Skip to content

dvschultz/dataset-tools

Repository files navigation

dataset-tools

Tools for quickly normalizing image datasets for machine learning. I maintain a series of video tutorials on normalizing image datasets—many utilizing this set of scripts—on my YouTube page.

Installation

Note: If you’re installing this on a Mac, I highly recommend installing it alongside Anaconda. A video tutorial is available here.

git clone https://github.com/dvschultz/dataset-tools.git
cd dataset-tools
pip install -r requirements.txt

Basic Usage

python dataset-tools.py --input_folder path/to/input/ --output_folder path/to/output/

Documentation

You can view auto generated documentation in docs.md

All Options

dataset_tools.py

  • --verbose: Print progress to console.
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --process_type: Process to use. Options: resize,square,crop,crop_to_square,canny,canny-pix2pix,scale,crop_square_patch,many_squares Default: resize
  • --blur_type: Blur process to use. Use with --process_type canny. Options: none, gaussian, median. Default: none
  • --blur_amount: Amount of blur to apply (use odd integers only). Use with --blur_type. Default: 1
  • --max_size: Maximum width or height of the output images. Default: 512
  • --force_max: forces the resize to the max size (by default --max_size only scales down)
  • --direction: Paired Direction. For use with pix2pix process. Options: AtoB,BtoA. Default: AtoB
  • --mirror: Adds mirror augmentation.
  • --rotate: Adds 90 degree rotation augmentation.
  • --border_type: Border style to use when using the square process type Options: stretch,reflect,solid (solid requires --border-color) Default: stretch
  • --border_color: border color to use with the solid border type; use BGR values from 0 to 255 Example: 255,0,0 is blue
  • --height: height of crop in pixels; use with --process_type crop or --process_type resize (when used with resize it will distort the aspect ratio)
  • --width: width of crop in pixels; use with --process_type crop or --process_type resize (when used with resize it will distort the aspect ratio)
  • --shift_y: y (Top to bottom) amount to shift in pixels; negative values will move it up, positive will move it down; use with --process_type crop
  • --shift_x: x (Left to right) amount to shift in pixels; negative values will move it left, positive will move it right; use with --process_type crop
  • --file_extension: file format to output Options: jpg,png Default: png

dedupe.py

Remove duplicate images from your dataset

  • --absolute: Use absolute matching. Default
  • --avg_match: average pixel difference between images (use with --relative) Default: 1.0
  • --file_extension: file format to output Options: jpg,png Default: png
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --relative: Use relative matching.
  • --verbose: Print progress to console.

Basic usage (absolute)

python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/

Basic usage (relative)

python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/ --relative

multicrop.py

This tool produces randomized multi-scale crops. A video tutorial is here

  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --file_extension: file format to output Options: jpg,png Default: png
  • --max_size: Maximum width and height of the crop. Default: None
  • --min_size: Minimum width and height of the crop. Default: 1024
  • --resize: size to resize crops to (if None it will default to min_size). Default: None
  • --no_resize: If set the crops will not be resized. Default: False
  • --verbose: Print progress to console.

sort.py

  • --file_extension: file format to output Options: jpg,png Default: png
  • --verbose: Print progress to console.
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --process_type: Process to use. Options: sort,exclude Default: exclude
  • --max_size: Maximum width or height of the output images. Default: 2048
  • --min_size: Minimum width or height of the output images. Default: 1024
  • --min_ratio: Ratio of image (height/width). Default: 1.0
  • --exact: Match to exact specs. Use --min_size for shorter dimension, --max_size for longer dimension

sort-color.py

Sorts a folder of images into separate folders based on dominant color. It will check the image's dominant color against all colors passed in, so depending on your threshold level and specified colors, you may end up with duplicate images across folders (e.g. the same sunset image in the red folder, orange folder, and yellow folder).

  • -v, --verbose: Print progress to console.
  • -i, --input_folder: Directory path to the inputs folder. Default: ./input/
  • -o, --output_folder: Directory path to the outputs folder. Default: ./output/
  • -t, --threshold: Threshold for color matching, lower values are more exact. Default: 40
  • -c, --colors: Comma-separated list of W3C color names to check against . Default: red,orange,yellow,green,blue,purple,black,white
  • --rgb A single color of comma-separated RGB values (e.g. 128,255,30): . Default: None

interactive.py

YouTube Demo

rotate.py

About

Tools for quickly normalizing image datasets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages