-
Notifications
You must be signed in to change notification settings - Fork 3
/
eval.py
413 lines (370 loc) · 19.1 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import time
from datetime import datetime
from numpy.core.fromnumeric import transpose
import torch.nn.functional as F
import torch
import torch.nn as nn
from models.position_encoding import *
from utils.utils import print_
from utils.metrics import calculate_JF
import numpy as np
import cv2
import os.path as osp
import os
import torch.distributed as dist
from torchvision.utils import make_grid
from matplotlib import cm
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
from tqdm import tqdm
@torch.no_grad()
def visualize(args, pred, gt, img, diff, idx, orig_phrase, iou):
# if not os.path.exists(osp.join('/mnt/data5/htr/CSTM/CSTM-CVPR21/visualize', orig_phrase, idx)):
# return
_palette = [0, 0, 0, 128, 0, 0, 0, 128, 0, 128, 128, 0, 0, 0, 128, 128, 0, 128, 0, 128, 128, 128, 128, 128, 64, 0,
0, 191, 0, 0, 64, 128, 0, 191, 128, 0, 64, 0, 128, 191, 0, 128, 64, 128, 128, 191, 128, 128, 0, 64, 0,
128, 64, 0, 0, 191, 0, 128, 191, 0, 0, 64, 128, 128, 64, 128, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25,
25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 30, 30, 30, 31, 31, 31, 32, 32, 32, 33, 33, 33,
34, 34, 34, 35, 35, 35, 36, 36, 36, 37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42,
42, 43, 43, 43, 44, 44, 44, 45, 45, 45, 46, 46, 46, 47, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51,
51, 51, 52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 58, 58, 58, 59, 59, 59,
60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 63, 64, 64, 64, 65, 65, 65, 66, 66, 66, 67, 67, 67, 68, 68,
68, 69, 69, 69, 70, 70, 70, 71, 71, 71, 72, 72, 72, 73, 73, 73, 74, 74, 74, 75, 75, 75, 76, 76, 76, 77,
77, 77, 78, 78, 78, 79, 79, 79, 80, 80, 80, 81, 81, 81, 82, 82, 82, 83, 83, 83, 84, 84, 84, 85, 85, 85,
86, 86, 86, 87, 87, 87, 88, 88, 88, 89, 89, 89, 90, 90, 90, 91, 91, 91, 92, 92, 92, 93, 93, 93, 94, 94,
94, 95, 95, 95, 96, 96, 96, 97, 97, 97, 98, 98, 98, 99, 99, 99, 100, 100, 100, 101, 101, 101, 102, 102,
102, 103, 103, 103, 104, 104, 104, 105, 105, 105, 106, 106, 106, 107, 107, 107, 108, 108, 108, 109, 109,
109, 110, 110, 110, 111, 111, 111, 112, 112, 112, 113, 113, 113, 114, 114, 114, 115, 115, 115, 116, 116,
116, 117, 117, 117, 118, 118, 118, 119, 119, 119, 120, 120, 120, 121, 121, 121, 122, 122, 122, 123, 123,
123, 124, 124, 124, 125, 125, 125, 126, 126, 126, 127, 127, 127, 128, 128, 128, 129, 129, 129, 130, 130,
130, 131, 131, 131, 132, 132, 132, 133, 133, 133, 134, 134, 134, 135, 135, 135, 136, 136, 136, 137, 137,
137, 138, 138, 138, 139, 139, 139, 140, 140, 140, 141, 141, 141, 142, 142, 142, 143, 143, 143, 144, 144,
144, 145, 145, 145, 146, 146, 146, 147, 147, 147, 148, 148, 148, 149, 149, 149, 150, 150, 150, 151, 151,
151, 152, 152, 152, 153, 153, 153, 154, 154, 154, 155, 155, 155, 156, 156, 156, 157, 157, 157, 158, 158,
158, 159, 159, 159, 160, 160, 160, 161, 161, 161, 162, 162, 162, 163, 163, 163, 164, 164, 164, 165, 165,
