
9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 1/14

MENU

Why I like Hapi more
than Express
21 OCTOBER 2015

When I �rst started with Node.js, my �rst HTTP servers were

built using Express. Almost all the tutorials use Express as their

server, which I think helps its dominance.

http://expressjs.com/

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 2/14

But Hapi beats it hands down. Hapi, out of the box has:

1. Easier setup with better defaults

2. Better error handling

3. More powerful reply interface

4. Better testability

And that's just scratching the surface.

Let's dive in to some code (GitHub). All of my work involves

JSON API's so that will be my focus.

Note: I'm using ES6 and HTTPie because it's my blog and I can do

what I want.

Hapi

const Hapi = require('hapi')

const port = process.env.PORT || 8080

const server = new Hapi.Server()

server.connection({ port: port })

server.route({

 method: 'POST',

 path: '/hello',

 handler: (req, reply) => {

 reply({ hello: req.payload.name })

 }

})

server.start((err) => {

http://hapijs.com/
https://github.com/ethanmick/hapi-over-express
https://nodejs.org/en/docs/es6/
https://github.com/jkbrzt/httpie

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 3/14

 console.log('Server running at:', server.info.uri,

err ? err : '');

})

Express

const express = require('express')

const bodyParser = require('body-parser')

const port = process.env.PORT || 8080

const app = express()

app.use(bodyParser.urlencoded({ extended: true }))

app.use(bodyParser.json())

const router = express.Router()

router.post('/hello', (req, res) => {

 res.json({ hello: req.body.name })

})

app.use(router)

app.listen(port)

Easier Setup
These are pretty similar. But already I see things I don't like in

Express. It requires an additional dependency to parse out my

JSON body, which is annoying. What else would I be POSTing? A

form? That also requires the body-parser dependency!

Hapi, on the other hand, parses both out of the box just �ne.

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 4/14

Express's middleware mentality has caused me to have over ten

middleware plugins for my app (example). I don't really want

to deal with middleware for serving a favicon.

Better Error Handling
Let's start our Hapi Server:

$ npm start

> hapi-ethanmick@1.0.0 start

/Users/ethan/Documents/ethanmick/hapi-vs-express/hapi

> node --es_staging index.js

Server running at: http://Ethan-Micks-MacBook-

Pro.local:8080

Awesome.

Let's start another one! (In a new shell):

$ npm start

> hapi-ethanmick@1.0.0 start

/Users/ethan/Documents/ethanmick/hapi-vs-express/hapi

> node --es_staging index.js

Server running at: http://Ethan-Micks-MacBook-

Pro.local:8080 { [Error: listen EADDRINUSE 0.0.0.0:8080]

 code: 'EADDRINUSE',

 errno: 'EADDRINUSE',

 syscall: 'listen',

https://github.com/fastchat/server

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 5/14

How kind! It uses the err object in the callback to inform me of

an issue with starting the server.

Express?

$ npm start

> express-ethanmick@1.0.0 start

/Users/ethan/Documents/ethanmick/hapi-vs-express/express

> node --es_staging index.js

events.js:141

 throw er; // Unhandled 'error' event

 ^

Error: listen EADDRINUSE :::8080

 at Object.exports._errnoException (util.js:837:11)

 at exports._exceptionWithHostPort (util.js:860:20)

 at Server._listen2 (net.js:1231:14)

 at listen (net.js:1267:10)

 at Server.listen (net.js:1363:5)

 at EventEmitter.listen

(/Users/ethan/Documents/ethanmick/hapi-vs-

express/express/node_modules/express/lib/application.js:

617:24)

 at Object.<anonymous>

(/Users/ethan/Documents/ethanmick/hapi-vs-

express/express/index.js:23:5)

 at Module._compile (module.js:434:26)

 address: '0.0.0.0',

 port: 8080 }

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 6/14

 at Object.Module._extensions..js (module.js:452:10)

 at Module.load (module.js:355:32)

No such kindness. It throws an exception. Express's listen

method is just a simple passthrough to the HTTP's listen

method, which doesn't pass in an error in the callback. To �x

this, we need to change the code to:

app.listen(port, () => {

 console.log('Server running at:', port)

}).on('error', err => { console.log('Err!', err) })

Alright, �ne, slightly di�erent syntax. Whatever. Let's �re o�

404 request to Express:

Woh! What!? I want a JSON API not a "return anything you

want" API! Express, by default, returns a lovely text/html

response on a 404. Ugh.

