-
-
Notifications
You must be signed in to change notification settings - Fork 378
/
builder.go
2672 lines (2423 loc) · 72.9 KB
/
builder.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// This file implements the BUILD phase of IR construction.
//
// IR construction has two phases, CREATE and BUILD. In the CREATE phase
// (create.go), all packages are constructed and type-checked and
// definitions of all package members are created, method-sets are
// computed, and wrapper methods are synthesized.
// ir.Packages are created in arbitrary order.
//
// In the BUILD phase (builder.go), the builder traverses the AST of
// each Go source function and generates IR instructions for the
// function body. Initializer expressions for package-level variables
// are emitted to the package's init() function in the order specified
// by go/types.Info.InitOrder, then code for each function in the
// package is generated in lexical order.
//
// The builder's and Program's indices (maps) are populated and
// mutated during the CREATE phase, but during the BUILD phase they
// remain constant. The sole exception is Prog.methodSets and its
// related maps, which are protected by a dedicated mutex.
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"os"
"honnef.co/go/tools/analysis/lint"
"honnef.co/go/tools/go/types/typeutil"
"golang.org/x/exp/typeparams"
)
var (
varOk = newVar("ok", tBool)
varIndex = newVar("index", tInt)
// Type constants.
tBool = types.Typ[types.Bool]
tInt = types.Typ[types.Int]
tInvalid = types.Typ[types.Invalid]
tString = types.Typ[types.String]
tUntypedNil = types.Typ[types.UntypedNil]
tEface = types.NewInterfaceType(nil, nil).Complete()
)
// builder holds state associated with the package currently being built.
// Its methods contain all the logic for AST-to-IR conversion.
type builder struct {
printFunc string
blocksets [5]BlockSet
}
// cond emits to fn code to evaluate boolean condition e and jump
// to t or f depending on its value, performing various simplifications.
//
// Postcondition: fn.currentBlock is nil.
func (b *builder) cond(fn *Function, e ast.Expr, t, f *BasicBlock) *If {
switch e := e.(type) {
case *ast.ParenExpr:
return b.cond(fn, e.X, t, f)
case *ast.BinaryExpr:
switch e.Op {
case token.LAND:
ltrue := fn.newBasicBlock("cond.true")
b.cond(fn, e.X, ltrue, f)
fn.currentBlock = ltrue
return b.cond(fn, e.Y, t, f)
case token.LOR:
lfalse := fn.newBasicBlock("cond.false")
b.cond(fn, e.X, t, lfalse)
fn.currentBlock = lfalse
return b.cond(fn, e.Y, t, f)
}
case *ast.UnaryExpr:
if e.Op == token.NOT {
return b.cond(fn, e.X, f, t)
}
}
// A traditional compiler would simplify "if false" (etc) here
// but we do not, for better fidelity to the source code.
//
// The value of a constant condition may be platform-specific,
// and may cause blocks that are reachable in some configuration
// to be hidden from subsequent analyses such as bug-finding tools.
return emitIf(fn, b.expr(fn, e), t, f, e)
}
// logicalBinop emits code to fn to evaluate e, a &&- or
// ||-expression whose reified boolean value is wanted.
// The value is returned.
func (b *builder) logicalBinop(fn *Function, e *ast.BinaryExpr) Value {
rhs := fn.newBasicBlock("binop.rhs")
done := fn.newBasicBlock("binop.done")
// T(e) = T(e.X) = T(e.Y) after untyped constants have been
// eliminated.
// TODO(adonovan): not true; MyBool==MyBool yields UntypedBool.
t := fn.Pkg.typeOf(e)
var short Value // value of the short-circuit path
switch e.Op {
case token.LAND:
b.cond(fn, e.X, rhs, done)
short = emitConst(fn, NewConst(constant.MakeBool(false), t))
case token.LOR:
b.cond(fn, e.X, done, rhs)
short = emitConst(fn, NewConst(constant.MakeBool(true), t))
}
// Is rhs unreachable?
if rhs.Preds == nil {
// Simplify false&&y to false, true||y to true.
fn.currentBlock = done
return short
}
// Is done unreachable?
if done.Preds == nil {
// Simplify true&&y (or false||y) to y.
fn.currentBlock = rhs
return b.expr(fn, e.Y)
}
// All edges from e.X to done carry the short-circuit value.
var edges []Value
for range done.Preds {
edges = append(edges, short)
}
// The edge from e.Y to done carries the value of e.Y.
fn.currentBlock = rhs
edges = append(edges, b.expr(fn, e.Y))
emitJump(fn, done, e)
fn.currentBlock = done
phi := &Phi{Edges: edges}
phi.typ = t
return done.emit(phi, e)
}
// exprN lowers a multi-result expression e to IR form, emitting code
// to fn and returning a single Value whose type is a *types.Tuple.
// The caller must access the components via Extract.
//
// Multi-result expressions include CallExprs in a multi-value
// assignment or return statement, and "value,ok" uses of
// TypeAssertExpr, IndexExpr (when X is a map), and Recv.
func (b *builder) exprN(fn *Function, e ast.Expr) Value {
typ := fn.Pkg.typeOf(e).(*types.Tuple)
switch e := e.(type) {
case *ast.ParenExpr:
return b.exprN(fn, e.X)
case *ast.CallExpr:
// Currently, no built-in function nor type conversion
// has multiple results, so we can avoid some of the
// cases for single-valued CallExpr.
var c Call
b.setCall(fn, e, &c.Call)
c.typ = typ
return fn.emit(&c, e)
case *ast.IndexExpr:
mapt := typeutil.CoreType(fn.Pkg.typeOf(e.X)).Underlying().(*types.Map)
lookup := &MapLookup{
X: b.expr(fn, e.X),
Index: emitConv(fn, b.expr(fn, e.Index), mapt.Key(), e),
CommaOk: true,
}
lookup.setType(typ)
return fn.emit(lookup, e)
case *ast.TypeAssertExpr:
return emitTypeTest(fn, b.expr(fn, e.X), typ.At(0).Type(), e)
case *ast.UnaryExpr: // must be receive <-
return emitRecv(fn, b.expr(fn, e.X), true, typ, e)
}
panic(fmt.Sprintf("exprN(%T) in %s", e, fn))
}
// builtin emits to fn IR instructions to implement a call to the
// built-in function obj with the specified arguments
// and return type. It returns the value defined by the result.
//
// The result is nil if no special handling was required; in this case
// the caller should treat this like an ordinary library function
// call.
func (b *builder) builtin(fn *Function, obj *types.Builtin, args []ast.Expr, typ types.Type, source ast.Node) Value {
switch obj.Name() {
case "make":
styp := typ.Underlying()
if _, ok := typ.Underlying().(*types.Interface); ok {
// This must be a type parameter with a core type.
// Set styp to the core type and generate instructions based on it.
assert(typeparams.IsTypeParam(typ))
styp = typeutil.CoreType(typ)
assert(styp != nil)
}
switch styp.(type) {
case *types.Slice:
n := b.expr(fn, args[1])
m := n
if len(args) == 3 {
m = b.expr(fn, args[2])
}
if m, ok := m.(*Const); ok {
// treat make([]T, n, m) as new([m]T)[:n]
cap := m.Int64()
at := types.NewArray(styp.Underlying().(*types.Slice).Elem(), cap)
alloc := emitNew(fn, at, source)
v := &Slice{
X: alloc,
High: n,
}
v.setType(typ)
return fn.emit(v, source)
}
v := &MakeSlice{
Len: n,
Cap: m,
}
v.setType(typ)
return fn.emit(v, source)
case *types.Map:
var res Value
if len(args) == 2 {
res = b.expr(fn, args[1])
}
v := &MakeMap{Reserve: res}
v.setType(typ)
return fn.emit(v, source)
case *types.Chan:
var sz Value = emitConst(fn, intConst(0))
if len(args) == 2 {
sz = b.expr(fn, args[1])
}
v := &MakeChan{Size: sz}
v.setType(typ)
return fn.emit(v, source)
default:
lint.ExhaustiveTypeSwitch(typ.Underlying())
}
case "new":
alloc := emitNew(fn, deref(typ), source)
return alloc
case "len", "cap":
// Special case: len or cap of an array or *array is based on the type, not the value which may be nil. We must
// still evaluate the value, though. (If it was side-effect free, the whole call would have been
// constant-folded.)
