diff --git a/doc/jvm/xgboost4j_spark_tutorial.rst b/doc/jvm/xgboost4j_spark_tutorial.rst
index a7332f253630..fd106be7c3d1 100644
--- a/doc/jvm/xgboost4j_spark_tutorial.rst
+++ b/doc/jvm/xgboost4j_spark_tutorial.rst
@@ -61,9 +61,9 @@ and then refer to the snapshot dependency by adding:
next_version_num-SNAPSHOT
-.. note:: XGBoost4J-Spark requires Apache Spark 2.3+
+.. note:: XGBoost4J-Spark requires Apache Spark 2.4+
- XGBoost4J-Spark now requires **Apache Spark 2.3+**. Latest versions of XGBoost4J-Spark uses facilities of `org.apache.spark.ml.param.shared` extensively to provide for a tight integration with Spark MLLIB framework, and these facilities are not fully available on earlier versions of Spark.
+ XGBoost4J-Spark now requires **Apache Spark 2.4+**. Latest versions of XGBoost4J-Spark uses facilities of `org.apache.spark.ml.param.shared` extensively to provide for a tight integration with Spark MLLIB framework, and these facilities are not fully available on earlier versions of Spark.
Also, make sure to install Spark directly from `Apache website `_. **Upstream XGBoost is not guaranteed to work with third-party distributions of Spark, such as Cloudera Spark.** Consult appropriate third parties to obtain their distribution of XGBoost.
diff --git a/jvm-packages/pom.xml b/jvm-packages/pom.xml
index 1476801c6db3..d25cf51b1deb 100644
--- a/jvm-packages/pom.xml
+++ b/jvm-packages/pom.xml
@@ -34,7 +34,7 @@
1.7
1.7
1.5.0
- 2.3.3
+ 2.4.1
2.11.12
2.11
diff --git a/jvm-packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/params/DefaultXGBoostParamsReader.scala b/jvm-packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/params/DefaultXGBoostParamsReader.scala
index b79d5b694345..bb75bb342cb1 100644
--- a/jvm-packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/params/DefaultXGBoostParamsReader.scala
+++ b/jvm-packages/xgboost4j-spark/src/main/scala/ml/dmlc/xgboost4j/scala/spark/params/DefaultXGBoostParamsReader.scala
@@ -22,12 +22,17 @@ import org.json4s.JsonAST.JObject
import org.json4s.jackson.JsonMethods.{compact, parse, render}
import org.apache.spark.SparkContext
-import org.apache.spark.ml.param.Params
+import org.apache.spark.ml.param.{Param, Params}
import org.apache.spark.ml.util.MLReader
// This originates from apache-spark DefaultPramsReader copy paste
private[spark] object DefaultXGBoostParamsReader {
+ private val paramNameCompatibilityMap: Map[String, String] = Map("silent" -> "verbosity")
+
+ private val paramValueCompatibilityMap: Map[String, Map[Any, Any]] =
+ Map("objective" -> Map("reg:linear" -> "reg:squarederror"))
+
/**
* All info from metadata file.
*
@@ -103,6 +108,14 @@ private[spark] object DefaultXGBoostParamsReader {
Metadata(className, uid, timestamp, sparkVersion, params, metadata, metadataStr)
}
+ private def handleBrokenlyChangedValue[T](paramName: String, value: T): T = {
+ paramValueCompatibilityMap.getOrElse(paramName, Map()).getOrElse(value, value).asInstanceOf[T]
+ }
+
+ private def handleBrokenlyChangedName(paramName: String): String = {
+ paramNameCompatibilityMap.getOrElse(paramName, paramName)
+ }
+
/**
* Extract Params from metadata, and set them in the instance.
* This works if all Params implement [[org.apache.spark.ml.param.Param.jsonDecode()]].