Hapi?

$ http 'http://localhost:8080/random'

HTTP/1.1 404 Not Found

Connection: keep-alive

Content-Length: 19

Content-Type: text/html; charset=utf-8

Date: Tue, 20 Oct 2015 20:35:41 GMT

X-Content-Type-Options: nosniff

X-Powered-By: Express

Cannot GET /random

https://nodejs.org/api/net.html#net_server_listen_path_callback

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 7/14

$ http 'http://localhost:8080/random'

HTTP/1.1 404 Not Found

Connection: keep-alive

Date: Tue, 20 Oct 2015 20:35:29 GMT

Transfer-Encoding: chunked

cache-control: no-cache

content-encoding: gzip

content-type: application/json; charset=utf-8

vary: accept-encoding

{

 "error": "Not Found",

 "statusCode": 404

}

Oh, thank you. (Hapi uses Boom for its HTTP errors, which is

an excellent package).

Moving on, let's look at the startup options. In Express, you can

set some options when you create the server:

const app = express({

 dotfiles: 'ignore',

 redirect: false

})

Same with Hapi. But what happens if I mistype some?

const app = express({

 dotfile: 'ignore',

 redirect: 'ok'

})

https://github.com/hapijs/boom

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 8/14

$ npm start

> express-ethanmick@1.0.0 start

/Users/ethan/Documents/ethanmick/hapi-vs-express/express

> node --es_staging index.js

Server running at: 8080

Not a peep.

Let's try this in Hapi. Our server now looks like:

const server = new Hapi.Server({

 connections: {

 router: {

 isCaseSensitive: false

 }

 },

 debug: {

 log: ['error']

 }

})

Okay, let's make some honest mistakes:

const server = new Hapi.Server({

 connections: {

 routers: {

 isCaseSensitive: 'yes'

 }

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 9/14

 },

 debug: {

 log: 'error'

 }

})

$ npm start

> hapi-ethanmick@1.0.0 start

/Users/ethan/Documents/ethanmick/hapi-vs-express/hapi

> node --es_staging index.js

/Users/ethan/Documents/ethanmick/hapi-vs-

express/hapi/node_modules/hapi/node_modules/hoek/lib/ind

ex.js:731

 throw new Error(msgs.join(' ') || 'Unknown error');

 ^

Error: Invalid server options {

 "connections": {

 "routers" [1]: {

 "isCaseSensitive": "yes"

 }

 },

 "debug": {

 "log": "error"

 }

}

[1] "routers" is not allowed

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 10/14

Wow! You got really angry. But I love it! It even shows you

where the issue was, marked by the [1]. As you �x each issue in

your con�guration, the error message catches each one:

[1] "log" must be an array

[1] "isCaseSensitive" must be a boolean

This stops you from easily passing in an Object with many

extraneous keys (such as a large generic con�guration object),

but it will always, always catch you mistyping a key, or setting

an invalid value.

Again, behind the scenes, they are using their own powerful Joi

module, which you should de�nitely take a look at.

Replying
Express favors a response object that has many methods on it,

such as .json or .sendFile . Hapi does two things here. One,

their reply interface is �rst and foremost a function.

reply({hello: 'Everyone!'})

Objects and Arrays are returned as JSON, strings are returned as

plain text. Just what I would expect. But Hapi goes further, and

you can return a whole bunch of clever things:

1. null

2. unde�ned

3. string

4. number

5. boolean

https://github.com/hapijs/joi

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 11/14

6. Bu�er object

7. Error object (Formatted to a 500 unless it's a Boom error)

8. Stream object

9. Promise object

10. any other object or array

Nice! You can return a Stream and it'll stream the data back to

the user. You can also return a Promise, and when ful�lled, it

will send the result to the user. It makes for some beautiful and

elegant code.

The Reply interface can be enhanced with some Plugins (This is

annoying, they used to be built into Hapi), and you can serve

�les and directories, or Proxy requests.