165, 166, 166, 166, 167, 167, 167, 168, 168, 168, 169, 169, 169, 170, 170, 170, 171, 171, 171, 172, 172,
172, 173, 173, 173, 174, 174, 174, 175, 175, 175, 176, 176, 176, 177, 177, 177, 178, 178, 178, 179, 179,
179, 180, 180, 180, 181, 181, 181, 182, 182, 182, 183, 183, 183, 184, 184, 184, 185, 185, 185, 186, 186,
186, 187, 187, 187, 188, 188, 188, 189, 189, 189, 190, 190, 190, 191, 191, 191, 192, 192, 192, 193, 193,
193, 194, 194, 194, 195, 195, 195, 196, 196, 196, 197, 197, 197, 198, 198, 198, 199, 199, 199, 200, 200,
200, 201, 201, 201, 202, 202, 202, 203, 203, 203, 204, 204, 204, 205, 205, 205, 206, 206, 206, 207, 207,
207, 208, 208, 208, 209, 209, 209, 210, 210, 210, 211, 211, 211, 212, 212, 212, 213, 213, 213, 214, 214,
214, 215, 215, 215, 216, 216, 216, 217, 217, 217, 218, 218, 218, 219, 219, 219, 220, 220, 220, 221, 221,
221, 222, 222, 222, 223, 223, 223, 224, 224, 224, 225, 225, 225, 226, 226, 226, 227, 227, 227, 228, 228,
228, 229, 229, 229, 230, 230, 230, 231, 231, 231, 232, 232, 232, 233, 233, 233, 234, 234, 234, 235, 235,
235, 236, 236, 236, 237, 237, 237, 238, 238, 238, 239, 239, 239, 240, 240, 240, 241, 241, 241, 242, 242,
242, 243, 243, 243, 244, 244, 244, 245, 245, 245, 246, 246, 246, 247, 247, 247, 248, 248, 248, 249, 249,
249, 250, 250, 250, 251, 251, 251, 252, 252, 252, 253, 253, 253, 254, 254, 254, 255, 255, 255]
# save_dir = osp.join('supplementary', args.model_name, orig_phrase, idx)
save_dir = osp.join('supplementary', args.model_name+'_val', ('/').join(idx.split('/')[:2]))
if not osp.exists(save_dir):
os.makedirs(save_dir)
pred = pred.cpu().numpy()
gt = gt.cpu().numpy()*255
img = img.cpu().numpy()*255
img = img.transpose(1,2,0)
img1 = img.copy()
img1[:,:,0] = img[:,:,2]
img1[:,:,1] = img[:,:,1]
img1[:,:,2] = img[:,:,0]
diff = diff.cpu().numpy()*255
diff = diff.transpose(1,2,0)
diff1 = diff.copy()
diff1[:,:,0] = diff[:,:,2]
diff1[:,:,1] = diff[:,:,1]
diff1[:,:,2] = diff[:,:,0]
img_diff = np.concatenate([img1, diff1], axis=1)
cv2.imwrite(osp.join(save_dir, 'img_diff.png'), img_diff)
color_id = int(idx.split('/')[-1])
pred[pred > 0] = color_id + 1
pred = Image.fromarray(pred).convert('P')
pred.putpalette(_palette)
pred = pred.convert('RGB')
pred = np.array(pred)
pred1 = pred.copy()
pred1[:,:,0] = pred[:,:,2]
pred1[:,:,1] = pred[:,:,1]
pred1[:,:,2] = pred[:,:,0]
cv2.imwrite(osp.join(save_dir, f'{color_id}.png'), pred1)
@torch.no_grad()
def vis_attn(args, pred, gt, img, diff, idx, orig_phrase, stage4, stage5, f4_1, f4_2, f5_1, f5_2):
save_dir = osp.join('vis_diff_vai', args.model_name, idx+'_'+orig_phrase)
if not osp.exists(save_dir):
os.makedirs(save_dir)
pred = pred.cpu().numpy()*255
gt = gt.cpu().numpy()*255
img = img.cpu().numpy()*255
img = img.transpose(1,2,0)
img1 = img.copy()
img1[:,:,0] = img[:,:,2]
img1[:,:,1] = img[:,:,1]
img1[:,:,2] = img[:,:,0]
diff = diff.cpu().numpy()*255
diff = diff.transpose(1,2,0)
diff1 = diff.copy()
diff1[:,:,0] = diff[:,:,2]
diff1[:,:,1] = diff[:,:,1]
diff1[:,:,2] = diff[:,:,0]
img_diff = np.concatenate([img1, diff1], axis=1)
cv2.imwrite(osp.join(save_dir, 'img_diff.png'), img_diff)
