-
Notifications
You must be signed in to change notification settings - Fork 0
/
ufx.w
1066 lines (813 loc) · 35.1 KB
/
ufx.w
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\pdfoutput=1
\documentclass[a4paper,12pt]{cweb}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[lf]{Baskervaldx}
\usepackage[bigdelims,vvarbb]{newtxmath}
\usepackage{amsfonts, amsmath, amssymb}
\usepackage{fullpage}
\usepackage{marvosym}
\usepackage{bm}
\usepackage[round,numbers,super]{natbib}
\usepackage{color}
\usepackage{a4wide,fullpage}
\usepackage{setspace}
\usepackage{hyperref}
\usepackage{enumerate}
\usepackage{dsfont}
\usepackage[right]{lineno}
\usepackage{verbatim}
\usepackage{tabto}
\usepackage{lipsum}
\usepackage{orcidlink}
\setstretch{1.5}
\newcommand{\one}[1]{\ensuremath{\mathds{1}_{\left\{ #1 \right\}}}}
\newcommand{\EE}[1]{\ensuremath{\mathds{E}\left[ #1 \right]}}%
\newcommand{\im}{\ensuremath{\imath} }%
\newcommand{\jm}{\ensuremath{\jmath} }%
\newcommand{\be}{\begin{equation}}%
\newcommand{\ee}{\end{equation}}%
\newcommand{\prb}[1]{\ensuremath{\mathds{P}\left( #1 \right) } }%
\newcommand{\h}[1]{\ensuremath{\uptheta_{ #1 } } }%
\newcommand{\VV}[1]{\ensuremath{ \mathbb{V}\left( #1 \right)}}%
\newcommand{\hp}{\ensuremath{\theta_1}}
\newcommand{\hs}{\ensuremath{\theta_2}}
\newcommand{\D}{\ensuremath{\mathbb{D}}}
\newcommand{\F}{\ensuremath{\mathbb{F}} }
\newcommand{\G}{\ensuremath{\mathbb{G}} }
\newcommand{\IN}{\ensuremath{\mathds{N}} }
\newcommand{\bt}[1]{\textcolor{blue}{\tt #1}}
\makeatletter
\renewcommand{\maketitle}{\bgroup\setlength{\parindent}{0pt}
\begin{flushright}
\textbf{\LARGE \@@title}
\@@author
\end{flushright}\egroup
}
\makeatother
\title{Fixation at many sites}
\author{Bjarki Eldon\footnote{MfN Berlin, Germany} \footnote{Supported by
Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 273887127
through DFG SPP 1819: Rapid Evolutionary Adaptation grant STE 325/17-2 to Wolfgang Stephan; acknowledge funding by the Icelandic Centre of Research through an
Icelandic Research Fund Grant of Excellence no.\
185151-051 to Einar \'Arnason, Katr\'in Halld\'orsd\'ottir, Alison M.\ Etheridge, Wolfgang Stephan, and BE. BE also acknowledges Start-up module grants through SPP 1819 with Jere Koskela and Maite Wilke-Berenguer, and with Iulia Dahmer. \\ \today} \orcidlink{https://orcid.org/0000-0001-9354-2391} }
\begin{document}
\maketitle
\rule{\textwidth}{.8pt}
\begin{abstract}
This code generates excursions of the evolution of a diploid
population partitioned into an arbitrary number of unlinked
sites and two genetic types at each site, with viability weight
determined by $W = e^{-sf(g)}$, where $g = (g_1, \ldots, g_L)$
are the genotypes of a given individual at $L$ sites, $f$ is a
function determining how the genotypes affect the trait value,
and $s > 0$ is the strength of selection on the trait. The
population evolves according to a model of random sweepstakes
and randomly occurring bottlenecks and viability selection. The code can be used to
estimate the probability of fixation of the ($L$-site) type
conferring advantage, and the expected time to fixation
conditional on fixation of the type conferring advantage.
\end{abstract}
\tableofcontents
@* {\bf Copyright}.
Copyright {\textcopyright} {\the\year} Bjarki Eldon \newline
This document and any source code it contains is distributed under the terms of the GNU General Public Licence (version $\ge 3$). You
should have received a copy of the licence along with this file (see file COPYING).
The source codes described in this document are free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This document and the code it contains is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file (see COPYING). If not, see \url{http://www.gnu.org/licenses/}.
@* {\bf introduction}.
\label{SEC:intro}
We are interested in how random sweepstakes, randomly occurring
bottlenecks, and dominance mechanisms affect the probability of
fixation, and the time to fixation conditional on fixation of the type
conferring selective advantage. We consider a diploid population
partitioned into an arbitrary number of unlinked sites and two types
at each site. The population is evolving according to random
sweepstakes and randomly occurring bottlenecks. In between bottlenecks
the population experiences viability selection provided the number of
juveniles produced each time exceeds the given carrying capacity.
Consider a diploid population starting with $2N$ diploid individuals. Let
$X, X_1^N, \ldots, X_N^N$ be i.i.d.\ discrete random variables
taking values in $\{2, \ldots, u(N)\}$; the $X_1^N, \ldots, X_M^N$
denote the random number of juveniles independently produced in a
given generation by $M$ parent pairs according to
\begin{equation}
\label{eq:1}
\prb{X = k} = \frac{ 1 }{ 2^{-\alpha} - ( u(N) + 1)^{-\alpha} } \left( \frac{1}{k^\alpha} - \frac{1}{(k+1)^{\alpha}} \right),
\quad 2 \leq k \leq u(N).
\end{equation}
The mass in Eq~\eqref{eq:1} is normalised so that
$\prb{ 1 \leq X \leq u(N)} =1 $, and $\prb{X = k} \ge \prb{X =
k+1}$. Given a pool of at least $2M$ juveniles, we sample $2M$
juveniles for the next generation. Leaving out an atom at zero and
one gives $X_1^N + \cdots + X_N^N \ge 2M$ almost surely, guaranteeing
that we always have at least $2M$ juveniles to choose from in each
generation. We randomize on $\alpha$ so that with probability
$1 - \varepsilon_N$ all parent pairs produce juveniles according to
Eq~\eqref{eq:1} with $\alpha = \alpha_2 \ge 2$, and with $\alpha = \alpha_1 \in (1,2)$
with probability $\varepsilon_N$.
We admit randomly occurring bottlenecks; in the beginning of every
generation a bottleneck occurs with a fixed probability, and when it
happens we sample uniformly at random and without replacement a fixed
number of diploid individuals to survive the bottleneck. The surviving
individuals then continue to produce juveniles. If the total number
of juveniles does not exceed the carrying capacity $(C)$ all the
juveniles survive, otherwise we sample $C$ of them without replacement
and with weights. Let $A$ denote the event a bottleneck occurs, the
population size at time $N_{t + 1}$ is then given by
$N_{t + 1} = \one{S_{\lfloor M/2 \rfloor} \le C}S_{\lfloor M/2
\rfloor} + \one{S_{\lfloor M/2 \rfloor} > C}C$ where
$S_{\lfloor M/2 \rfloor}$ is the total number of juveniles produced by
$\lfloor M/2 \rfloor$ parent pairs, and
$M = \one{A}B + \one{A^\complement}N_t$ where $B$ is the bottleneck
`size', i.e.\ the number of individuals surviving a
bottleneck. Viability selection therefore does not kick in unless the
number of juveniles at any time exceeds the carrying capacity; given
recurrent bottlenecks the population may be evolving neutrally for several generations.
The code can be used to estimate the probability of fixation at all
sites for the type conferring advantage, and the time to fixation
conditional on fixation. In this context `fixation' means fixation at
all sites of the type conferring advantage; if the type is lost at any
one site fixation cannot occur.
At the time of writing weight of a juvenile required for viability selection is taken as a random exponential with rate
$\exp\left(-sf(g) \right)$ where $s > 0$ is the strength of selection
and $g = (g_1, \ldots, g_L)$ are the genotypes at the $L$ sites (\S~\ref{sec:weight}, \S~\ref{sec:compute}). One
can assume various dominance mechanisms, and different dominance
mechanisms for different sites.
@* {\bf code}.
\label{sec:code}
The R code \S~\ref{sec:rcodetypes} produces all possible $L$-site
types, for a given $L$ there's $3^L$ of them. For two sites $(L = 2)$ with nine possible types the matrix is
\begin{center}
\begin{tabular}[center]{lll}
\hline
type index Eq~\eqref{eq:2}& two-site type \\
\hline
0 & (0,0) \\
1 & (0,1) \\
2 & (0,2) \\
3 & (1,0) \\
4 & (1,1) \\
5 & (1,2) \\
6 & (2,0) \\
7 & (2,1) \\
8 & (2,2) \\
\hline
\end{tabular}
\end{center}
Sections \S~\ref{sec:includes}--\S~\ref{sec:runsims} describe the individual modules.
The algorithm is formulated in the following pseudocode.