//
// For example, for len(gen()), we need to evaluate gen() for its side-effects, but don't need the returned
// value to determine the length of the array, which is constant.
//
// This never applies to type parameters. Even if the constraint has a structural type, len/cap on a type
// parameter aren't constant.
t := deref(fn.Pkg.typeOf(args[0])).Underlying()
if at, ok := t.(*types.Array); ok {
b.expr(fn, args[0]) // for effects only
return emitConst(fn, intConst(at.Len()))
}
// Otherwise treat as normal.
case "panic":
fn.emit(&Panic{
X: emitConv(fn, b.expr(fn, args[0]), tEface, source),
}, source)
addEdge(fn.currentBlock, fn.Exit)
fn.currentBlock = fn.newBasicBlock("unreachable")
return emitConst(fn, NewConst(constant.MakeBool(true), tBool)) // any non-nil Value will do
}
return nil // treat all others as a regular function call
}
// addr lowers a single-result addressable expression e to IR form,
// emitting code to fn and returning the location (an lvalue) defined
// by the expression.
//
// If escaping is true, addr marks the base variable of the
// addressable expression e as being a potentially escaping pointer
// value. For example, in this code:
//
// a := A{
// b: [1]B{B{c: 1}}
// }
// return &a.b[0].c
//
// the application of & causes a.b[0].c to have its address taken,
// which means that ultimately the local variable a must be
// heap-allocated. This is a simple but very conservative escape
// analysis.
//
// Operations forming potentially escaping pointers include:
// - &x, including when implicit in method call or composite literals.
// - a[:] iff a is an array (not *array)
// - references to variables in lexically enclosing functions.
func (b *builder) addr(fn *Function, e ast.Expr, escaping bool) (RET lvalue) {
switch e := e.(type) {
case *ast.Ident:
if isBlankIdent(e) {
return blank{}
}
obj := fn.Pkg.objectOf(e)
v := fn.Prog.packageLevelValue(obj) // var (address)
if v == nil {
v = fn.lookup(obj, escaping)
}
return &address{addr: v, expr: e}
case *ast.CompositeLit:
t := deref(fn.Pkg.typeOf(e))
var v *Alloc
if escaping {
v = emitNew(fn, t, e)
} else {
v = fn.addLocal(t, e)
}
var sb storebuf
b.compLit(fn, v, e, true, &sb)
sb.emit(fn)
return &address{addr: v, expr: e}
case *ast.ParenExpr:
return b.addr(fn, e.X, escaping)
case *ast.SelectorExpr:
sel, ok := fn.Pkg.info.Selections[e]
if !ok {
// qualified identifier
return b.addr(fn, e.Sel, escaping)
}
if sel.Kind() != types.FieldVal {
panic(sel)
}
wantAddr := true
v := b.receiver(fn, e.X, wantAddr, escaping, sel, e)
last := len(sel.Index()) - 1
return &address{
addr: emitFieldSelection(fn, v, sel.Index()[last], true, e.Sel),
expr: e.Sel,
}
case *ast.IndexExpr:
var x Value
var et types.Type
xt := fn.Pkg.typeOf(e.X)
// Indexing doesn't need a core type, it only requires all types to be similar enough. For example, []int64 |
// [5]int64 can be indexed. The element types do have to match though.