stage4_max = stage4.max(dim=1, keepdim=True)[0]
stage4_min = stage4.min(dim=1, keepdim=True)[0]
stage4 = (stage4 - stage4_min) / (stage4_max - stage4_min)
stage4 = stage4.reshape(25, 1, 20, 20)
stage4 = F.interpolate(stage4, scale_factor=16, mode='bilinear', align_corners=True)
stage4 = stage4.squeeze()
stage4 = stage4.cpu().numpy()
for i in range(len(orig_phrase.split())):
mask = stage4[i][:, :, np.newaxis]
mask = np.repeat(mask, 3, axis=2)
mask[:, :, 0] = cm.jet(mask[:, :, 0])[:, :, 2]
mask[:, :, 1] = cm.jet(mask[:, :, 1])[:, :, 1]
mask[:, :, 2] = cm.jet(mask[:, :, 2])[:, :, 0]
mask_diff = mask * 255 * 0.4 + diff1 * 0.6
mask_img = mask * 255 * 0.4 + img1 * 0.6
cv2.imwrite(osp.join(save_dir, f'stage4_diff_{orig_phrase.split()[i]}.png'), mask_diff)
cv2.imwrite(osp.join(save_dir, f'stage4_img_{orig_phrase.split()[i]}.png'), mask_img)
#
#
stage5_max = stage5.max(dim=1, keepdim=True)[0]
stage5_min = stage5.min(dim=1, keepdim=True)[0]
stage5 = (stage5 - stage5_min) / (stage5_max - stage5_min)
stage5 = stage5.reshape(25, 1, 10, 10)
stage5 = F.interpolate(stage5, scale_factor=32, mode='bilinear', align_corners=True)
stage5 = stage5.squeeze()
stage5 = stage5.cpu().numpy()
for i in range(len(orig_phrase.split())):
mask = stage5[i][:, :, np.newaxis]
mask = np.repeat(mask, 3, axis=2)
mask[:, :, 0] = cm.jet(mask[:, :, 0])[:, :, 2]
mask[:, :, 1] = cm.jet(mask[:, :, 1])[:, :, 1]
mask[:, :, 2] = cm.jet(mask[:, :, 2])[:, :, 0]
mask_diff = mask * 255 * 0.4 + diff1 * 0.6
mask_img = mask * 255 * 0.4 + img1 * 0.6
cv2.imwrite(osp.join(save_dir, f'stage5_diff_{orig_phrase.split()[i]}.png'), mask_diff)
cv2.imwrite(osp.join(save_dir, f'stage5_img_{orig_phrase.split()[i]}.png'), mask_img)
@torch.no_grad()
def vis_words_attn(args, pred, gt, img, diff, idx, orig_phrase, vis_dict, vis_id):
save_dir = osp.join('words_vis', args.model_name, idx+'_'+orig_phrase)
if not osp.exists(save_dir):
os.makedirs(save_dir)
for stage in vis_dict.keys():
stage_dict = vis_dict[stage]
for type_vis in stage_dict.keys():
type_dict = stage_dict[type_vis]
fig, axes = plt.subplots(len(type_dict.keys()), figsize=(10, 4))
fig.subplots_adjust(top=0.95, bottom=0.01, left=0.01, right=0.99)
axes[0].set_title(stage+'_'+type_vis)
for ax, part_vis in zip(axes, type_dict.keys()):
part_info = type_dict[part_vis]
vis_part = part_info[vis_id]
vis_part = vis_part.sum(dim=0)
tmp_max = vis_part.max()
tmp_min = vis_part.min()
vis_part_norm = (vis_part - tmp_min) / (tmp_max - tmp_min)
vis_part_norm = vis_part_norm * 255
vis_part_norm = vis_part_norm.int()
norm_np = vis_part_norm.cpu().numpy()
nonzero_ind = norm_np.nonzero()[0]
norm_np = norm_np[nonzero_ind]
norm_np = norm_np[np.newaxis, :]
ax.imshow(norm_np, aspect='auto', cmap=plt.get_cmap('Blues'))
ax.set_axis_off()
plt.show()
fig.savefig(osp.join(save_dir, f'{stage}_{type_vis}.png'))
plt.cla()
plt.close('all')
def sigmoid_focal_loss(inputs, targets, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean()
def dice_loss(inputs, targets):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
targets = targets.flatten(1)