Let $Y(t) := \left( Y_{1}(t),
\ldots, Y_{L}(t) \right) \in [0,1]^{L}$ be the L-site type frequency
process, where $Y_{\ell}(t)$ is the number of copies of the type
conferring selective advantage at site $\ell$ relative to the
population size at time $t$. Write $[n] := \{1, 2, \ldots, n\}$ for
$n \in \N$, $N_{t}$ for the population size at time $t$, $B$ for the
population size right after a bottleneck, $p$ for the probability of a
bottleneck in a given generation, $g = (g_{1}, \ldots, g_{L})$ an
L-site type, and $f(g)$ a function for how $g$ determines the
trait value
\begin{enumerate}
\item $\left( Y_{1}(0), \ldots, Y_{L}(0) \right)\leftarrow \left(
\tfrac {1}{2N}, \ldots, \tfrac {1}{2N} \right) $ with population set
in the starting configuration as described above
\item while( $\left\{ \prod_{\ell \in [L]} Y_{\ell}(t) > 0 \right\}
\bigcap \left\{ \sum_{\ell \in [L]}Y_{\ell}(t) < L \right\} $ ) \\
then for generation $t + 1$ started with $N_{t}$ individuals:
\begin{enumerate}
\item $U \leftarrow$ random uniform on $[0,1]$
\item $M \leftarrow \one{U \le p}B + \one{U > p}N_{t} $ where $p$ is the probability of a bottleneck
\item the $M$ individuals in the case of a bottleneck are
sampled uniformly at random and without replacement from the $N_t$ individuals
\item sample $X_{1}, \ldots, X_{\lfloor M/2 \rfloor}$ random number of
juveniles produced independently by $\lfloor M/2 \rfloor$ parent
pairs and assign types according to Mendel's laws
\item $S_{ \lfloor M/2 \rfloor } \leftarrow X_{1} + \cdots + X_{\lfloor M/2 \rfloor}$ the
total number of juveniles
\item sample a random exponential $E \leftarrow {\rm Exp}\left( \exp\left( -sf(g) \right) \right)$ for each
juvenile with rate $ \exp\left( -sf(g) \right) $
\item $\mathfrak{E} \leftarrow \one{S_{\lfloor M/2 \rfloor} > C }E_{(C)} +
\one{ S_{ \lfloor M/2 \rfloor } \le C }E_{ \left( S_{ \lfloor M/2
\rfloor } \right) }$ where $E_{(j)}$ is the $j$th smallest exponential
out of the $S_{\lfloor M/2 \rfloor }$ exponentials from (d)
\item a juvenile with sampled exponential $E$ survives if $ E \le \mathfrak{E} $
\end{enumerate}
\item record the result of the trajectory according to $\left\{
\prod_{\ell \in [L]} Y_{\ell}(t) = 0 \right\}$ or $ \left\{ \sum_{\ell \in [L]}Y_{\ell}(t) = L \right\} $
\end{enumerate}
@*1 {\bf R code for types}.
\label{sec:rcodetypes}
\begin{verbatim}
# given L sites there are 3**L possible L-site types
g <- function(l, LL)
{
x <- numeric()
while( length(x) < (3**LL) ){
x <- c(x, rep(0,3**(LL-l)), rep(1, 3**(LL-l)), rep(2, 3**(LL-l))) }
return (x)
}
# example: set the number of sites w to five
w <- 5
# define the matrix for the types
m <- matrix( 0, 3**w, w)
# compute the matrix of types at w sites
for(l in 1:w){
m[, l] <- t(g(l, w))}
# write the matrix to a file
write(t(m), "types.txt", ncolumns = w)
\end{verbatim}
@*1 {\bf the included libraries}.
\label{sec:includes}
@<Includes@>=@#
#include <iostream>
#include <fstream>
#include <vector>
#include <random>
#include <functional>
#include <memory>
#include <utility>
#include <algorithm>
#include <cstddef>
#include <ctime>
#include <cstdlib>
#include <cmath>
#include <list>
#include <string>
#include <fstream>
#include <chrono>
#include <forward_list>
#include <assert.h>
#include <math.h>
#include <unistd.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf.h>
#include "ufx.hpp"
@*1 {\bf GSL random number generator}.
\label{sec:gslrng}
initialise a gsl random number generator; called in \S~\ref{sec:main}
@<gsl random number generator@>=@#
gsl_rng * rngtype ;
static void setup_rng( unsigned long int s )
{
const gsl_rng_type *T ;
gsl_rng_env_setup();
T = gsl_rng_default ;
rngtype = gsl_rng_alloc(T);
gsl_rng_set( rngtype, s) ;
}
@*1 {\bf look up an index}.
\label{sec:lookup}
Compute an index given an $L$-site type $(i_1, \ldots, i_L) \in \{0,1,2\}^L$ as
\begin{equation}
\label{eq:2}
f( (i_1, \ldots, i_L)) = \sum_{\ell = 1} ^L i_\ell 3^{L - \ell}.
\end{equation}
This enables us to look up the number of individuals in the population with the given $L$-site type
@<lookup@>=@#
static size_t lookup(const std::vector<short>& types )
{
size_t n = 0 ;
for( int ell = 1 ; ell <= GLOBAL_NUMBER_SITES ; ++ell){
n += types[ell - 1]*static_cast<short>( gsl_sf_pow_int(3, GLOBAL_NUMBER_SITES - ell) ) ;
}
return (n) ;
}
@*1 {\bf replicate a value}.
\label{sec:crep}
replicate a given value a given number of times as in R function {\tt rep}; required for enumerating all the possible L-site types
@<as R rep@>=@#
static void crep( const double LL, const double l, const short n, std::vector<short>& y )
{
y.clear();
y.resize( pow(3, LL-l)) ;
y.assign( pow(3, LL - l), n) ;
}
@*1 {\bf one column of type array}.