terms, err := typeparams.NormalTerms(xt)
if err != nil {
panic(fmt.Sprintf("unexpected error: %s", err))
}
isArrayLike := func() (types.Type, bool) {
for _, term := range terms {
arr, ok := term.Type().Underlying().(*types.Array)
if ok {
return arr.Elem(), true
}
}
return nil, false
}
isSliceLike := func() (types.Type, bool) {
for _, term := range terms {
switch t := term.Type().Underlying().(type) {
case *types.Slice:
return t.Elem(), true
case *types.Pointer:
return t.Elem().Underlying().(*types.Array).Elem(), true
}
}
return nil, false
}
if elem, ok := isArrayLike(); ok {
// array
x = b.addr(fn, e.X, escaping).address(fn)
et = types.NewPointer(elem)
} else if elem, ok := isSliceLike(); ok {
// slice or *array
x = b.expr(fn, e.X)
et = types.NewPointer(elem)
} else if t, ok := typeutil.CoreType(xt).Underlying().(*types.Map); ok {
return &element{
m: b.expr(fn, e.X),
k: emitConv(fn, b.expr(fn, e.Index), t.Key(), e.Index),
t: t.Elem(),
}
} else {
panic("unexpected container type in IndexExpr: " + t.String())
}
v := &IndexAddr{
X: x,
Index: b.expr(fn, e.Index),
}
v.setType(et)
return &address{addr: fn.emit(v, e), expr: e}
case *ast.StarExpr:
return &address{addr: b.expr(fn, e.X), expr: e}
}
panic(fmt.Sprintf("unexpected address expression: %T", e))
}
type store struct {
lhs lvalue
rhs Value
source ast.Node
// if debugRef is set no other fields will be set
debugRef *DebugRef
}
type storebuf struct{ stores []store }
func (sb *storebuf) store(lhs lvalue, rhs Value, source ast.Node) {
sb.stores = append(sb.stores, store{lhs, rhs, source, nil})
}
func (sb *storebuf) storeDebugRef(ref *DebugRef) {
sb.stores = append(sb.stores, store{debugRef: ref})
}
func (sb *storebuf) emit(fn *Function) {
for _, s := range sb.stores {
if s.debugRef == nil {
s.lhs.store(fn, s.rhs, s.source)
} else {
fn.emit(s.debugRef, nil)
}
}
}
// assign emits to fn code to initialize the lvalue loc with the value
// of expression e. If isZero is true, assign assumes that loc holds
// the zero value for its type.
//
// This is equivalent to loc.store(fn, b.expr(fn, e)), but may generate
// better code in some cases, e.g., for composite literals in an
// addressable location.
//
// If sb is not nil, assign generates code to evaluate expression e, but
// not to update loc. Instead, the necessary stores are appended to the
// storebuf sb so that they can be executed later. This allows correct
// in-place update of existing variables when the RHS is a composite
// literal that may reference parts of the LHS.
func (b *builder) assign(fn *Function, loc lvalue, e ast.Expr, isZero bool, sb *storebuf, source ast.Node) {
// Can we initialize it in place?
if e, ok := unparen(e).(*ast.CompositeLit); ok {
// A CompositeLit never evaluates to a pointer,
// so if the type of the location is a pointer,
// an &-operation is implied.
if _, ok := loc.(blank); !ok { // avoid calling blank.typ()
if isPointer(loc.typ()) {
// Example input that hits this code:
//
// type S1 struct{ X int }
// x := []*S1{
// {1}, // <-- & is implied
// }
// _ = x
ptr := b.addr(fn, e, true).address(fn)
// copy address
if sb != nil {
sb.store(loc, ptr, source)
} else {
loc.store(fn, ptr, source)
}
return
}
}
if _, ok := loc.(*address); ok {
if isInterface(loc.typ()) && !typeparams.IsTypeParam(loc.typ()) {
// e.g. var x interface{} = T{...}
// Can't in-place initialize an interface value.
// Fall back to copying.