numerator = 2 * (inputs * targets).sum(1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.mean()
@torch.no_grad()
def save_annotations(args, ins_id, img_path, pred, size):
save_path = img_path.replace('JPEGImages', f'results/{args.model_name}/{args.checkpoint}/Annotations')
frame = img_path.split('/')[-1].replace('jpg', 'png')
scene = '/'.join(save_path.split('/')[:-1])
save_path = osp.join(scene, ins_id)
if not osp.exists(save_path):
os.makedirs(save_path)
save_frame = osp.join(save_path, frame)
pred = pred.unsqueeze(0).unsqueeze(0)
pred = F.interpolate(pred, (size.numpy()[0], size.numpy()[1]), mode='bilinear', align_corners=True)
pred = pred.squeeze()
pred = pred.cpu().numpy()
pred[pred > 0] = 1
cv2.imwrite(save_frame, pred * 255)
@torch.no_grad()
def cal_fps(dataloader, model, args):
# the first several iterations may be very slow so skip them
num_warmup = 20
pure_inf_time = 0
fps = 0
max_iter = 1000
log_interval = 100
# benchmark with 2000 image and take the average
for i, batch in enumerate(dataloader):
img = batch["image"].cuda(non_blocking=True)
flow = batch['flow'].cuda(non_blocking=True)
phrase = batch["phrase"].cuda(non_blocking=True)
phrase_mask = batch['phrase_mask'].cuda(non_blocking=True)
img_mask = torch.ones(
args.batch_size, args.feature_dim * args.feature_dim, dtype=torch.int64
).cuda(non_blocking=True)
torch.cuda.synchronize()
start_time = time.perf_counter()
with torch.no_grad():
_ = model(img, flow, phrase, phrase_mask, img_mask)
torch.cuda.synchronize()
elapsed = time.perf_counter() - start_time
if i >= num_warmup:
pure_inf_time += elapsed
if (i + 1) % log_interval == 0:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f'Done image [{i + 1:<3}/ {max_iter}], '
f'fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
if (i + 1) == max_iter:
fps = (i + 1 - num_warmup) / pure_inf_time
print(
f'Overall fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
break
@torch.no_grad()
def evaluate(
val_loader,
joint_model,
epochId,
args,
eval_grounding=True,
):
joint_model.eval()
# bce_loss = nn.BCELoss()
total_loss = 0
bce_loss = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1.5])).cuda()
bce_loss_1 = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1.5])).cuda()
bce_loss_2 = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1.5])).cuda()
bce_loss_3 = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1.5])).cuda()
data_len = len(val_loader)
MeanIoU, IArea, OArea, Overlap, MeanCont = [], [], [], [], []
ind = 0
for batch in tqdm(val_loader):
orig_img = batch['orig_img']
orig_flow = batch['orig_flow']
img = batch["image"].cuda(non_blocking=True)
flow = batch['flow'].cuda(non_blocking=True)
phrase = batch["phrase"].cuda(non_blocking=True)
orig_size = batch['orig_size']
idx = batch['index']
orig_phrase = batch['orig_phrase']
orig_mask = batch['orig_mask'].cuda(non_blocking=True)
batch_size = img.shape[0]
phrase_mask = batch['phrase_mask'].cuda(non_blocking=True)
img_mask = torch.ones(
batch_size, args.feature_dim * args.feature_dim, dtype=torch.int64
).cuda(non_blocking=True)
ins_id = batch['ins_id']
img_path = batch['img_path']
if not args.vis:
# mask, _, _, _ = joint_model(img, flow, phrase, phrase_mask, img_mask)
mask = joint_model(img, flow, phrase, phrase_mask, img_mask)
else:
mask, vis_dict = joint_model(img, flow, phrase, phrase_mask, img_mask, True)
mask = mask.sigmoid()
# total_loss += float(loss_ground.item())
for i in range(batch_size):
iou, iarea, oarea, cont = calculate_JF(mask[i], orig_mask[i], args.threshold, orig_size[i])
if args.vis and iou >= 0.7:
vis_words_attn(args, mask[i], orig_mask[i], orig_img[i], orig_flow[i],
'/'.join(img_path[i].split('/')[-2:])[:-4]+f'/{ins_id[i]}', orig_phrase[i],
vis_dict, i)
# visualize(args, mask[i], orig_mask[i], orig_img[i], orig_flow[i], '/'.join(img_path[i].split('/')[-2:])[:-4]+f'/{ins_id[i]}', orig_phrase[i], iou)
if args.task == 'ytvos' and args.save_result:
save_annotations(args, ins_id[i], img_path[i], mask[i], orig_size[i])
# visualize(mask[ground_indx][i], orig_mask[ground_indx][i], orig_img[i], str(int(idx[i])), orig_phrase[i], iou)
MeanIoU.append(iou)
IArea.append(iarea)
OArea.append(oarea)
Overlap.append(iou)
MeanCont.append(cont)
ind = ind + 1
# val_loss = total_loss / data_len
prec5, prec6, prec7, prec8, prec9 = np.zeros((len(Overlap), 1)), np.zeros((len(Overlap), 1)), np.zeros((len(Overlap), 1)), \
np.zeros((len(Overlap), 1)), np.zeros((len(Overlap), 1))
for i in range(len(Overlap)):
if Overlap[i] >= 0.5:
prec5[i] = 1
if Overlap[i] >= 0.6:
prec6[i] = 1
if Overlap[i] >= 0.7:
prec7[i] = 1
if Overlap[i] >= 0.8:
prec8[i] = 1
if Overlap[i] >= 0.9:
prec9[i] = 1
# maybe different with coco style as we could not get detailed response about the way to calculate it.
# it is confuse to define precision and recall for me, if we follow the prior definition of precision.
# anyone is welcome to pull request
mAP_thres_list = list(range(50, 95+1, 5))
mAP = []
for i in range(len(mAP_thres_list)):
tmp = np.zeros((len(Overlap), 1))
for j in range(len(Overlap)):
if Overlap[j] >= mAP_thres_list[i] / 100.0:
tmp[j] = 1
mAP.append(tmp.sum() / tmp.shape[0])
mean_iou, mean_cont, overall_iou, precision5, precision6, precision7, precision8, precision9, precision_mAP = np.mean(np.array(MeanIoU)), np.mean(np.array(MeanCont)), np.array(IArea).sum() / np.array(OArea).sum(), \
prec5.sum() / prec5.shape[0], prec6.sum() / prec6.shape[0], prec7.sum() / prec7.shape[0], \
prec8.sum() / prec8.shape[0], prec9.sum() / prec9.shape[0], np.mean(np.array(mAP))
timestamp = datetime.now().strftime("%Y|%m|%d-%H:%M")
if args.dist and dist.get_rank() == 0:
print(f'{timestamp} Validation: EpochId: {epochId+1:2d},\n'
f'Precision@0.5 {precision5:.3f}, Precision@0.6 {precision6:.3f}, '
f'Precision@0.7 {precision7:.3f}, Precision@0.8 {precision8:.3f}, Precision@0.9 {precision9:.3f},\n'
f'mAP Precision @0.5:0.05:0.95 {precision_mAP:.3f},\n'
f'Overall IoU {overall_iou:.3f}, Mean IoU (J) {mean_iou:.4f}, F {mean_cont:.4f}')
print_("============================================================================================================================================\n")
if args.task == 'ytvos':
return (mean_cont + mean_iou) / 2
else:
return (overall_iou + mean_iou) / 2