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What is SDSI?

The Stanford Data Science Initiative (SDSI) is a university-
wide organization focused on core data technologies 
with strong ties to application areas across campus.

Data has supported research since the dawn 
of time, but there has recently been a 
paradigm shift in the way data is used. 
In the past, data was used to confirm 
hypotheses. Today, researchers are 
mining data for patterns and trends 
that lead to new hypotheses. This 
shift is caused by the huge volumes 
of data available from web query 
logs, social media posts and blogs, 
satellites, sensors, medical devices, and 
many other sources.

Data-centered research faces many challenges. Current 
data management and analysis techniques do not 
scale to the huge volumes of data that we expect in 
the future. New analysis techniques that use machine 
learning and data mining require careful tuning and 
expert direction. In order to be effective, data analysis 
must be combined with knowledge from domain 
experts. Future breakthroughs will often require 

intimate and combined knowledge of algorithms, 
data management, the domain data, and the 

intended applications.

SDSI will meet these challenges by 
striving to achieve a number of 
goals. The initiative will develop 
new algorithms and analytical 
techniques, foster collaboration with 

domain scientists generating big data, 
provide a gateway for corporate partners, 

develop shared data analysis tools, provide 
a repository of data and software, and develop 

relevant courses.

The SDSI consists of data science research, shared 
data and computing infrastructure, shared tools and 
techniques, industrial links, and education. As an 
expression of its collaborative approach, the SDSI has 
strong ties to many groups across Stanford University 
including medicine, computational social science, 
biology, energy, and theory.

SDSI

Methods
Research

Teaching
Consulting

Infrastructure
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I
f you are reading this then you already know that we are in the midst of a data 
revolution. Industry and science have been collecting, analyzing, and acting on data 
for a very long time, so you might well ask what is new? There is more data than 
ever before. Due to the proliferation of social media, sensors, and the Internet of 

Things, there are more sources of data. The cost of storage has plummeted, making it 
economical to store massive amounts of data. The power of processors, particularly GPU 
clusters, continues to increase. And mobile communications provides us with more ways 
to generate, interact with, and use data.

The results of the data revolution are, well, revolutionary. New hardware and software 
can handle massive data sets and one result is the rise of statistical and probabilistic 
approaches over deterministic techniques. Modern data science provides us with the 
opportunity to transition from retrospective analysis to what-if scenario planning, 
prediction, and discovery. Machine learning and deep learning enable us to uncover 
subtle and complex relationships, often with dynamic and flexible features. The 
convergence of machine learning techniques and natural language processing provides 
us with the ability to search and extract information from structured, unstructured, and 
semi-structured data. Results are increasingly contextual and human centered. Advances 
in resolution and segmentation are giving us the ability to act on individuals rather than 
averages.

The implications for industry, science, and scholarship are dramatic. Products and 
services can be personalized. Sentiment analysis provides insight on preferences and 
emotions. Real-time physical data can inform actions based on what is happening in the 
world right now. The diversity of data sources means that our answers and predictions 
are more accurate and more robust.

The Stanford Data Science Initiative was formed to connect industry with Stanford’s 
research, faculty, and grad students. The core of SDSI is the research. The articles in 
this volume describe progress in SDSI’s first ten funded research projects. Each of these 
projects is developing new algorithms and analytical techniques to deal with very large 
data sets and challenging applications. In many cases the techniques being developed 
will be useful in other domains. These researchers are creating the future of data science 
and we can hardly wait to see what happens next.



H
ere’s a programming challenge that’s not for the faint-hearted: Write a library of cryptography 

software so secure that it can withstand an attack not only from today’s most powerful 

computers, but also from computers that haven’t even been built yet. And one more thing: 

the program won’t be running on some high-end scientific workstation, but instead, inside of an 

ordinary doorknob.

That’s a taste of the challenge faced by the “Secure Analytics on the Internet of Things” program 

at SDSI. Its mission: to make sure that the next Internet — which will one day include billions of 

household appliances, home security systems, personal health monitors, and yes, even doorknobs 

— is more secure than the current one. The Secure Analytics program aims to do this by designing 

security into the “IOT” from the ground-up, something the architects of the first Internet, who were 

mainly building a messaging system for themselves, failed to do.

Secure Analytics on the 
Internet of Things
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“When you expect things to be 
installed for 10 or 20 years, that 
turns out to have big implications for 
security,” said Phil Levis, the associate 
professor in Stanford’s Computer 
Science and Electrical Engineering 
Departments directing the program.

The “door knob problem” is 
emblematic of the issues Levis’ 
program is dealing with. Since a 
doorknob is expected to last for 
several decades, he said, its built-
in security will need to last just as 
long, meaning it must anticipate 
new developments in computing 
technology, such as the quantum 
computers that physicists all around 
the world are racing to build. 

Because some current security 
technology is known to be vulnerable 
to a quantum computer, Levis said 
that a secure doorknob — or any 
other IOT device, for that matter 
— is going to also need to include 
“standby” quantum-proof software 
that would be activated if quantum 
machines ever become real.

