Skip to content

Latest commit

 

History

History
71 lines (57 loc) · 3.04 KB

lightgbm.md

File metadata and controls

71 lines (57 loc) · 3.04 KB

LightGBM on Apache Spark

LightGBM

LightGBM is an open-source, distributed, high-performance gradient boosting (GBDT, GBRT, GBM, or MART) framework. This framework specializes in creating high-quality and GPU enabled decision tree algorithms for ranking, classification, and many other machine learning tasks. Light GBM is part of Microsoft's DMTK project.

Advantages of LightGBM

  • Composability: LightGBM models can be incorporated into existing SparkML Pipelines, and used for batch, streaming, and serving workloads.
  • Performance: LightGBM on Spark is 10-30% faster than SparkML on the Higgs dataset, and achieves a 15% increase in AUC. Parallel experiments have verified that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.
  • Functionality: LightGBM offers a wide array of tunable parameters, that one can use to customize their decision tree system. LightGBM on Spark also supports new types of problems such as quantile regression.
  • Cross platform LightGBM on Spark is available on Spark, PySpark, and SparklyR

Usage

In PySpark, you can run the LightGBMClassifier via:

from mmlspark import LightGBMClassifier
model = LightGBMClassifier(learningRate=0.3,
                           numIterations=100,
                           numLeaves=31).fit(train)

Similarly, you can run the LightGBMRegressor by setting the application and alpha parameters:

from mmlspark import LightGBMRegressor
model = LightGBMRegressor(application='quantile',
                          alpha=0.3,
                          learningRate=0.3,
                          numIterations=100,
                          numLeaves=31).fit(train)

For an end to end application, check out the LightGBM notebook example.

Architecture

LightGBM on Spark uses the Simple Wrapper and Interface Generator (SWIG) to add Java support for LightGBM. These Java Binding use the Java Native Interface call into the distributed C++ API.

We initialize LightGBM by calling LGBM_NetworkInit with the Spark executors within a MapPartitions call. We then pass each workers partitions into LightGBM to create the in-memory distributed dataset for LightGBM. We can then train LightGBM to produce a model that can then be used for inference.

The LightGBMClassifier and LightGBMRegressor use the SparkML API, inherit from the same base classes, integrate with SparkML pipelines, and can be tuned with SparkML's cross validators.