forked from zhang0jhon/AttentionOCR
-
Notifications
You must be signed in to change notification settings - Fork 5
/
text_dataflow.py
256 lines (192 loc) · 9.03 KB
/
text_dataflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import config as cfg
from tensorpack.dataflow import (
DataFromList, MapData, MapDataComponent, RNGDataFlow, PrefetchData,
MultiProcessMapData, MultiThreadMapData, TestDataSpeed, imgaug, BatchData
)
import cv2
import math
import numpy as np
import threading
import multiprocessing
from matplotlib import pyplot as plt
from contextlib import contextmanager
# from common import (
# CustomResize, DataFromListOfDict, box_to_point8,
# filter_boxes_inside_shape, np_iou, point8_to_box, polygons_to_mask,
# )
from dataset import LSVT, ART, ReCTS #, TotalText, ICDAR2017RCTW, MLT2019
def largest_size_at_most(height, width, largest_side, max_scale):
"""
Compute resized image size with limited max scale.
"""
scale = largest_side/height if height>width else largest_side/width
scale = min(scale, max_scale)
new_height, new_width = height * scale, width * scale
return new_height, new_width
def aspect_preserving_resize(image, largest_side, max_scale=4.):
"""
Resize image with perserved aspect and limited max scale.
"""
height, width = image.shape[:2]
new_height, new_width = largest_size_at_most(height, width, largest_side, max_scale)
new_height = max(new_height, cfg.stride)
new_width = max(new_width, cfg.stride)
resized_image = cv2.resize(image, (int(new_width), int(new_height)))
return resized_image
def padding_image(image, padding_size):
"""
Padding arbitrary-shaped text image to square for tensorflow batch training.
"""
height, width = image.shape[:2]
padding_h = padding_size - height
padding_w = padding_size - width
padding_top = np.random.randint(padding_h)
padding_left = np.random.randint(padding_w)
padding_down = padding_h - padding_top
padding_right = padding_w - padding_left
padding_img = cv2.copyMakeBorder(image, padding_top, padding_down, padding_left, padding_right, borderType=cv2.BORDER_CONSTANT, value=[0,0,0])
return padding_img, (padding_top, padding_left, height, width)
def rotatedPoint(R, point):
"""
Transform polygon with affine transform matrix.
"""
x = R[0,0]*point[0] + R[0,1]*point[1] + R[0,2]
y = R[1,0]*point[0] + R[1,1]*point[1] + R[1,2]
return [int(x), int(y)]
def affine_transform(image, polygon):
"""
Conduct same affine transform for both image and polygon for data augmentation.
"""
height, width, _ = image.shape
center_x, center_y = width/2, height/2
angle = 0 if np.random.uniform()>0.5 else np.random.uniform(-20., 20.)
shear_x, shear_y = (0,0) if np.random.uniform()>0.5 else (np.random.uniform(-0.2, 0.2), np.random.uniform(-0.2, 0.2))
rad = math.radians(angle)
sin, cos = math.sin(rad), math.cos(rad) # x, y
abs_sin, abs_cos = abs(sin), abs(cos)
new_width = ((height * abs_sin) + (width * abs_cos))
new_height = ((height * abs_cos) + (width * abs_sin))
new_width += np.abs(shear_y*new_height)
new_height += np.abs(shear_x*new_width)
new_width = int(new_width)
new_height = int(new_height)
M = np.array([[cos, sin+shear_y, new_width/2 - center_x + (1-cos)*center_x-(sin+shear_y)*center_y],
[-sin+shear_x, cos, new_height/2 - center_y + (sin-shear_x)*center_x+(1-cos)*center_y]])
rotatedImage = cv2.warpAffine(image, M, (new_width, new_height), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0))
height, width = rotatedImage.shape[:2]
rotatedPoints = [rotatedPoint(M, point) for point in polygon]
mask = polygons_to_mask([np.array(rotatedPoints, np.float32)], new_height, new_width)
x, y, w, h = cv2.boundingRect(mask)
mask = np.expand_dims(np.float32(mask), axis=-1)
rotatedImage = rotatedImage * mask
cropImage = rotatedImage[y:y+h, x:x+w,:]
return cropImage
class TextDataPreprocessor:
"""
Tensorpack text data preprocess function.