Encryption plays a crucial role in the 
Secure Analytics program because 
so much of the data on the Internet 
of Things will be extremely personal, 
notably medical information from 
the portable monitoring devices that 
are being used more and more in 
medicine. Levis said the several of 
the six or eight research programs 

that are part of Secure Analytics 
will be taking advantage of recent 
programming breakthroughs that will 
allow computer programs to work 
with encrypted data without first 
having to decrypt it.

Levis said the program will also 
work on developing the advances in 
data science that will be necessary 
to allow computers to deal with the 
torrents of “noisy” data that will be 
generated by the many things that 
will be connected via the IOT. 

For example, engineers are designing 
a proof-of-concept program that will 
put low-cost water monitors on all 
of the showers in a Stanford dorm, 
and then upload usage information 
into the cloud for water conservation 

monitoring. That sort of data will be 
common in the Internet of Things, 
said Levis, but very little of it will have 
the tidy structures that data scientists 
are used to working with.

Yet another issue complicates all 
of the work of Levis and his team: 
Power. Most of the devices expected 
to be on the Internet of Things will 
have minimal power supplies; the 
batteries in today’s mobile phones 
are gigantic by comparison. Among 
other things, that means designing an 
IOT operating system that places a 
premium on low power consumption, 
another task that engineers in the 
Secure Analytics program are now 
tackling.

The first Internet rolled out slowly, 
with university researchers calling 
all the shots. But the Internet of 
Things is being deployed apace, as 
a visit to any hardware store full of 
smart thermostats and garage door 
openers will attest. Levis said that 
now is exactly the right time for this 
project. On the one hand, technology 
has just reached the tipping point. On 
the other hand, it’s still early enough.

“There are going to be billions 
and billions of devices,” he said. 
“Sure, there are some devices out 
there now, but we’re just at the 
beginning. We’re not even close to 
the penetration of smart devices that 
we’ll see in a few years.”

INVESTIGATORS

Philip Levis, Associate Professor of Computer Science and 
Electrical Engineering, Director of the Secure Internet of 
Things Project 

Noah Diffenbaugh, Associate Professor of Environmental Earth 
Systems Science 

Christopher Ré, Assistant Professor of Computer Science 

Dan Boneh, Professor of Computer Science and Electrical 
Engineering, Co-Director of Stanford Computer Security Lab

Mark Horowitz, Professor of Electrical Engineering and Computer 
Science

Jure Leskovec, Assistant Professor of Computer Science 
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T he Human Genome Project has taught us that what emerges from the billions 
of apparently random ones and zeroes of genetic sequencing is nothing less 
than the key to understanding life. Now, hopes are high that a vast new source 

of digital information will shed light on a subject that is equally complex — human 
behavior.

“Mapping the Social Genome” is a research project in the Stanford Data Science 
Initiative that aims to make predictions about human behavior by sifting through the 
Everests of data being generated today, especially on the Internet. It aims to answer 
questions as diverse as “What’s the best way to design a discussion group inside a 
company?” to “Which criminal defendants should be allowed to get out on bail?”

Mapping the “Social Genome”

6 FUNDED RESEARCH PROJECTS IN DATA SCIENCE



Jure Leskovec, the assistant professor 
of Computer Science heading up the 
Social Genome project, said the field 
might be considered “computational 
social science,” and that questions 
like the bail issue have already 
yielded promising results. “It’s almost 
as though we are writing down the 
equations of human behavior,” he 
said.

For example, looking at more than 
100,000 records from several Illinois 
counties, researchers were able to 
come up with an algorithm that 
has so far proven to be up to 25% 
more accurate than human judges 
at predicting which defendants will 
either not show up for trial or else 
commit another crime while out free 
on bail.

That wasn’t the first time that 
Leskovec and his colleagues have 
used data science to predict human 
behavior. Earlier in 2015, he and 
two other researchers made news 
when they could predict whether 
someone would become a disruptive 
“troll” on an Internet Web site simply 
by examining the first few posts 
the person made. Their analysis 
discovered, for example, that future 
trolls are much more likely to make 
comments that are irrelevant to the 
actual topic at hand.

Leskovec describes the Social 
Genome project as a continuation of 

the centuries-long project of making 
science ever more empirical and data 
based. Just as physics has been able 
to turn to ever more power particle 
accelerators to probe the nature 
of the atom, Leskovec said social 
scientists are using the abundance of 
what Leskovec called “digital traces” 
of our activities so that they can 
“understand human behavior at a 
new level of resolution.”

It’s well known that retailers, among 
others, stand to profit from better 
understanding the online behavior 

of their users, if only to better target 
their offers and advertisements. But 
Leskovec said that all companies can 
benefit from the sorts of Big Data 
tools usually associated with Google 
or Amazon.

For example, he said that techniques 
are being developed to predict the 
health of a company by looking at 
the patterns of how people inside the 
company are communicating with 
each other. And Leskovec isn’t talking 
about reading the content of people’s 
private emails.

“It doesn’t matter what people 
are saying. What matters is who 
is talking to whom,” he said. 
“Companies should be asking, ‘Does 
my communication network look 
healthy, with different parts of the 
company talking to each other? Or 
is my network fragmented, without 
information spreading?’ People just 
aren’t doing this today, because the 
tools don’t yet exist.”

This is a situation that is changing. 
“Because we have lots of data, and 
are developing solid theories,” he 
said, “we are now beginning to make 
observations and spot differences 
that previously would have simply 
been impossible to see.”

