 'colsample_bylevel': strategies.floats(0.5, 1.0), +}) +hist_parameter_strategy = strategies.fixed_dictionaries({ + 'max_depth': strategies.integers(1, 11), + 'max_leaves': strategies.integers(0, 1024), + 'max_bin': strategies.integers(2, 512), + 'grow_policy': strategies.sampled_from(['lossguide', 'depthwise']), +}).filter(lambda x: (x['max_depth'] > 0 or x['max_leaves'] > 0) and ( + x['max_depth'] > 0 or x['grow_policy'] == 'lossguide')) -class TestUpdaters(unittest.TestCase): - @pytest.mark.skipif(**tm.no_sklearn()) - def test_histmaker(self): - variable_param = {'updater': ['grow_histmaker'], 'max_depth': [2, 8]} - for param in parameter_combinations(variable_param): - result = run_suite(param) - assert_results_non_increasing(result, 1e-2) - @pytest.mark.skipif(**tm.no_sklearn()) - def test_colmaker(self): - variable_param = {'updater': ['grow_colmaker'], 'max_depth': [2, 8]} - for param in parameter_combinations(variable_param): - result = run_suite(param) - assert_results_non_increasing(result, 1e-2) +def train_result(param, dmat, num_rounds): + result = {} + xgb.train(param, dmat, num_rounds, [(dmat, 'train')], verbose_eval=False, + evals_result=result) + return result + + +class TestTreeMethod(unittest.TestCase): + @given(exact_parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_exact(self, param, num_rounds, dataset): + param['tree_method'] = 'exact' + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds) + assert tm.non_increasing(result['train'][dataset.metric]) + + @given(exact_parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_approx(self, param, num_rounds, dataset): + param['tree_method'] = 'approx' + param = dataset.set_params(param) + result = train_result(param, dataset.get_dmat(), num_rounds) + assert tm.non_increasing(result['train'][dataset.metric], 1e-3) @pytest.mark.skipif(**tm.no_sklearn()) def test_pruner(self): @@ -50,19 +79,18 @@ def test_pruner(self): # Second prune should not change the tree assert after_prune == second_prune - @pytest.mark.skipif(**tm.no_sklearn()) - def test_fast_histmaker(self): - variable_param = {'tree_method': ['hist'], - 'max_depth': [2, 8], - 'max_bin': [2, 256], - 'grow_policy': ['depthwise', 'lossguide'], - 'max_leaves': [64, 0], - 'verbosity': [0], - 'single_precision_histogram': [True, False]} - for param in parameter_combinations(variable_param): - result = run_suite(param) - assert_results_non_increasing(result, 1e-2) + @given(exact_parameter_strategy, hist_parameter_strategy, strategies.integers(1, 20), + tm.dataset_strategy) + @settings(deadline=None) + def test_hist(self, param, hist_param, num_rounds, dataset): + param['tree_method'] = 'hist' + param = dataset.set_params(param) + param.update(hist_param) + result = train_result(param, dataset.get_dmat(), num_rounds) + note(result) + assert tm.non_increasing(result['train'][dataset.metric]) + def test_hist_categorical(self): # hist must be same as exact on all-categorial data dpath = 'demo/data/' ag_dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train') @@ -87,7 +115,7 @@ def test_fast_histmaker(self): assert hist_res['test']['auc'] == exact_res['test']['auc'] @pytest.mark.skipif(**tm.no_sklearn()) - def test_fast_histmaker_degenerate_case(self): + def test_hist_degenerate_case(self): # Test a degenerate case where the quantile sketcher won't return any # quantile points for a particular feature (the second feature in # this example). Source: https://github.com/dmlc/xgboost/issues/2943 diff --git a/tests/python/testing.py b/tests/python/testing.py index 07b0f5b04d27..4f9f3394aadc 100644 --- a/tests/python/testing.py +++ b/tests/python/testing.py @@ -1,6 +1,19 @@ # coding: utf-8 from xgboost.compat import SKLEARN_INSTALLED, PANDAS_INSTALLED from xgboost.compat import DASK_INSTALLED +from hypothesis import strategies +from hypothesis.extra.numpy import arrays +from joblib import Memory +from sklearn import datasets +import xgboost as xgb +import numpy as np + +try: + import cupy as cp +except ImportError: + cp = None + +memory = Memory('./cachedir', verbose=0) def no_sklearn(): @@ -39,7 +52,7 @@ def no_matplotlib(): def no_dask_cuda(): reason = 'dask_cuda is not installed.' try: - import dask_cuda as _ # noqa + import dask_cuda as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} @@ -47,7 +60,7 @@ def no_dask_cuda(): def no_cudf(): try: - import cudf # noqa + import cudf # noqa CUDF_INSTALLED = True except ImportError: CUDF_INSTALLED = False @@ -59,7 +72,7 @@ def no_cudf(): def no_cupy(): reason = 'cupy is not installed.' try: - import cupy as _ # noqa + import cupy as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} @@ -68,7 +81,7 @@ def no_cupy(): def no_dask_cudf(): reason = 'dask_cudf is not installed.' try: - import dask_cudf as _ # noqa + import dask_cudf as _ # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} @@ -77,7 +90,101 @@ def no_dask_cudf(): def no_json_schema(): reason = 'jsonschema is not installed' try: - import jsonschema # noqa + import jsonschema # noqa return {'condition': False, 'reason': reason} except ImportError: return {'condition': True, 'reason': reason} + + +# Contains a dataset in numpy format as well as the relevant objective and metric +class TestDataset: + def __init__(self, name, get_dataset, objective, metric + ): + self.name = name + self.objective = objective + self.metric = metric + self.X, self.y = get_dataset() + self.w = None + + def set_params(self, params_in): + params_in['objective'] = self.objective + params_in['eval_metric'] = self.metric + if self.objective == "multi:softmax": + params_in["num_class"] = int(np.max(self.y) + 1) + return params_in + + def get_dmat(self): + return xgb.DMatrix(self.X, self.y, self.w) + + def get_device_dmat(self): + w = None if self.w is None else cp.array(self.w) + X = cp.array(self.X, dtype=np.float32) + y = cp.array(self.y, dtype=np.float32) + return xgb.DeviceQuantileDMatrix(X, y, w) + + def get_external_dmat(self): + np.savetxt('tmptmp_1234.csv', np.hstack((self.y.reshape(len(self.y), 1), self.X)), + delimiter=',') + return xgb.DMatrix('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_', + weight=self.w) + + def __repr__(self): + return self.name + + +@memory.cache +def get_boston(): + data = datasets.load_boston() + return data.data, data.target + + +@memory.cache +def get_digits(): + data = datasets.load_digits() + return data.data, data.target + + +@memory.cache +def get_cancer(): + data = datasets.load_breast_cancer() + return data.data, data.target + + +@memory.cache +def get_sparse(): + rng = np.random.RandomState(199) + n = 2000 + sparsity = 0.75 + X, y = datasets.make_regression(n, random_state=rng) + flag = rng.binomial(1, sparsity, X.shape) + for i in range(X.shape[0]): + for j in range(X.shape[1]): + if flag[i, j]: + X[i, j] = np.nan + return X, y + + +_unweighted_datasets_strategy = strategies.sampled_from( + [TestDataset('boston', get_boston, 'reg:squarederror', 'rmse'), + TestDataset('digits', get_digits, 'multi:softmax', 'mlogloss'), + TestDataset("cancer", get_cancer, "binary:logistic", "logloss"), + TestDataset + ("sparse", get_sparse, "reg:squarederror", "rmse"), + TestDataset("empty", lambda: (np.empty((0, 100)), np.empty(0)), "reg:squarederror", + "rmse")]) + + +@strategies.composite +def _dataset_and_weight(draw): + data = draw(_unweighted_datasets_strategy) + if draw(strategies.booleans()): + data.w = draw(arrays(np.float64, (len(data.y)), elements=strategies.floats(0.1, 2.0))) + return data + +# A strategy for drawing from a set of example datasets +# May add random weights to the dataset +dataset_strategy = _dataset_and_weight() + + +def non_increasing(L, tolerance=1e-4): + return all((y - x) < tolerance for x, y in zip(L, L[1:])) diff --git a/tests/travis/run_test.sh b/tests/travis/run_test.sh index 19c4a9ea6e58..a0e1c9f28651 100755 --- a/tests/travis/run_test.sh +++ b/tests/travis/run_test.sh @@ -39,7 +39,7 @@ if [ ${TASK} == "python_test" ]; then # Run unit tests cd .. python -m pip install graphviz pytest pytest-cov codecov - python -m pip install datatable + python -m pip install datatable hypothesis python -m pip install numpy scipy pandas matplotlib scikit-learn dask[complete] python -m pytest -v --fulltrace -s tests/python --cov=python-package/xgboost || exit -1 codecov