} else {
// x = T{...} or x := T{...}
addr := loc.address(fn)
if sb != nil {
b.compLit(fn, addr, e, isZero, sb)
} else {
var sb storebuf
b.compLit(fn, addr, e, isZero, &sb)
sb.emit(fn)
}
// Subtle: emit debug ref for aggregate types only;
// slice and map are handled by store ops in compLit.
switch typeutil.CoreType(loc.typ()).Underlying().(type) {
case *types.Struct, *types.Array:
if sb != nil {
// Make sure we don't emit DebugRefs before the store has actually occurred
if ref := makeDebugRef(fn, e, addr, true); ref != nil {
sb.storeDebugRef(ref)
}
} else {
emitDebugRef(fn, e, addr, true)
}
}
return
}
}
}
// simple case: just copy
rhs := b.expr(fn, e)
if sb != nil {
sb.store(loc, rhs, source)
} else {
loc.store(fn, rhs, source)
}
}
// expr lowers a single-result expression e to IR form, emitting code
// to fn and returning the Value defined by the expression.
func (b *builder) expr(fn *Function, e ast.Expr) Value {
e = unparen(e)
tv := fn.Pkg.info.Types[e]
// Is expression a constant?
if tv.Value != nil {
return emitConst(fn, NewConst(tv.Value, tv.Type))
}
var v Value
if tv.Addressable() {
// Prefer pointer arithmetic ({Index,Field}Addr) followed
// by Load over subelement extraction (e.g. Index, Field),
// to avoid large copies.
v = b.addr(fn, e, false).load(fn, e)
} else {
v = b.expr0(fn, e, tv)
}
if fn.debugInfo() {
emitDebugRef(fn, e, v, false)
}
return v
}
func (b *builder) expr0(fn *Function, e ast.Expr, tv types.TypeAndValue) Value {
switch e := e.(type) {
case *ast.BasicLit:
panic("non-constant BasicLit") // unreachable
case *ast.FuncLit:
fn2 := &Function{
name: fmt.Sprintf("%s$%d", fn.Name(), 1+len(fn.AnonFuncs)),
Signature: fn.Pkg.typeOf(e.Type).Underlying().(*types.Signature),
parent: fn,
Pkg: fn.Pkg,
Prog: fn.Prog,
functionBody: new(functionBody),
}
fn2.source = e
fn.AnonFuncs = append(fn.AnonFuncs, fn2)
fn2.initHTML(b.printFunc)
b.buildFunction(fn2)
if fn2.FreeVars == nil {
return fn2
}
v := &MakeClosure{Fn: fn2}
v.setType(tv.Type)
for _, fv := range fn2.FreeVars {
v.Bindings = append(v.Bindings, fv.outer)
fv.outer = nil
}
return fn.emit(v, e)
case *ast.TypeAssertExpr: // single-result form only
return emitTypeAssert(fn, b.expr(fn, e.X), tv.Type, e)
case *ast.CallExpr:
if fn.Pkg.info.Types[e.Fun].IsType() {
// Explicit type conversion, e.g. string(x) or big.Int(x)
x := b.expr(fn, e.Args[0])
y := emitConv(fn, x, tv.Type, e)
return y
}
// Call to "intrinsic" built-ins, e.g. new, make, panic.
if id, ok := unparen(e.Fun).(*ast.Ident); ok {
if obj, ok := fn.Pkg.info.Uses[id].(*types.Builtin); ok {
if v := b.builtin(fn, obj, e.Args, tv.Type, e); v != nil {
return v
}
}
}
// Regular function call.
var v Call
b.setCall(fn, e, &v.Call)
v.setType(tv.Type)
return fn.emit(&v, e)
case *ast.UnaryExpr:
switch e.Op {
case token.AND: // &X --- potentially escaping.
addr := b.addr(fn, e.X, true)
if _, ok := unparen(e.X).(*ast.StarExpr); ok {
// &*p must panic if p is nil (http://golang.org/s/go12nil).
// For simplicity, we'll just (suboptimally) rely
// on the side effects of a load.