INVESTIGATORS

Jure Leskovec, Assistant Professor of Computer Science 
Michael Bernstein, Assistant Professor of Computer Science, 

Co-Director of Stanford Human-Computer Interaction Group 
Amir Goldberg, Assistant Professor of Organizational Behavior 
Dan Jurafsky, Professor and Chair of Linguistics, Professor of 

Computer Science 

Dan McFarland, Professor of Education, Director of Stanford 
Center for Computational Social Science

Christopher Potts, Associate Professor of Linguistics, Director 
of Stanford Center for the Study of Language and Information 
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A petabyte is a lot of ones and zeroes; to hold that much data, you’d 
need a stack of disk drives, the sort found in an average PC, as tall as 
a 15-story building. But that is how much medical information Mike 

Snyder has collected just about himself. And now, with the data in hand, Snyder 
is leading a multi-campus research program to learn how to best store and use 
that information. It’s an effort that puts him at the crossroads where modern 
medicine meets cutting-edge data science.

Data Science for 
Personalized Medicine
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Snyder chairs the Genetics Department 
at the Stanford Medical School, and 
is principal investigator of the SDSI-
funded project, “Data Science for 
Personalized Medicine.” The general 
goal of personalized medicine is to use 
data collected about a patient to tailor a 
custom-fitted treatment for a particular 
illness; one of the widely covered efforts 
in personalized medicine involves 
using the specific DNA of an individual’s 
cancer tumor to design a unique 
chemotherapy agent to combat it.

Snyder’s three-year program is 
specifically aimed at diabetes, but 
shares with the cancer program the fact 
that modern medicine is capable of 
collecting staggering amounts of data, 
and the hope that proper use of all that 
data will make for longer, healthier lives.

Snyder began focusing on diabetes 
three years ago, when after sequencing 
his own DNA, he discovered an elevated 
risk for Type II diabetes. (This despite the 
fact that Snyder is himself trim and fit.) 
Snyder began regularly collecting blood 
samples and in 2013 learned through 
lab tests that he had developed Type 
II diabetes, most likely on account of a 
viral infection.

Anxious to discover if his diabetes could 
have been more accurately predicted, 
Snyder expanded his one-person 
research group, and it now includes 
about 100 volunteers, many of them 
fellow researchers, all of whom give 
blood samples monthly.

The enormous amount of information 
this group is producing — Snyder 
is paying $25,000 a month in data 
storage fees — is a direct result of 
a generation of breakthroughs in 
medical diagnostics. We can, of course, 
sequence an individual’s genome with 
its six billion base pairs—that in itself 
creates a terabyte of data. But we now 
know the genome is just the start of 
things. 

There is, for example, the equally 
complex epigenome, which are the 
changes the genome has undergone 
since the organism’s birth, as well as 
the proteome, which is the armory of 
proteins produced under orders of DNA.

The latest entrant: The microbiome, 
or the organisms that are, as Snyder 
put it, “in and on you, but aren’t really 
you.” Each of us has 10 times as many 
microbiomic cells as autonomous ones; 

the microbes in our intestinal system 
alone would, all by themselves, weigh 
three pounds.

It is the interactions of all these systems 
that make us either healthy or sick. That 
process, now shrouded in mystery, is 
what Snyder is trying to make explicit. 
And if that can be accomplished for 
diabetes, the techniques will be relevant 
to a host of other diseases.

Snyder’s SDSI effort thus faces the 
obvious, and age-old, data science 
problem of figuring out whether a link 
between two events involves causation 
or merely correlation. It’s a problem that 
becomes an order of magnitude more 
pressing with the sheer amount of data 
his team is collecting, and the increased 
chances for “false positives” that result.

But there are computer science-related 
problems too, Snyder said. Medical 
information needs to be kept highly 
confidential. That usually means 
encryption, but computer scientists 
have yet to figure out an efficient way of 
doing the sort of regular, intense work 
with data that Snyder is performing 
while still guaranteeing it stays 
confidential.

Overall, Snyder places his program in 
the context of the continuing advance 
of human knowledge about wealth and 
wellness. “We are about to enter an era 
where large data sets can be used to 
better manage health,” he said, “and 
to move us way from medicine that 
is hunch-driven, and finally towards 
medicine that is data-driven.”

INVESTIGATORS

Michael Snyder, Professor and Chair of Genetics, Director of 
Stanford Center for Genomics and Personalized Medicine

David Tse, Professor of Electrical Engineering
Euan Ashley, Associate Professor of Medicine and Genetics, 
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Disease, Director of Stanford Clinical Genomics Service, 
and Co-Director of Stanford Research Training Program in 
Myocardial Biology

Mohsen Bayati, Assistant Professor of Operations, Information 
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Dan Boneh, Professor of Computer Science and Electrical 
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T exts, graphs, tables, pictures, and illustrations—human beings have a wide range 

of print-based tools that we can use to convey information, so we have no trouble 

flipping through a book and learning whatever the author wished to convey.

Computers, unfortunately, are utterly lost in this same terrain; for them, it’s all “dark 

data.” Before a computer can “understand” anything, the information usually needs 

to be highly structured, like the rows and columns in an Excel spreadsheet. The result 

is that, except via some rudimentary text search tools, the information in the world’s 

billions of books, journals, documents and reports can’t be effectively mined for 

insights by computers.