"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, roidb):
filename, label, mask, bbox, polygon = roidb['filename'], roidb['label'], roidb['mask'], roidb['bbox'], roidb['polygon'],
img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
image = affine_transform(img, polygon)
# img = img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] if image.shape[0]<cfg.stride/2 or image.shape[1]<cfg.stride/2 else image
img = img if image.shape[0]<cfg.stride/2 or image.shape[1]<cfg.stride/2 else image
largest_side = np.random.randint(cfg.crop_min_size, cfg.image_size)
img = aspect_preserving_resize(img, largest_side)
img, crop_bbox = padding_image(img, cfg.image_size)
normalized_bbox = [coord/cfg.image_size for coord in crop_bbox]
img = img.astype("float32")/255.
ret = {"image": img, "label": label, "mask": mask, "normalized_bbox": normalized_bbox, "is_training":True, "dropout_keep_prob":0.5}
return ret
def get_train_dataflow(roidb):
"""
Tensorpack text dataflow.
"""
ds = DataFromList(roidb, shuffle=True)
preprocess = TextDataPreprocessor(cfg)
buffer_size = cfg.num_threads * 10
ds = MultiThreadMapData(ds, cfg.num_threads, preprocess, buffer_size=buffer_size)
# ds = MultiProcessMapData(ds, cfg.num_workers, preprocess, buffer_size=buffer_size)
ds = PrefetchData(ds, 100, multiprocessing.cpu_count() // 4)
#ds = BatchData(ds, cfg.batch_size, remainder=True)
return ds
def get_roidb(dataset_name):
"""
Load generated numpy dataset for tensorpack dataflow.
"""
np_load_old = np.load
# modify the default parameters of np.load
np.load = lambda *a, **k: np_load_old(*a, allow_pickle=True, **k)
dataset = np.load(dataset_name)[()]
filenames, labels, masks, bboxes, points = dataset["filenames"], dataset["labels"], dataset["masks"], dataset["bboxes"], dataset["points"]
roidb = []
for filename, label, mask, bbox, polygon in zip(filenames, labels, masks, bboxes, points):
item = {"filename":filename, "label":label, "mask":mask, "bbox":bbox, "polygon":polygon}
roidb.append(item)
return roidb
def get_batch_train_dataflow(roidbs, batch_size):
"""
Tensorpack batch text dataflow.
"""
batched_roidbs = []
batch = []
for i, d in enumerate(roidbs):
if i % batch_size == 0:
if len(batch) == batch_size:
batched_roidbs.append(batch)
batch = []
batch.append(d)
def preprocess(roidb_batch):
"""
Tensorpack batch text data preprocess function.
"""
datapoint_list = []
for roidb in roidb_batch:
filename, label, mask, bbox, polygon = roidb['filename'], roidb['label'], roidb['mask'], roidb['bbox'], roidb['polygon']
img = cv2.imread(filename)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
image = affine_transform(img, polygon)
# img = img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] if image.shape[0]<cfg.stride/2 or image.shape[1]<cfg.stride/2 else image
img = img if image.shape[0]<cfg.stride/2 or image.shape[1]<cfg.stride/2 else image
largest_side = np.random.randint(cfg.crop_min_size, cfg.image_size)
img = aspect_preserving_resize(img, largest_side)
img, crop_bbox = padding_image(img, cfg.image_size)
normalized_bbox = [coord/cfg.image_size for coord in crop_bbox]
img = img.astype("float32")/255.
ret = {"image": img, "label": label, "mask": mask, "normalized_bbox": normalized_bbox}
datapoint_list.append(ret)
batched_datapoint = {"is_training":True, "dropout_keep_prob":0.5}
for stackable_field in ["image", "label", "mask", "normalized_bbox"]:
batched_datapoint[stackable_field] = np.stack([d[stackable_field] for d in datapoint_list])
return batched_datapoint
ds = DataFromList(batched_roidbs, shuffle=True)
ds = MultiThreadMapData(ds, cfg.num_threads, preprocess)
# ds = PrefetchData(ds, 100, multiprocessing.cpu_count() // 4)
return ds
if __name__ == "__main__":
lsvt = LSVT()
lsvt.load_data()
print(len(lsvt.filenames))
filenames = lsvt.filenames
labels = lsvt.labels
masks = lsvt.masks
bboxes = lsvt.bboxes
points = lsvt.points
roidb = []
for filename, label, mask, bbox, polygon in zip(filenames, labels, masks, bboxes, points):
item = {"filename":filename, "label":label, "mask":mask, "bbox":bbox, "polygon":polygon}
roidb.append(item)
ds = get_train_dataflow(roidb)
from tensorpack.dataflow import PrintData
ds = PrintData(ds, 10)
# TestDataSpeed(ds, 50000).start()
for k in ds:
print(k['label'], k['mask'], k['normalized_bbox'])
plt.imshow(k['image'])
plt.show()