// TODO(adonovan): emit dedicated nilcheck.
addr.load(fn, e)
}
return addr.address(fn)
case token.ADD:
return b.expr(fn, e.X)
case token.NOT, token.SUB, token.XOR: // ! <- - ^
v := &UnOp{
Op: e.Op,
X: b.expr(fn, e.X),
}
v.setType(tv.Type)
return fn.emit(v, e)
case token.ARROW:
return emitRecv(fn, b.expr(fn, e.X), false, tv.Type, e)
default:
panic(e.Op)
}
case *ast.BinaryExpr:
switch e.Op {
case token.LAND, token.LOR:
return b.logicalBinop(fn, e)
case token.SHL, token.SHR:
fallthrough
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
return emitArith(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), tv.Type, e)
case token.EQL, token.NEQ, token.GTR, token.LSS, token.LEQ, token.GEQ:
cmp := emitCompare(fn, e.Op, b.expr(fn, e.X), b.expr(fn, e.Y), e)
// The type of x==y may be UntypedBool.
return emitConv(fn, cmp, types.Default(tv.Type), e)
default:
panic("illegal op in BinaryExpr: " + e.Op.String())
}
case *ast.SliceExpr:
var x Value
if core := typeutil.CoreType(fn.Pkg.typeOf(e.X)); core != nil {
switch core.Underlying().(type) {
case *types.Array:
// Potentially escaping.
x = b.addr(fn, e.X, true).address(fn)
case *types.Basic, *types.Slice, *types.Pointer: // *array
x = b.expr(fn, e.X)
default:
panic("unreachable")
}
} else {
// We're indexing a string | []byte. Note that other combinations such as []byte | [4]byte are currently not
// allowed by the language.
x = b.expr(fn, e.X)
}
var low, high, max Value
if e.High != nil {
high = b.expr(fn, e.High)
}
if e.Low != nil {
low = b.expr(fn, e.Low)
}
if e.Slice3 {
max = b.expr(fn, e.Max)
}
v := &Slice{
X: x,
Low: low,
High: high,
Max: max,
}
v.setType(tv.Type)
return fn.emit(v, e)
case *ast.Ident:
obj := fn.Pkg.info.Uses[e]
// Universal built-in or nil?
switch obj := obj.(type) {
case *types.Builtin:
return &Builtin{name: obj.Name(), sig: tv.Type.(*types.Signature)}
case *types.Nil:
return emitConst(fn, nilConst(tv.Type))
}
// Package-level func or var?
if v := fn.Prog.packageLevelValue(obj); v != nil {
if _, ok := obj.(*types.Var); ok {
return emitLoad(fn, v, e) // var (address)
}
if instance, ok := fn.Pkg.info.Instances[e]; ok {
// Instantiated generic function
return makeInstance(fn.Prog, v.(*Function), instance.Type.(*types.Signature), instance.TypeArgs)
}
return v // (func)
}
// Local var.
return emitLoad(fn, fn.lookup(obj, false), e) // var (address)
case *ast.SelectorExpr:
sel, ok := fn.Pkg.info.Selections[e]
if !ok {
// builtin unsafe.{Add,Slice}
if obj, ok := fn.Pkg.info.Uses[e.Sel].(*types.Builtin); ok {
return &Builtin{name: "Unsafe" + obj.Name(), sig: tv.Type.(*types.Signature)}
}
// qualified identifier
return b.expr(fn, e.Sel)
}
switch sel.Kind() {
case types.MethodExpr:
// (*T).f or T.f, the method f from the method-set of type T.
// The result is a "thunk".
return emitConv(fn, makeThunk(fn.Prog, sel), tv.Type, e)
case types.MethodVal:
// e.f where e is an expression and f is a method.
// The result is a "bound".
obj := sel.Obj().(*types.Func)
rt := recvType(obj)
wantAddr := isPointer(rt)
escaping := true
v := b.receiver(fn, e.X, wantAddr, escaping, sel, e)
if isInterface(rt) {
// If v has interface type I,
// we must emit a check that v is non-nil.
