-
Notifications
You must be signed in to change notification settings - Fork 188
/
utils.py
83 lines (62 loc) · 3.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import torch
import shutil
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import math
cmap = plt.cm.viridis
def parse_command():
data_names = ['nyudepthv2']
from dataloaders.dataloader import MyDataloader
modality_names = MyDataloader.modality_names
import argparse
parser = argparse.ArgumentParser(description='FastDepth')
parser.add_argument('--data', metavar='DATA', default='nyudepthv2',
choices=data_names,
help='dataset: ' + ' | '.join(data_names) + ' (default: nyudepthv2)')
parser.add_argument('--modality', '-m', metavar='MODALITY', default='rgb', choices=modality_names,
help='modality: ' + ' | '.join(modality_names) + ' (default: rgb)')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('-e', '--evaluate', default='', type=str, metavar='PATH',)
parser.add_argument('--gpu', default='0', type=str, metavar='N', help="gpu id")
parser.set_defaults(cuda=True)
args = parser.parse_args()
return args
def colored_depthmap(depth, d_min=None, d_max=None):
if d_min is None:
d_min = np.min(depth)
if d_max is None:
d_max = np.max(depth)
depth_relative = (depth - d_min) / (d_max - d_min)
return 255 * cmap(depth_relative)[:,:,:3] # H, W, C
def merge_into_row(input, depth_target, depth_pred):
rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C
depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy())
d_min = min(np.min(depth_target_cpu), np.min(depth_pred_cpu))
d_max = max(np.max(depth_target_cpu), np.max(depth_pred_cpu))
depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)
img_merge = np.hstack([rgb, depth_target_col, depth_pred_col])
return img_merge
def merge_into_row_with_gt(input, depth_input, depth_target, depth_pred):
rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C
depth_input_cpu = np.squeeze(depth_input.cpu().numpy())
depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
depth_pred_cpu = np.squeeze(depth_pred.data.cpu().numpy())
d_min = min(np.min(depth_input_cpu), np.min(depth_target_cpu), np.min(depth_pred_cpu))
d_max = max(np.max(depth_input_cpu), np.max(depth_target_cpu), np.max(depth_pred_cpu))
depth_input_col = colored_depthmap(depth_input_cpu, d_min, d_max)
depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
depth_pred_col = colored_depthmap(depth_pred_cpu, d_min, d_max)
img_merge = np.hstack([rgb, depth_input_col, depth_target_col, depth_pred_col])
return img_merge
def add_row(img_merge, row):
return np.vstack([img_merge, row])
def save_image(img_merge, filename):
img_merge = Image.fromarray(img_merge.astype('uint8'))
img_merge.save(filename)