DeepDive—a High-Performance 
Inference and Learning Engine
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DeepDive is a research program 
at Stanford University seeking to 
change that. It uses machine learning 
techniques to quickly and automatically 
extract structured data from totally 
unstructured printed sources; a tedious 
and error-prone process that now 
requires human beings — sometimes 
even human experts. Once dark data is 
transformed by DeepDive into the kind 
of well-ordered information that is easily 
accessible by standard database tools, 
the opportunities for new insights are 
endless.

DeepDive has already proven itself in 
law enforcement, via a high-profile 
application involving human trafficking, 
and in fields as diverse as genomics, 
clinical medicine, and semiconductor 
manufacturing.

And while DeepDive is now being 
applied to some of the most advanced 
areas of business and finance, the 
technology first proved its mettle with 
something downright prehistoric: 
dinosaurs.

Program director Christopher Ré said 
the DeepDive’s computers were able to 
“read” through nearly one-half million 
paleontology journal articles and books, 
and then create a table that listed all the 
dinosaur fossils along with the location 
and likely taxonomic classification of 
each. It did this automatically after 
only a relatively brief period of human 
“training,” the sort common in all 
machine learning applications.

Ré said his team chose dinosaurs as 
their first project because it would 
be easy to benchmark their work, 

on account of the existence of the 
“Paleobiology Database,” which has 
been developed over two decades by a 
global network of hundreds of experts. 
DeepDive won the competition hands 
down. It was able to process 100 times 
as many data points as the human 
paleontologists—not only in vastly 
less time, but also with a 12% greater 
accuracy rate.

DeepDive created its “synthetic 
database” by combining disparate 
information from multiple bits of 
unstructured data. A particular fossil 
might have been described in a 
paragraph of text, but its location found 
in an accompanying table, and its 
appearance shown in a nearby picture.

To create Paleo DeepDive, said Ré, 
essentially two human steps were 
involved. First, researchers needed 
to develop the schema into which 
the data would ultimately be placed, 
something not much different from 
designing a database. After DeepDive 
had done some rudimentary natural 

language processing, researchers 
would assign a few hundred “facts” to 
their proper places in the pre-made 
schema. DeepDive then figured out the 
probability that a particular statement 
belonged in a particular part of the 
schema.

That emphasis on probability was 
key to the technology’s success. “Our 
main insight was to treat all problems 
of understanding as probabilistic 
inference problems,” said Ré. “DeepDive 
regards everything you show it as an 
observation about the world. It then 
takes all of that information, and all the 
rules the user gives it to understand that 
data, to predict the information’s most 
likely location in the database.”

With the billions of iterations made 
possible by modern multi-core 
computers, the results that emerge 
are remarkably accurate: 94% in the 
case of Paleo DeepDive. Said Ré, “We 
were astonished at the way that a small 
number of relatively low quality training 
sessions produced remarkable results.”

Another pleasant surprise from 
DeepDive is that each succeeding 
application of the technology takes 
less time; several months for the 
paleontology program, but a few 
weeks for some of the more recent 
domains. He said a business application 
of DeepDive, such as a petroleum 
company working through shelves full 
of oil field reports, could conceivably be 
up and running in a few weeks.

“We’ve proven that computers can do 
this in multiple domains,” said Ré. “And 
for us, that is very, very exciting.”

INVESTIGATOR

Christopher Ré, Assistant Professor of Computer Science

Michael Cafarella, Assistant Professor of Computer Science and Engineering, University of Michigan
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T he world becomes aware of famines when photos of tiny children with 

distended bellies and discolored hair start appearing on television news shows. 

Unfortunately, by that time, malnutrition has often taken a permanent toll on 

the mental and physical development of the children.

Stanford researchers Sanjay Basu and Eran Bendavid are trying to find data that 

might give an early warning that famine is imminent. Such information might enable 

governments and international aid agencies to respond to the emergency in time to 

reduce the impact. Some events like floods and droughts that devastate croplands 

are visible predictors of food shortages. But most of the political, social and logistical 

events that cause famine are hard to comprehend as they happen.

Large-Scale Time Series Analysis of 
Food Price Spikes and Malnutrition
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The researchers theorize that spikes in 
food commodity prices might presage 
food shortages and malnutrition. 
Food price data is readily available 
from almost every country. 
Agricultural agencies closely track 
prices in regional markets in order to 
help their farmers price their crops 
and sell futures. They distribute the 
data almost as fast as they collect it. 

There is also a lot of data available in 
the public health sphere, but much 
of it is released months or years after 
it is collected. Since the 1980s, the 
United States Agency for International 
Development and others have 
conducted regular surveys of 
individual health measures all over 
the world. Decreases in arm and 
leg circumferences and deficiencies 
in certain micronutrients in blood 
samples are reliable indicators of 
malnutrition. The effects are most 
visible in very young children and the 
elderly. 

The Stanford researchers are 
performing a historical analysis that 
would link food price spikes in past 
years to the evidence of famine 
collected by public health workers. 
They are using monthly and weekly 
price data from 250 local markets in 
26 countries, covering 31 staple foods, 
from 1995 to 2013. They are linking 

the food data by market to individual 
health data on 350,000 children. They 
are analyzing a total of 2 terabytes of 
information. 

Such time-series computations 
are notoriously computationally 
intensive. In part because the 
time-lag between the price spike 
and the famine aren’t known in 
advance, traditional linear regression 
techniques can miss correlations. 
The researchers have based 
their development on a recently 
developed statistical technique called 

convergent cross mapping, and have 
refined it with a new approach using 
the Julia language for distributed 
parallel processing. Their algorithm 
narrows down the number of 
relationships that must be examined 
more closely. 

Even with all the data, 
counterintuitive results appear. For 
example, in some rural areas price 
spikes seem to cause improved 
nutrition. The likely explanation: the 
rural farmers can sell their crops for 
more and have more money to buy 
other food. Malnutrition appears 
more quickly in cities. Wheat price 
spikes seem less likely to cause 
malnutrition because sorghum is 
usually an available substitute. But 
rice or maize price spikes are more 
likely to foreshadow famines. 

The researchers anticipate reporting 
some results about the relationship 
between price spikes and income 
levels on nutrition later in 2015. As 
they refine their work, they plan to try 
to analyze the effectiveness of various 
child-nutrition plans, including food-
purchasing subsidies, national grain 
reserves, and timing of import/export 
programs. They will also publish 
an open-source package to help 
scientific researchers use Julia for 
other research questions.

Stanford researchers 
are performing a 

historical analysis that 
would link food price 

spikes in past years to 
the evidence of famine 

collected by public 
health workers. They 

are using monthly and 
weekly price data from 

250 local markets in  
26 countries, covering 
31 staple foods, from 

1995 to 2013.

INVESTIGATORS

Sanjay Basu, Assistant Professor of Medicine at Stanford Prevention Research Center 

Eran Bendavid, Assistant Professor of General Internal Medicine 



F amilial hypercholesterolemia, or FH, is a genetic disorder caused by very high 

levels of “bad” cholesterol that sometimes kills adults in their 30’s by causing 

fatal heart attacks. The condition can be treated, but it affects only one in 500 

people, so few doctors diagnose it before it causes heart disease. 

Nigam Shah, a Stanford Assistant Professor of Medicine specializing in biomedical 

informatics, is collaborating with Dr. Josh Knowles, an expert in FH, to mine electronic 

health records (EHRs) to identify the risk in undiagnosed individuals. Even though none 

of their records contain the diagnosis, using new data-mining techniques these at-risk 

individuals can be identified via approaches being pioneered by Dr. Shah’s team.

Use of Electronic Phenotyping and Machine Learning 
Algorithms to Identify Familial Hypercholesterolemia 
Patients in Electronic Health Records
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Electronic phenotyping is made 
possible by the exploding volumes 
of data captured in electronic health 
records. However, in the real world, 
EHRs provide “noisy” data. There are 
myriad forms and codes in different 
hospital and insurance systems. 
A single electronic medical record 
installation can contain thousands 
of tables and hundreds of thousands 
of fields. On top of that, busy doctors 
may accidentally enter incorrect 
codes or not include keywords that 
computerized expert systems look 
for. So just having the data is not 
enough to find patients at risk. Novel 
data mining methods are needed 
to accurately find the individuals 
that may have a certain condition of 
interest, such as FH.

Rather than look for keywords, the 
Stanford researchers decided to train 
computers by showing them over 
100 health records of patients who 
had been diagnosed with FH by Dr. 
Knowles. Then the computer was 
left to figure out what information 
constituted evidence of the disease. 
For instance, they might learn that 
a sibling or parent who had a heart 
attack in his 30’s was a marker. 
Dr. Shah says it is analogous to 
the way email systems are taught 
to detect and delete spam, even 
though none of the emails contain 
the word “spam” and spammers 
constantly change their messages 
and addresses.

The researchers have been able to 
prove that their method achieves very 

high accuracy in identifying known 
cases of FH in the Stanford hospital’s 
database, with minimal false 
positives. Now they are contacting 
other teaching hospitals with FH 
expertise to examine portability of 
the method. 

Dr. Shah’s team already has 
demonstrated that even with noisy 
data they can maintain accuracy 
of phenotyping at around 90% by 
enlarging the training data set. That 
means that automated electronic 
phenotyping can become as accurate 
as painstakingly developed expert 
rules--purely by adding more 
data. Developing expert rules is a 
chokepoint for exploiting electronic 
health records, often taking a year or 
more of work by top clinicians. 

Their statistical approach provides 
a pathway to automating disease 
detection. They anticipate using the 
technique to diagnose hundreds of 
other relatively rare diseases. It is 

being made available as open-source 
software for use by other medical 
researchers. 

The Stanford researchers have 
previously used data-mining 
techniques to highlight unexpected 
risks of heart attacks posed by one 
of the most widely used classes of 
new pharmaceuticals. In 2013, they 
analyzed huge databases of EHRs. 
They found that people who took 
proton pump inhibitors such as 
Prilosec to treat acid reflux disease 
were at increased risk of heart attacks 
compared to people who didn’t take 
the drugs. The increase in risk was 
too small to show up in the clinical 
trials the drug manufacturers had 
conducted to get FDA approval. 
However, once millions of people 
were taking the drugs over a long 
period, the risks became apparent 
and significant. 