\label{sec:onecolumn}
write out one column of the type array, i.e.\ the expanded types at one site; required for producing all he possible L-site types
@< L-site type array one column@>=@#
static void g( const double LL, const double l, std::vector< short>& x )
{
x.clear();
std::vector<short> tmp {};
const size_t m = static_cast<size_t>( pow( 3., LL)) ;
while( x.size() < m){
for( short i = 0 ; i < 3 ; ++i){
/* \newline \S~\ref{sec:crep} */
crep( LL, l, i, tmp);
x.insert( x.end(), tmp.begin(), tmp.end() ) ;}
}
}
@*1 {\bf write array of L-site types}.
\label{sec:allLsitetypes}
write the array of all L-site types
@<all L-site types@>=@#
static void writearray( const double LLw, gsl_matrix_short * M)
{
std::vector< short> d {} ;
for( size_t k = 1; k <= static_cast<size_t>(LLw) ; ++k){
/* \newline \S~\ref{sec:onecolumn} */
g( LLw, k, d);
/* \newline copy into array */
for( size_t u = 0 ; u < d.size() ; ++u){
gsl_matrix_short_set(M, u, k-1, d[u]);}
}
}
@*1 {\bf initialize containers}.
\label{sec:initconts}
initialize the main containers; we start with $2N - L$ individuals
homozygous for the wild type at all sites, and $L$ distinct
individuals each heterozygous at a distinct site.
@<container initialization@>=@#
static void init_containers( std::vector< unsigned>& population, std::vector<double>& cdf_one, std::vector<double>& cdf_two)
{
population.clear() ;
population.assign( GLOBAL_NUMBER_TYPES, 0);
/* \newline set $2N - L$ individuals homozygous for the wild type at all sites */
population[0] = GLOBAL_CONST_II - GLOBAL_NUMBER_SITES ;
/* \newline set an $L$ site type heterozygous at one site and homozygous for wild type at all other sites */
std::vector< short> types (GLOBAL_NUMBER_SITES, 0 );
for( unsigned i = 0 ; i < GLOBAL_NUMBER_SITES ; ++i){
std::fill( types.begin(), types.end(), 0);
types[i] = 1 ;
/* \newline set the number of individuals heterozygous at site $i$ to one \S~\ref{sec:lookup} */
population[ lookup( types) ] = 1 ;}
/* \newline initialize the containers for the CDFs for the number of juveniles */
cdf_one.clear() ;
cdf_two.clear() ;
cdf_one.reserve( GLOBAL_CONST_CUTOFF_ONE + 2) ;
cdf_two.reserve( GLOBAL_CONST_CUTOFF_TWO + 2) ;
cdf_one.push_back( 0.);
cdf_one.push_back( 0.);
cdf_two.push_back(0.);
cdf_two.push_back(0.);
assert( cdf_one.size() == 2 );
assert( cdf_two.size() == 2 );
}
@*1 {\bf initialize for an excursion}.
\label{sec:inittraject}
initialize the population array for a new trajectory
@<newtrajectory@>=@#
static void init_for_trajectory( std::vector< unsigned>& population)
{
std::fill( population.begin(), population.end(), 0);
/* \newline set $2N - L$ individuals as homozygous for wild type at all sites */
population[0] = GLOBAL_CONST_II - GLOBAL_NUMBER_SITES ;
std::vector< short> types (GLOBAL_NUMBER_SITES, 0 );
for( unsigned i = 0 ; i < GLOBAL_NUMBER_SITES ; ++i){
std::fill( types.begin(), types.end(), 0);
/* \newline set one individual as heterozygous at site |i| and homozygous for wild type at all other sites */
types[i] = 1 ;
population[ lookup( types) ] = 1 ;}
}
@*1 {\bf total number of individuals in population}.
\label{sec:Nt}
return the current total number of individuals in the population
@<Nt@>=@#
static unsigned int current_number_individuals(const std::vector<unsigned>& population)
{
return std::accumulate( std::begin(population), std::end(population), 0);
}
@*1 {\bf sample index of parent }.
\label{sec:sampleparentindex}
sample index of $L$-site type of parent without replacement and update the number of remaining individuals accordingly
@<getparentindex@>=@#
static int sample_genotype_parent( std::vector<unsigned>& p, gsl_rng *r )
{
/* \newline |p| is population */
int i = 0 ;
unsigned int nothers = current_number_individuals(p) - p[i] ;
unsigned int x = gsl_ran_hypergeometric( r, p[0], nothers, 1);
while( (x < 1) && (i < GLOBAL_NUMBER_TYPES ) ){
++i ;
nothers -= p[ i];
x = gsl_ran_hypergeometric(r, p[i], nothers, 1);
}
/* \newline check if an individual has been sampled */
i += (x < 1 ? 1 : 0);
/* \newline adjust the number of remaining parents */
/* \newline an individual of type with index |i| sampled, so subtract one from the number of remaining individuals with same type */
--p[i] ;
/* return the index of the genotype of the parent */
/* \newline index is between |0| and |GLOBAL_NUMBER_TYPES| */
return i ;
}
@*1 {\bf all juveniles survive }.