// We use: typeassert v.(I).
emitTypeAssert(fn, v, rt, e)
}
c := &MakeClosure{
Fn: makeBound(fn.Prog, obj),
Bindings: []Value{v},
}
c.source = e.Sel
c.setType(tv.Type)
return fn.emit(c, e)
case types.FieldVal:
indices := sel.Index()
last := len(indices) - 1
v := b.expr(fn, e.X)
v = emitImplicitSelections(fn, v, indices[:last], e)
v = emitFieldSelection(fn, v, indices[last], false, e.Sel)
return v
}
panic("unexpected expression-relative selector")
case *ast.IndexExpr:
// IndexExpr might either be an actual indexing operation, or an instantiation
xt := fn.Pkg.typeOf(e.X)
terms, err := typeparams.NormalTerms(xt)
if err != nil {
panic(fmt.Sprintf("unexpected error: %s", err))
}
isNonAddressableIndexable := func() (types.Type, bool) {
for _, term := range terms {
switch t := term.Type().Underlying().(type) {
case *types.Array:
return t.Elem(), true
case *types.Basic:
// a string
return types.Universe.Lookup("byte").Type(), true
}
}
return nil, false
}
isAddressableIndexable := func() (types.Type, bool) {
for _, term := range terms {
switch t := term.Type().Underlying().(type) {
case *types.Slice:
return t.Elem(), true
case *types.Pointer:
return t.Elem().Underlying().(*types.Array).Elem(), true
}
}
return nil, false
}
if elem, ok := isNonAddressableIndexable(); ok {
// At least one of the types is non-addressable
v := &Index{
X: b.expr(fn, e.X),
Index: b.expr(fn, e.Index),
}
v.setType(elem)
return fn.emit(v, e)
} else if _, ok := isAddressableIndexable(); ok {
// All types are addressable (otherwise the previous branch would've fired)
return b.addr(fn, e, false).load(fn, e)
} else if t, ok := typeutil.CoreType(xt).Underlying().(*types.Map); ok {
// Maps are not addressable.
v := &MapLookup{
X: b.expr(fn, e.X),
Index: emitConv(fn, b.expr(fn, e.Index), t.Key(), e.Index),
}
v.setType(t.Elem())
return fn.emit(v, e)
} else if _, ok := xt.Underlying().(*types.Signature); ok {
// Instantiating a generic function
return b.expr(fn, e.X)
} else {
panic("unexpected container type in IndexExpr: " + t.String())
}
case *ast.IndexListExpr:
// Instantiating a generic function
return b.expr(fn, e.X)
case *ast.CompositeLit, *ast.StarExpr:
// Addressable types (lvalues)
return b.addr(fn, e, false).load(fn, e)
}
panic(fmt.Sprintf("unexpected expr: %T", e))
}
// stmtList emits to fn code for all statements in list.
func (b *builder) stmtList(fn *Function, list []ast.Stmt) {
for _, s := range list {
b.stmt(fn, s)
}
}
// receiver emits to fn code for expression e in the "receiver"
// position of selection e.f (where f may be a field or a method) and
// returns the effective receiver after applying the implicit field
// selections of sel.
//
// wantAddr requests that the result is an an address. If
// !sel.Indirect(), this may require that e be built in addr() mode; it
// must thus be addressable.
//
// escaping is defined as per builder.addr().
func (b *builder) receiver(fn *Function, e ast.Expr, wantAddr, escaping bool, sel *types.Selection, source ast.Node) Value {
var v Value
if wantAddr && !sel.Indirect() && !isPointer(fn.Pkg.typeOf(e)) {
v = b.addr(fn, e, escaping).address(fn)
} else {
v = b.expr(fn, e)
}
last := len(sel.Index()) - 1
v = emitImplicitSelections(fn, v, sel.Index()[:last], source)
if !wantAddr && isPointer(v.Type()) {
v = emitLoad(fn, v, e)
}
return v
}
// setCallFunc populates the function parts of a CallCommon structure
// (Func, Method, Recv, Args[0]) based on the kind of invocation
// occurring in e.
func (b *builder) setCallFunc(fn *Function, e *ast.CallExpr, c *CallCommon) {
// Is this a method call?
if selector, ok := unparen(e.Fun).(*ast.SelectorExpr); ok {
sel, ok := fn.Pkg.info.Selections[selector]
if ok && sel.Kind() == types.MethodVal {
obj := sel.Obj().(*types.Func)
recv := recvType(obj)
wantAddr := isPointer(recv)
escaping := true
v := b.receiver(fn, selector.X, wantAddr, escaping, sel, selector)
if isInterface(recv) {
// Invoke-mode call.