Data-mining based findings do not 
show cause and effect. But the 
association is strong enough that 
doctors may reconsider whether 
to prescribe that class of drug 
to patients with cardiovascular 
risk factors. There are alternative 
treatments. An older class of 
heartburn drugs didn’t show the 
same association with heart disease. 
The ability to cheaply analyze the 
impact of drugs and especially lightly 
researched medical devices after they 
are in widespread use could yield 
significant benefits and change the 
practice of medicine for the better. 

Dr. Shah’s team 
already has 

demonstrated that 
even with noisy data 

they can maintain 
accuracy  

of phenotyping 
at around 90% by 

enlarging the training 
data set. 
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T he retina of the human eye does far more than record light pixel-by-pixel like a camera’s CCD. 
Each of the 20 different output cell types of the retina processes the light impulses in a unique 
way before passing them along as electrical impulses to the brain. Learning the cells’ function 

is necessary to understand what signals are sent to the visual centers in the brain. That task is a key 
step to the dream of building an artificial retina implant that could let blind people see.

E.J. Chichilnisky, a neurobiologist at Stanford, has been studying the cells and neural circuits 
of the eye for nearly 20 years. Along with his co-investigator Andrea Montanari, an associate 
professor of Electrical Engineering and Statistics at Stanford, he anticipates that detailed analysis 
of the terabytes of data that have been collected by the large-scale electrode arrays used in his 
lab will help to map the functions of the many cell types and how they send visual information to 
the brain.

Real-Time Large-Scale Neural 
Identification
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Researchers can manually classify 
about 20 different retinal ganglion 
cell types. They either define them 
by their detailed shape as visualized 
under a microscope, or they use 
implanted electrodes to measure 
their electrical output in response to 
light. But study of these cells, some of 
whose functions remain unknown, is 
constrained by the time required for 
researchers to painstakingly analyze 
anatomical and functional data in 
order to classify them. 

Interpreting the signals from retinal 
cells is made more difficult because 
many cells fire at once in response 
to visual stimuli, and when they fire, 
they may be recorded by several 
electrodes. Dr. Chichilnisky is working 
with 512-electrode arrays that 
record the activity of hundreds of 
retinal cells, identifying the timing 
of visual responses in the cells with 
millisecond precision. A mathematical 
technique called spike sorting 
identifies which cell has emitted a 
spike at each moment in time. Having 
tightly packed electrode arrays, 
and the vast amounts of data they 
create, is proving crucial to accurate 
classification of cell types.

Drs. Chichilnisky and Montanari, 
along with Electrical Engineering 
postdoctoral fellows Emile Richard 
and Georges Goetz, are developing 
new mathematical algorithms that 

sort the electrical signatures of 
retinal cells, such as the electric field 
produced by a cell firing spikes, and 
the timing of these spikes, in order 
to classify the cells. They develop 
the algorithms by analyzing past 
experiments using methods from 
machine learning and statistics. Then 
they test the validity of the algorithms 
by applying them to the results of a 
separate data set. 

This automated classification of 
the different cells promises to give 
the researchers a major boost in 
understanding the neural circuits 
formed by the retinal cells and the 
receptors in the brain. As far as 
researchers understand, each of the 
20 or so retinal cell types process the 

light signals they receive in a unique 
way. This processing is analogous 
to a Photoshop filter that changes 
the original raw photo to highlight 
specific aspects of the scene.

Classifying the cells in real time 
will be crucial to making artificial 
retinas that function the way natural 
eyes do. In many patients, current 
artificial retinas only distinguish light 
from dark over coarse patches of 
the scene, and in some transplant 
recipients they hardly work at all. This 
may be because the signals sent by 
the different cell types are received 
by the wrong targets in the brain. 
Sending a cell’s signal to the wrong 
target is likely to create dissonance 
in the visual image, the way an 
orchestra would be disrupted if sheet 
music for flutes was given to cello 
players. With knowledge of the cell 
types stimulated, it is possible that 
prostheses with much higher fidelity 
can be developed.

Such large-scale neural recording 
is transforming how we study and 
understand the brain and nervous 
system. The computational ability 
to analyze and mine such large 
data sets opens the possibility of 
understanding the function of entire 
neural circuits composed of hundreds 
of thousands of neurons in various 
parts of the brain. 

Dr. Chichilnisky 
is working with 

512-electrode arrays 
that record the activity 
of hundreds of retinal 

cells, identifying 
the timing of visual 

responses in the cells 
with millisecond 

precision. 
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D ata scientists and physicists both work with numbers. But they seldom work 
together. Stanford’s Ariel Schwartzman, a particle physicist, and Lester Mackey, 
a professor of statistics, think that collaborating will give better understanding 

of the information that is being produced by the Large Hadron Collider (the LHC), the 
huge particle accelerator in Geneva, Switzerland. It might even help find new subatomic 
particles. 

By applying big data analysis techniques to the petabytes of data that the LHC generates 
every year, the scientists expect to be able to more accurately identify and differentiate 
particles like W, Z, and Higgs bosons, as well as top quarks. Bosons and top quarks are 
important to study because they are predicted by many models of new physics, such as 
supersymmetry, or models with extra dimensions of space.