\label{sec:alljuvssurvive}
all juveniles survive
@<all juveniles@>=@#
static void update_population_all_juveniles(const std::vector< std::pair< size_t, double>>& juveniles, std::vector<unsigned>& population)
{
/* \newline set number of all types to zero */
std::fill(population.begin(), population.end(), 0 ) ;
/* \newline \S~\ref{sec:Nt} */
assert( current_number_individuals(population) < 1 );
for( const auto &j : juveniles){
/* \newline |j[0]| is type index of juvenile |j| */
population[ std::get<0>( j ) ] += 1;}
}
@*1 {\bf sample a juvenile type}.
\label{sec:sampletype}
assign single site genotype to juvenile given genotypes in parents
following Mendel's laws; in our coding $0$ corresponds to homozygous
$0/0$ for the wild type, $1$ corresponds to the heterozygote, and $2$ to the homozygote for the mutation
@<sample single site type@>=@#
static short assign_type_one_site( const short gone, const short gtwo, gsl_rng *r)
{
/* \newline |gone| and |gtwo| are the two parent types */
short int g {} ;
const double u = gsl_rng_uniform(r) ;
switch(gone){
case 0 : {
g = (gtwo < 1 ? 0 : (gtwo < 2 ? (u < 0.5 ? 0 : 1) : 1) );
break ;}
case 1 : {
g = (gtwo < 1 ? (u < .5 ? 0 : 1) : (gtwo < 2 ? (u < 0.25 ? 0 : ( u < 0.75 ? 1 : 2)) : (u < 0.5 ? 1 : 2) ) ) ;
break ; }
case 2 : {
g = (gtwo < 1 ? 1 : (gtwo < 2 ? (u < .5 ? 1 : 2) : 2) ) ;
break ; }
default : break ; }
assert( g == 0 || g == 1 || g == 2 ) ;
return g ;
}
@*1 {\bf read in file with types}.
\label{sec:readtypesfile}
read in file with all types for given number of sites produced by the R code in \S~\ref{sec:rcodetypes}
@<file of types@>=@#
static void read_types( const std::vector<unsigned>& p , gsl_matrix_short * M )
{
std::ifstream f("types_five_sites.txt");
short x {} ;
for( int i = 0 ; i < GLOBAL_NUMBER_TYPES ; ++i){
for( int j = 0 ; j < GLOBAL_NUMBER_SITES ; ++j){
f >> x ;
gsl_matrix_short_set(M, i, j, x) ;}}
f.close() ;
/* \newline print matrix for check */
int z = 0 ;
for( int i = 0 ; i < GLOBAL_NUMBER_TYPES ; ++i){
for( int j = 0 ; j < GLOBAL_NUMBER_SITES ; ++j){
std::cout << gsl_matrix_short_get(M, i,j) << ' ' ;}
std::cout << p[z] << '\n' ;
++z ; }
}
@*1 {\bf a random number of juveniles}.
\label{sec:randomnojuvs}
sample a random number of juveniles with a distribution based on Eq~\eqref{eq:1}, \newline returning $\min\{j \in \IN : F(j) \ge u\}$ where $u$ is a given
random uniform and $F$ the CDF
@<randomnumberjuvs@>=@#
static size_t sample_random_number_juveniles( const size_t c_twoone, const std::vector<double>& cdfone, const std::vector<double>& cdftwo, gsl_rng *r)
{
const double u = gsl_rng_uniform(r);
size_t j = 2 ;
if( c_twoone < 2 ){
while( u > cdfone[j] ){ ++j ;}}
else{
while( u > cdftwo[j] ){ ++j ;}}
assert( j > 1) ;
return j ;
}
@*1 {\bf weight of a site}.
\label{sec:weight}
compute the contribution of a site to the weight
@<weight@>=@#
static double weight( const short x )
{
return ( (x < 1 ? 2. : 0.) / GLOBAL_NUMBER_SITES_d ) ;
}
@*1 {\bf compute weight }.
\label{sec:compute}
compute weight of a juvenile given the type at all sites
@<compute the weight@>=@#
static double computeweight( const std::vector<short>& types, gsl_rng *r)
{
/* \newline |types| is the vector of type at each site of juvenile */
double g = 0 ;
/* \newline compute the average contribution over the sites */
for (const auto &s : types){
/* compute the contribution of site |s| to the weight \S~\ref{sec:weight} */
g += weight(s) ; }
/* \newline return the weight as a random exponential with rate $\exp\left( -sg^2 \right)$ where $g$ is from \S~\ref{sec:weight} */
return ( gsl_ran_exponential( r, 1./exp( (-GLOBAL_CONST_SELECTION)*pow( g , 2.) ) ) ) ;
}
@*1 {\bf add one juvenile}.
\label{sec:addjuv}
add one juvenile to the pool of juveniles
@<add one juvenile@>=@#
static void add_juvenile(const int type_index_one, const int type_index_two, gsl_matrix_short * Mtypes, std::vector< std::pair<size_t, double>>& jvs, gsl_rng * r)
{
std::vector<short> types_juvenile {} ;
types_juvenile.clear() ;
/* \newline get the types of the juvenile */
for( int s = 0; s < GLOBAL_NUMBER_SITES ; ++s){
/* \newline sample and record the type at site |s| \S~\ref{sec:sampletype} */
types_juvenile.push_back( assign_type_one_site( gsl_matrix_short_get( Mtypes, type_index_one, s), gsl_matrix_short_get( Mtypes, type_index_two, s), r) ) ;}
/* \newline compute the weight \S~\ref{sec:compute} and type index \S~\ref{sec:lookup} and add the juvenile to the vector of juves */
jvs.push_back( std::make_pair( lookup( types_juvenile), computeweight( types_juvenile, r) ) );
}
@*1 {\bf juveniles for a parent pair}.
\label{sec:juvsforparentpair}
produce a set of juveniles for one parent pair with given type indexes
@<produce juvs for parent pair@>=@#
static void add_juveniles_for_given_parent_pair( const std::vector<double>& cdfone, const std::vector<double>& cdftwo, std::vector< std::pair<size_t, double>>& jvs, const int gone,
const int gtwo, const size_t conetwo, gsl_matrix_short * Mtypes, gsl_rng *r)
{
/* \newline |gone| and |gtwo| are the type indexes for the two parents; |Mtypes| the matrix of types */
/* \newline first sample a random number of juveniles \S~\ref{sec:randomnojuvs} */
const size_t numberj = sample_random_number_juveniles( conetwo, cdfone, cdftwo, r);
assert( numberj > 1 ) ;
/* \newline add the sampled number of juveniles to the pool \S~\ref{sec:addjuv} */
for( size_t j = 0; j < numberj ; ++j){
add_juvenile( gone, gtwo, Mtypes, jvs, r); }
}
@*1 {\bf a new pool of juveniles}.
\label{sec:newpooljuvs}
generate a new pool of juveniles
@<new pool juvs@>=@#
static void generate_pool_juveniles( std::vector< std::pair<size_t, double>>& jvs, std::vector<unsigned>& p, const std::vector<double>& cdfone, const std::vector<double>& cdftwo, gsl_matrix_short * Mtypes, gsl_rng *r)
{
jvs.clear() ;
jvs.shrink_to_fit();
assert( jvs.size() < 1 );
int gone {} ;
int gtwo {} ;
/* \newline sample distribution of number of juveniles */
const size_t conetwo = (gsl_rng_uniform(r) < GLOBAL_CONST_EPSILON ? 1 : 2) ;
/* \newline |i| runs over number of pairs that can be formed from the current number of individuals \S~\ref{sec:Nt} */
const double currenti = current_number_individuals(p) ;
assert( currenti < GLOBAL_CONST_I + 1) ;
for ( double i = 0 ; i < floor( currenti / 2. ) ; ++i){
/* \newline \S~\ref{sec:sampleparentindex} */
gone = sample_genotype_parent(p, r);
gtwo = sample_genotype_parent(p, r);
/* \newline |gone| and |gtwo| are the type indexes of the two parents */
assert(gone > -1);
assert( gtwo > -1);
/* \newline \S~\ref{sec:juvsforparentpair} */
add_juveniles_for_given_parent_pair(cdfone, cdftwo, jvs, gone, gtwo, conetwo, Mtypes, r) ;}
assert( jvs.size() >= static_cast<size_t>( currenti ) ) ;
}
@*1 {\bf surviving a bottleneck}.
\label{sec:survivebottle}
sample diploid individuals surviving a bottleneck; we sample uniformly at random without replacement
@<survive bottleneck@>=@#
static void sample_surviving_bottleneck( std::vector<unsigned>& p, gsl_rng * r)
{
int i = 0 ;
unsigned int nothers = current_number_individuals(p) - p[i] ;
unsigned newn = gsl_ran_hypergeometric( r, p[i], nothers, GLOBAL_CONST_BOTTLENECK);
unsigned int remaining = GLOBAL_CONST_BOTTLENECK - newn ;
/* \newline update count of individuals of type index |i| surviving bottleneck */
p[i] = newn ;
while( i < GLOBAL_NUMBER_TYPES - 2 ){
++i ;
nothers -= p[i] ;
newn = (remaining > 0 ? gsl_ran_hypergeometric( r, p[i], nothers, remaining) : 0) ;
p[i] = newn ;
remaining -= newn ;
}
assert( GLOBAL_NUMBER_TYPES - 1 < p.size() ) ;
p[ GLOBAL_NUMBER_TYPES - 1 ] = (remaining < GLOBAL_CONST_BOTTLENECK ? remaining : GLOBAL_CONST_II );
assert( current_number_individuals(p) >= GLOBAL_CONST_BOTTLENECK );
}
@*1 {\bf check if lost a type}.
\label{sec:checklosttype}
return True if not lost the type conferring advantage at any site, otherwise False
@<mutation is still around@>=@#
static bool not_lost_type( const std::vector<unsigned>& p, gsl_matrix_short * M )
{
std::vector<unsigned> x (GLOBAL_NUMBER_SITES, 0 ) ;
for (int i = 0 ; i < GLOBAL_NUMBER_TYPES ; ++i){
for( size_t s = 0; s < GLOBAL_NUMBER_SITES ; ++s){
x[s] += gsl_matrix_short_get(M, i, s) < 1 ? p[i] : 0 ; }}
/* \newline |GLOBAL_CONST_II| is $2N$ the maximum number of diploid individuals */
return std::all_of( x.begin(), x.end(), []( unsigned n ){ return n < GLOBAL_CONST_II ; } );
}
@*1 {\bf sample juveniles by weight }.
\label{sec:samplebyweight}
sample juveniles by weight; the surviving juveniles in number equal the carrying capacity
@<pick by weight@>=@#
static void sample_juveniles_according_to_weight(std::vector<unsigned>& population, const std::vector< std::pair< size_t, double>>& juveniles, const double c_nth)
{
assert( c_nth > 0. );
std::fill( population.begin(), population.end(), 0) ;
/* \S~\ref{sec:Nt} */
assert( current_number_individuals(population) < 1);
/* \newline check number of juveniles and |nth| element */
assert( juveniles.size() >= GLOBAL_CONST_II ) ;
size_t j = 0 ;
while( j < GLOBAL_CONST_II ){
assert( j < GLOBAL_CONST_II) ;
population[ std::get<0>(juveniles[j]) ] += std::get<1>(juveniles[j]) <= c_nth ? 1 : 0 ;
++j ;
}
/* \S~\ref{sec:Nt} */
assert( current_number_individuals(population) == GLOBAL_CONST_II );
}
@*1 {\bf compare two juveniles }.
\label{sec:compare}
compare the weight of two juveniles, needed for computing the $2N$th smallest weight among the weight of juveniles
@<compare@>=@#
static bool comp( std::pair<size_t, double> a, std::pair<size_t, double> b)
{
return ( std::get<1>(a) < std::get<1>(b) );
}
@*1 {\bf computing the $2N$th smallest weight }.
\label{sec:nth}
compute the $2N$th smallest weight among the weight of juveniles,
needed for sampling the juveniles according to weight when the total number of juveniles exceeds the carrying capacity
@<nth@>=@#
static double nthelm( std::vector< std::pair< size_t, double>>& juveniles )
{
/* \S~\ref{sec:compare} */
std::nth_element( juveniles.begin(), juveniles.begin() + (GLOBAL_CONST_II - 1), juveniles.end(), comp);
return( std::get<1>(juveniles[ GLOBAL_CONST_II - 1]) );
}
@*1 {\bf take one step }.
\label{sec:onestep}
step through one generation
@<one step@>=@#
static void onestep( std::vector<unsigned>& p, const std::vector<double>& cdfone, const std::vector<double>& cdftwo, std::vector< std::pair<size_t, double>>& jvs, gsl_matrix_short * M, gsl_rng *r )
{
double nth {} ;
/* \newline check if bottleneck */
if( gsl_rng_uniform( r) < GLOBAL_CONST_PROBABILITY_BOTTLENECK ){
/* \newline bottleneck occurs ; sample surviving types and update population \S~\ref{sec:survivebottle} */
sample_surviving_bottleneck(p, r) ; }
/* \newline first check if lost type at any site \S~\ref{sec:checklosttype} */
if ( not_lost_type(p, M) ){
/* \newline not lost type; check if fixed at all sites */
if( p.back() < GLOBAL_CONST_II ){
/* \newline not all individuals of type 2 at all sites, so sample juveniles \S~\ref{sec:newpooljuvs} */
generate_pool_juveniles(jvs, p, cdfone, cdftwo, M, r);
if( jvs.size() <= GLOBAL_CONST_II )
{
/* \newline total number of juveniles not over capacity so all survive \S~\ref{sec:alljuvssurvive} */
update_population_all_juveniles(jvs, p) ;
/* \newline \S~\ref{sec:Nt} */
assert( current_number_individuals(p) >= GLOBAL_CONST_BOTTLENECK );
}
else{
/* \newline need to sort juveniles and sample according to weight \S~\ref{sec:nth} */
nth = nthelm(jvs) ;
/* \newline \S~\ref{sec:samplebyweight} */
sample_juveniles_according_to_weight(p, jvs, nth) ;
assert( current_number_individuals(p) >= GLOBAL_CONST_II );
}
}
/* \newline mutation has fixed at both loci */
}
/* \newline mutation has been lost */
}
@*1 {\bf generate one excursion}.
\label{sec:traj}
generate one excursion and record the result
@<one excursion@>=@#
static void trajectory( std::vector<unsigned>& p, const std::vector<double>& cdfone, const std::vector<double>& cdftwo, std::vector< std::pair<size_t, double>>& jvs, const int numer, gsl_matrix_short * M, gsl_rng *r)
{
init_for_trajectory(p) ;
const std::string skra = "excursions_sites_" + std::to_string(numer) ;
std::vector< double > excursion_to_fixation {} ;
int timi = 0 ;
while( ( not_lost_type(p, M) ) && ( p.back() < GLOBAL_CONST_II ) ){
/* \newline record the number of diploid individuals homozygous 1/1 at all sites over current number of diploid individuals */
assert( GLOBAL_CONST_PROBABILITY_BOTTLENECK > 0. ? (current_number_individuals(p) >= GLOBAL_CONST_BOTTLENECK) : (1 > 0) ) ;
excursion_to_fixation.push_back( static_cast< double>( p.back() ) / static_cast<double>( current_number_individuals(p) ) ) ;
++ timi ;
onestep(p, cdfone, cdftwo, jvs, M, r) ; }
if( p.back() == GLOBAL_CONST_II ){
/* \newline fixation occurs so print excursion to file */
std::ofstream outfile (skra, std::ios_base::app) ;
for( const auto& y: excursion_to_fixation){
outfile << y << ' ' ;}
outfile << '\n' ;
outfile.close() ;
}
std::cout << ( p[GLOBAL_NUMBER_TYPES - 1] < GLOBAL_CONST_II ? 0 : 1) << ' ' << timi << '\n' ;
}
@*1 {\bf mass function for number of juveniles}.
\label{sec:mass}
the mass function for number of juveniles as in Eq~\eqref{eq:1}
@<mass@>=@#
static double px(const double k, const double calpha, const double ccutoff)
{
return ( (pow( 1./k, calpha) - pow( 1./(k + 1.), calpha) )/( pow( .5, calpha) - pow( 1./(ccutoff + 1.), calpha) ) ) ;
}
@*1 {\bf initialise the CDF }.
\label{sec:initcdf}
initialise the CDF corresponding to Eq~\eqref{eq:1} for the distribution of the number of juveniles
@<init cdf@>=@#
static void initialise_cdf( std::vector<double>& cdfo, std::vector<double>& cdft )
{
for( double i = 2; i <= GLOBAL_CONST_PSI_ONE ; ++i){
cdfo.push_back( cdfo.back() + px( i, GLOBAL_CONST_ALPHA_ONE, GLOBAL_CONST_PSI_ONE) ) ;}
for( double j = 2; j <= GLOBAL_CONST_PSI_TWO; ++j){
cdft.push_back( cdft.back() + px( j, GLOBAL_CONST_ALPHA_TWO, GLOBAL_CONST_PSI_TWO) ) ; }
}
@*1 {\bf run a given number of experiments}.
\label{sec:runsims}
run a given number of experiments and record the results
@<generate many excursions@>=@#
static void runsims( const int x, gsl_rng *r)
{
std::vector< unsigned int> population (GLOBAL_NUMBER_TYPES, 0) ;
std::vector< std::pair< size_t, double>> juveniles {} ;
std::vector<double> cdf_one {} ;
std::vector<double> cdf_two {} ;
/* \S~\ref{sec:initconts} */
init_containers(population, cdf_one, cdf_two) ;
/* \S~\ref{sec:initcdf} */
initialise_cdf(cdf_one, cdf_two) ;
/* \newline write the matrix of all L-site types \S~\ref{sec:allLsitetypes} */
gsl_matrix_short * M = gsl_matrix_short_calloc( GLOBAL_NUMBER_TYPES, GLOBAL_NUMBER_SITES ) ;
writearray( static_cast<double>(GLOBAL_NUMBER_SITES) , M) ;
int z = GLOBAL_CONST_NUMBER_EXPERIMENTS + 1;
while( --z > 0){
/* \newline \S~\ref{sec:traj} */
trajectory(population, cdf_one, cdf_two, juveniles, x, M, r) ;
}
gsl_matrix_short_free(M);
}
@*1 {\bf main module}.
\label{sec:main}
the {\tt main} function calling
@C
/* \newline \S \ref{sec:includes} */
@<Includes@>@#
/* \newline \S~\ref{sec:gslrng} */
@<gsl random number generator@>@#
/* \newline \S~\ref{sec:lookup} */
@<lookup@>@#
/* \newline \S~\ref{sec:initconts} */
@<container initialization@>@#
/* \newline \S~\ref{sec:inittraject} */
@<newtrajectory@>@#
/* \newline \S~\ref{sec:Nt} */
@<Nt@>@#
/* \newline \S~\ref{sec:sampleparentindex} */