// Methods in interfaces cannot have their own type parameters, so we needn't do anything for type
// parameters.
c.Value = v
c.Method = obj
} else {
// "Call"-mode call.
// declaredFunc takes care of creating wrappers for functions with type parameters.
c.Value = fn.Prog.declaredFunc(obj)
c.Args = append(c.Args, v)
}
return
}
// sel.Kind()==MethodExpr indicates T.f() or (*T).f():
// a statically dispatched call to the method f in the
// method-set of T or *T. T may be an interface.
//
// e.Fun would evaluate to a concrete method, interface
// wrapper function, or promotion wrapper.
//
// For now, we evaluate it in the usual way.
//
// TODO(adonovan): opt: inline expr() here, to make the
// call static and to avoid generation of wrappers.
// It's somewhat tricky as it may consume the first
// actual parameter if the call is "invoke" mode.
//
// Examples:
// type T struct{}; func (T) f() {} // "call" mode
// type T interface { f() } // "invoke" mode
//
// type S struct{ T }
//
// var s S
// S.f(s)
// (*S).f(&s)
//
// Suggested approach:
// - consume the first actual parameter expression
// and build it with b.expr().
// - apply implicit field selections.
// - use MethodVal logic to populate fields of c.
}
// Evaluate the function operand in the usual way.
//
// Code in expr takes care of creating wrappers for functions with type parameters.
c.Value = b.expr(fn, e.Fun)
}
// emitCallArgs emits to f code for the actual parameters of call e to
// a (possibly built-in) function of effective type sig.
// The argument values are appended to args, which is then returned.
func (b *builder) emitCallArgs(fn *Function, sig *types.Signature, e *ast.CallExpr, args []Value) []Value {
// f(x, y, z...): pass slice z straight through.
if e.Ellipsis != 0 {
for i, arg := range e.Args {
v := emitConv(fn, b.expr(fn, arg), sig.Params().At(i).Type(), arg)
args = append(args, v)
}
return args
}
offset := len(args) // 1 if call has receiver, 0 otherwise
// Evaluate actual parameter expressions.
//
// If this is a chained call of the form f(g()) where g has
// multiple return values (MRV), they are flattened out into
// args; a suffix of them may end up in a varargs slice.
for _, arg := range e.Args {
v := b.expr(fn, arg)
if ttuple, ok := v.Type().(*types.Tuple); ok { // MRV chain
for i, n := 0, ttuple.Len(); i < n; i++ {
args = append(args, emitExtract(fn, v, i, arg))
}
} else {
args = append(args, v)
}
}
// Actual->formal assignability conversions for normal parameters.
np := sig.Params().Len() // number of normal parameters
if sig.Variadic() {
np--
}
for i := 0; i < np; i++ {
args[offset+i] = emitConv(fn, args[offset+i], sig.Params().At(i).Type(), args[offset+i].Source())
}
// Actual->formal assignability conversions for variadic parameter,
// and construction of slice.
if sig.Variadic() {
varargs := args[offset+np:]
st := sig.Params().At(np).Type().(*types.Slice)
vt := st.Elem()
if len(varargs) == 0 {
args = append(args, emitConst(fn, nilConst(st)))
} else {
// Replace a suffix of args with a slice containing it.
at := types.NewArray(vt, int64(len(varargs)))
a := emitNew(fn, at, e)
a.source = e
for i, arg := range varargs {
iaddr := &IndexAddr{
X: a,
Index: emitConst(fn, intConst(int64(i))),
}