Proxying is especially powerful. You can rede�ne the entire URI

and Headers in your proxy method, which allows you do

awesome things, such as:

1. Hide S3 resources behind your own authentication

2. Add OAuth Authentication information to requests and pass

them to upstream services

Testing
Lastly, I want to touch on testing. Tests are extremely

important, and one thing I've found very hard is to test the

controller part of my code. I have all my logic separated into a

model layer, but I still want to ensure my controllers have code

coverage and work as expected.

http://hapijs.com/tutorials/serving-files
https://github.com/hapijs/h2o2

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 12/14

How can I do that in Express? Maybe this? Or this? I've used

Supertest in the past, but it's clunky and inelegant.

Hapi to the rescue. Change the end of our �le to:

//server.start((err) => {

// console.log('Server running at:', server.info.uri,

err ? err : '');

//})

var req = {

 method: 'POST',

 url: '/hello',

 payload: JSON.stringify({name: 'Ethan'})

};

server.inject(req, res => {

 console.log('Tested!', res.statusCode, res.result);

});

Run it and get: Tested! 200 { hello: 'Ethan' }

Hapi has a built in inject method that allows you to, well,

inject an HTTP request into the server. It gets routed like a

normal request to the correct route handler, which then

executes as normal. The result object in our test has the

information that we can validate in a test. You can see how I

fully test a server in my example hapi-starter.

Last Thoughts
There are some other things which I really like about the Hapi

Project. I like how aggressively they move forward. They just

http://www.designsuperbuild.com/blog/unit_testing_controllers_in_express/
http://stackoverflow.com/questions/8831984/how-do-i-test-my-express-app-with-mocha
https://github.com/visionmedia/supertest
https://github.com/ethanmick/hapi-starter

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 13/14

released version 11. They follow semantic versioning, but aren't

afraid to release a major new version with breaking changes.

They supported IO.js from the very beginning and when Node 4

came out they released Hapi 10:

hapi v10.0.0 contains no breaking changes. It is published to indicate

the transition from node v0.10 to node v4.0. Moving to v10.0.0 only

requires upgrading your node version to the latest v4. Future releases

of the hapi v10 branch will include internal changes to take

advantage of the new features available in node v4 and those will

break under node v0.10.

I love the versioning, and their unabashed movement toward a

better API. On the other side, you have Express, which released

it's latest major version on on Apr 9, 2014.

So there you have it. I've been using Hapi for over 2 years now

and always have been impressed with it. It's de�nitely worth a

try for your next project!

Code

Discuss on Hacker News

Ethan Mick

Read more posts by this author.

Share this post

  

https://github.com/hapijs/hapi/releases
https://github.com/hapijs/hapi/issues/2764
https://github.com/strongloop/express/releases/tag/4.0.0
https://github.com/ethanmick/hapi-over-express
https://news.ycombinator.com/item?id=10425671
https://www.ethanmick.com/author/ethan/
https://www.ethanmick.com/author/ethan/
https://twitter.com/intent/tweet?text=Why%20I%20like%20Hapi%20more%20than%20Express&url=https://www.ethanmick.com/why-i-like-hapi-more-than-express/
https://www.facebook.com/sharer/sharer.php?u=https://www.ethanmick.com/why-i-like-hapi-more-than-express/
https://plus.google.com/share?url=https://www.ethanmick.com/why-i-like-hapi-more-than-express/
https://www.ethanmick.com/decrypt-all-pdfs-in-a-directory/
https://www.ethanmick.com/a-revolution-down-on-the-farm/
https://www.ethanmick.com/author/ethan/

9/29/2016 Why I like Hapi more than Express

https://www.ethanmick.com/why-i-like-hapi-more-than-express/ 14/14

READ THIS NEXT

Decrypt all PDF's
in a Directory
I recently had to decrypt a

bunch of PDF's. I knew the

password, but didn't want to do

them…

YOU MIGHT ENJOY

A Revolution
Down on the

Farm
I just �nished reading A

Revolution Down on the Farm,

by Paul K. Conkin. I wanted to

read a…

Ethan Mick © 2016 Proudly published with Ghost

https://www.ethanmick.com/decrypt-all-pdfs-in-a-directory/
https://www.ethanmick.com/a-revolution-down-on-the-farm/
https://www.ethanmick.com/
https://ghost.org/