Physics Event Reconstruction at the 
Large Hadron Collider

18 FUNDED RESEARCH PROJECTS IN DATA SCIENCE



The LHC is designed to allow 
scientists to see what was happening 
with energy and matter shortly after 
the universe was created in the Big 
Bang 13.7 billion years ago. Then, 
most scientists believe, in a tiny 
fraction of a second, elemental forces 
started to expand and formed the 
protons, neutrons, and electrons that 
comprise most of the measurable 
universe. 

In the LHC, particle collisions occur 40 
million times in a second. Scientists 
capture the action with a detector—
the equivalent of a digital camera 
with about 100 million pixels. Using 
information on the energy and 
number of particles, they try to piece 
together the frame-by-frame activity 
to understand what particles were 
created by the collision, and how 
they decay. For example, a W boson 
decays into two quarks. 

Currently physicists usually 
group similar observations into 
classifications called jets, using 
particle clustering algorithms. Most 
jets are uninteresting because they 
are comprised of quarks or gluons. 
The ones the physicists want to 
study closely are the ones originating 
from different types of bosons and 
the top quark. More important, 
they anticipate finding additional 
particles, the existence of which is 
predicted theoretically but hasn’t 
been observed. New particles are 
required to answer some of the most 

fundamental questions in particle 
physics today, such as the origin 
of dark matter. That quest is one 
of the highest priorities of the LHC 
experiments.

Prof. Mackey and Prof. Schwartzman 
are working to make it easier to 
identify the jets that are of greatest 
interest. To spot a W, Z, or Higgs 
boson jet, physicists traditionally use 
algorithms to identify a two-pronged 
structure. The Stanford scientists 
developed a new technique that turns 
the LHC events into a visualization of 
a jet and then uses computer vision 
to look at the images. The technique 
extracts more information from the 
LHC data and increases the precision 
of identifying the jets. With better 
identification of these rare boson jets, 
scientists have more opportunity to 
search for new particles decaying into 
bosons and the top quark.

A member of their team is currently 
trying to harness deep neural 
networks, another computer science 
technology, to increase the precision 
of the identification techniques. This 
will improve the separation of the 
signal (the boson jets) from the noise 
(the vast majority of jets that don’t 
originate from bosons).

The goal of the collaboration doesn’t 
end there. The scientists also think 
that they will be able to define for the 
first time the limits of information that 
can be extracted from the LHC. They 
want to determine whether increasing 
the granularity of the data — the 
number of pieces of information 
that can be extracted from a single 
collision — will improve the scientific 
understanding. Among other things, 
they expect to find the point at which 
increasing the power used to create 
collisions will stop producing more 
useful information. 

Using machine learning and big data 
to categorize particles is one of the 
hottest study areas in particle physics 
today. The Stanford group is relying 
on a tight collaboration between 
experimental physicists and data-
chomping statisticians to develop a 
deeper understanding of the physics 
of jets, and to develop new and 
more powerful ways to analyze and 
interpret LHC events. 

INVESTIGATORS

Lester Mackey, Assistant Professor of Statistics

Ariel Schwartzman, Assistant Professor of Particle Physics and Astrophysics

In the LHC, particle 
collisions occur 40 
million times in a 
second. Scientists 
capture the action 

with a detector—the 
equivalent of a digital 

camera with about  
100 million pixels.



S ometime in 2021, a new telescope atop a mountain in Northern Chile will start 

taking pictures of half the sky, encompassing some 10 billion galaxies. The 

images will be captured by the world’s largest digital camera—a 3.2-billion pixel, 

3-ton device, about the size of a small car—that is under construction in Menlo Park, 

California.

As remarkable as the Large Synoptic Survey Telescope (LSST) and its camera are, 

they won’t be able to directly picture most of the mass of the universe. Dark matter 

is invisible to the camera, even with ultraviolet and infrared filters, because it neither 

emits nor reflects light.

Inferring the Mass Map of the Observable 
Universe from 10 Billion Galaxies
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Stanford researchers Risa Wechsler 
and Phil Marshall are developing 
mathematical methods for identifying 
those masses and mapping them 
in three dimensions. An accurate 
map of all of the galaxies in the 
observable universe and the dark 
matter contained within them may 
help us understand the origins of the 
universe and why it is expanding at 
an accelerating rate. The color and 
brightness of a distant galaxy help 
astronomers determine its distance 
and, coupled with its location in the 
sky. provide a good approximation of 
its location in three dimensions. 

Computational analysis of the 
distortions of light emitted by distant 
galaxies can then be used to “see” the 
dark matter in individual galaxies, or 
at least know how much dark matter 
is likely to be there. 

Even though dark matter doesn’t 
produce light, it distorts light waves. 
Light emitted from a galaxy doesn’t 
travel straight to the telescope: it is 
bent by the gravitational fields of the 
invisible dark matter that it passes, 
an effect known as “gravitational 
lensing.” Because the gravitational 
pull is predictably related to the mass 
of the dark matter that makes up 
most of a galaxy, it gives astronomers 
a way to measure the mass of that 
galaxy. 

A very large mass near a light-
emitting galaxy will distort the light 
dramatically. Circular galaxies appear 
ellipsoid due to these distortions. 
Even small masses along the light’s 
path will bend the light slightly. Light 
from distant sources may be bent 
repeatedly along its billions-of-light-
year journey. Analyzing such “weak 
lensing” effects is expected to give 
a much more detailed and accurate 
map of the individual galaxies in the 
universe.

The researchers are already starting 
to apply their statistical methods 
to data sets from the two-year-old 
Dark Energy Camera which is taking 
pictures in Chile with a 570 megapixel 
camera. Its pictures cover 300 million 

galaxies. LSST will image four times 
more sky, about 70 times more often, 
and will require new computational 
algorithms to take advantage of all 
this additional data.

Wechsler’s team is also working to 
build plausible model universes that 
can be used to simulate the actual 
one and allow experimental tests of 
the weak lensing analysis. By running 
simulations they can study things that 
cannot be followed directly in real 
life, such as how galaxies form. The 
output of the simulations will provide 
pointers to telltale pieces of evidence 
that should be present in the vast 
amounts of data that come out of the 
Large Synoptic Survey telescope. 

Astrophysicists around the world are 
preparing to analyze the LSST’s digital 
images and related data, anticipating 
an opportunity to understand the 
universe at a scale and level of detail 
never before possible. Some of the 
results are likely to prove theses 
that are already widely believed 
based on sampling and averaging of 
current, smaller-scale experiments. 
But in other cases the more detailed 
picture will reveal unexpected results 
that alter our understanding of the 
universe. 

Computational 
analysis of the 

distortions of light 
emitted by distant 

galaxies can then be 
used to “see” the dark 

matter in individual 
galaxies, or at least 

know how much dark 
matter is likely to  

be there.
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R ecently parents of a young boy with troubling signs of developmental 
disabilities brought him to Stanford’s pediatric hospital. The reasons for his 
issues stumped the doctors who examined him. 

Applying cutting-edge technology, the doctors ordered a genetic assay. The 
researcher who reviewed the assay found a mutation in the boy’s genetic 
circuitry that he suspected might cause problems.

The Stanford Resident (Reason-Syndicate-Identify) 
Project: Toward Knowledge-Driven Medical Genomics
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The mutation wasn’t common, 
and it didn’t immediately suggest 
a disease. But when the mutation 
was entered into a new database of 
genetic research, the Stanford team 
discovered a month-old research 
report. It identified the mutation, 
and the related disabilities. Even 
better, it described a drug regimen 
that has given similar patients some 
improvement. 

Reading the one million medical 
research reports produced every 
year is impossible for diagnosing 
physicians. But advanced machine 
learning methods can develop 
computer systems that can read all 
the research and systematize it so it is 
accessible to doctors. 

The new database is the product 
of work by Gill Bejerano, a Stanford 
polymath who is an associate 
professor in biology, pediatrics and 
computer science, and Christopher 
Ré, a Stanford computer scientist who 
developed an increasingly popular 
computer program called “DeepDive.” 

DeepDive can analyze unstructured 
text and use it to determine the 
answers to questions; it can then put 
those answers in a SQL relational 
database. For example, it can read 
thousands of newspaper articles 
about people and determine which 
ones are married to each other. It’s 
the equivalent of turning a Google 
search that returns thousands of 
results into a credit-score inquiry that 
answers a specific question. 

Prof. Bejerano and Prof. Ré are 
using DeepDive to look for research 
articles that describe a connection 
between a patient’s genotype and 
his or her phenotype, that is, the 
patient’s medical symptoms. They 
are currently building a database 
that will be accessible to doctors all 
over the world. While genetic assays 
of patients aren’t routine today, they 
are likely to become more common. 
Right now they cost about $10,000 
and insurers are reluctant to cover 
the costs except as a last resort. 
But costs are dropping steadily and 
evidence that they can help diagnose 
mysterious problems is likely to 
increase demand. 

More and more diseases turn out 
to have a genetic component—
often one that can be alleviated by 
changes in diet or medication. When 
genomic assays are conducted, and 
reviewers identify an anomaly in the 
genetic code, they often don’t know 
the significance. Sometimes the 
connection between the genotype 
and the patient’s symptoms is 
unknown. Many times, researchers 
somewhere have identified a 
connection, but Stanford doctors 
don’t know it because it’s impossible 
to keep up with all the research.

Learning that a child has a genetic 
defect can be heartbreaking for 
parents. But most people want to 
know the reason for symptoms. It can 
help families plan for the future if the 
course of a disease is known. Often 
there are treatments that alleviate 
symptoms and this knowledge can 
help parents understand if a future 
pregnancy would be likely to result in 
another child with the condition.

Genetic medicine represents one of 
the brightest hopes for improving 
medical care. But currently, too many 
of the benefits are lost because 
of the sheer volume of research. 
Machine learning systems can classify 
genetic anomalies and the resulting 
phenotypes. The systems promise to 
lead to accurate diagnoses for many 
more patients.

INVESTIGATORS

Gill Bejerano, Associate Professor of Developmental Biology, Computer Science, and Pediatrics (Medical Genetics) 

Christopher Ré, Assistant Professor of Computer Science 
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