@@ -113,9 +126,9 @@ private[spark] object DefaultXGBoostParamsReader {
metadata.params match {
case JObject(pairs) =>
pairs.foreach { case (paramName, jsonValue) =>
- val param = instance.getParam(paramName)
+ val param = instance.getParam(handleBrokenlyChangedName(paramName))
val value = param.jsonDecode(compact(render(jsonValue)))
- instance.set(param, value)
+ instance.set(param, handleBrokenlyChangedValue(paramName, value))
}
case _ =>
throw new IllegalArgumentException(
diff --git a/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/data/XGBoostClassificationModel b/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/data/XGBoostClassificationModel
new file mode 100644
index 000000000000..5d915d02f5f8
Binary files /dev/null and b/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/data/XGBoostClassificationModel differ
diff --git a/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/metadata/_SUCCESS b/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/metadata/_SUCCESS
new file mode 100644
index 000000000000..e69de29bb2d1
diff --git a/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/metadata/part-00000 b/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/metadata/part-00000
new file mode 100644
index 000000000000..7e1a7221ace3
--- /dev/null
+++ b/jvm-packages/xgboost4j-spark/src/test/resources/model/0.82/model/metadata/part-00000
@@ -0,0 +1 @@
+{"class":"ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel","timestamp":1555350539033,"sparkVersion":"2.3.2-uber-109","uid":"xgbc_5e7bec215a4c","paramMap":{"useExternalMemory":false,"trainTestRatio":1.0,"alpha":0.0,"seed":0,"numWorkers":100,"skipDrop":0.0,"treeLimit":0,"silent":0,"trackerConf":{"workerConnectionTimeout":0,"trackerImpl":"python"},"missing":"NaN","colsampleBylevel":1.0,"probabilityCol":"probability","checkpointPath":"","lambda":1.0,"rawPredictionCol":"rawPrediction","eta":0.3,"numEarlyStoppingRounds":0,"growPolicy":"depthwise","gamma":0.0,"sampleType":"uniform","maxDepth":6,"rateDrop":0.0,"objective":"reg:linear","customObj":null,"lambdaBias":0.0,"baseScore":0.5,"labelCol":"label","minChildWeight":1.0,"customEval":null,"normalizeType":"tree","maxBin":16,"nthread":4,"numRound":20,"colsampleBytree":1.0,"predictionCol":"prediction","subsample":1.0,"timeoutRequestWorkers":1800000,"featuresCol":"features","evalMetric":"error","sketchEps":0.03,"scalePosWeight":1.0,"checkpointInterval":-1,"maxDeltaStep":0.0,"treeMethod":"approx"}}
diff --git a/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/PersistenceSuite.scala b/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/PersistenceSuite.scala
index 4c0b21073f2f..220cea307ff4 100644
--- a/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/PersistenceSuite.scala
+++ b/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/PersistenceSuite.scala
@@ -19,9 +19,11 @@ package ml.dmlc.xgboost4j.scala.spark
import java.io.{File, FileNotFoundException}
import java.util.Arrays
-import ml.dmlc.xgboost4j.scala.DMatrix
+import scala.io.Source
+import ml.dmlc.xgboost4j.scala.DMatrix
import scala.util.Random
+
import org.apache.spark.ml.feature._
import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.network.util.JavaUtils
@@ -162,5 +164,17 @@ class PersistenceSuite extends FunSuite with PerTest with BeforeAndAfterAll {
assert(xgbModel.getNumRound === xgbModel2.getNumRound)
assert(xgbModel.getRawPredictionCol === xgbModel2.getRawPredictionCol)
}
+
+ test("cross-version model loading (0.82)") {
+ val modelPath = getClass.getResource("/model/0.82/model").getPath
+ val model = XGBoostClassificationModel.read.load(modelPath)
+ val r = new Random(0)
+ val df = ss.createDataFrame(Seq.fill(100)(r.nextInt(2)).map(i => (i, i))).
+ toDF("feature", "label")
+ val assembler = new VectorAssembler()
+ .setInputCols(df.columns.filter(!_.contains("label")))
+ .setOutputCol("features")
+ model.transform(assembler.transform(df)).show()
+ }
}
diff --git a/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/XGBoostGeneralSuite.scala b/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/XGBoostGeneralSuite.scala
index 50f827c34bc8..1affe1474f2a 100644
--- a/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/XGBoostGeneralSuite.scala
+++ b/jvm-packages/xgboost4j-spark/src/test/scala/ml/dmlc/xgboost4j/scala/spark/XGBoostGeneralSuite.scala
@@ -261,6 +261,7 @@ class XGBoostGeneralSuite extends FunSuite with PerTest {
val vectorAssembler = new VectorAssembler()
.setInputCols(Array("col1", "col2", "col3"))
.setOutputCol("features")
+ .setHandleInvalid("keep")
val inputDF = vectorAssembler.transform(testDF).select("features", "label")
val paramMap = List("eta" -> "1", "max_depth" -> "2",
"objective" -> "binary:logistic", "num_workers" -> 1).toMap